
Lecture 18: Peer-to-Peer Systems

Revised 3/23/13

CS 3700 
Networks and Distributed Systems

❑ Peer-to-Peer Overview

❑ Example: Bittorrent
❑ µTP: Micro Transport Protocol
❑ Cheating on BitTorrent

Outline2

Traditional Internet Services Model

Client-server
! Many clients, 1 (or more) server(s)
! Web servers, DNS, file downloads, video streaming
Problems
! Scalability: how many users can a server support?
■ What happens when user traffic overload servers?
■ Limited resources (bandwidth, CPU, storage)

! Reliability: if # of servers is small, what happens when they
break, fail, get disconnected, are mismanaged by humans?

! Efficiency: if your users are spread across the entire globe,
how do you make sure you answer their requests quickly?

3

The Alternative: Peer-to-Peer

A simple idea
! Users bring their own resources to the table
! A cooperative model: clients = peers = servers
The benefits
! Scalability: # of “servers” grows with users
■ BYOR: bring your own resources (storage, CPU, B/W)

! Reliability: load spread across many peers
■ Probability of them all failing is very low…

! Efficiency: peers are distributed
■ Peers can try and get service from nearby peers

4

The Peer-to-Peer Challenge

What are the key components for leveraging P2P?
! Communication: how do peers talk to each other
! Service/data location: how do peers know who to talk to
New reliability challenges
! Network reachability, i.e. dealing with NATs
! Dealing with churn, i.e. short peer uptimes
What about security?
! Malicious peers and cheating
! The Sybil attack

5

Centralized Approach

The original: Napster
! 1999-2001
! Shawn Fanning, Sean Parker
! Invented at NEU
! Specialized in MP3s (but not for long)
Centralized index server(s)
! Supported all queries
What caused its downfall?
! Not scalable
! Centralization of liability

6

Napster Architecture
7

Napster
Central Server

Log-in, upload list
of filesSearch for

Gangnam Style

A

B

C

D

E

F

G

B and C have
the file

Centralized != Scalable?

Another centralized protocol: Maze
! Highly active network in China / Asia
! Over 2 million users, more than 13 TB transferred/day
! Central index servers run out of PKU
! Survives because RIAA/MPAA doesn’t exist in China
Why is this interesting?
! Shows centralized systems can work
■ Of course have to be smart about it…

! Central servers “see” everything
■ Quite useful for research / measurement studies

8

Maze Architecture
9

Maze
Central Server

A

B

C

D

E

F

G

Traffic Logs
• Who downloaded
• Who uploaded
• How much data

Incentive system
! Encourage people to

upload
! Assess the

trustworthyness of
files

Colluding Users

Why and How of collusion
! Collusion gets you points in Maze (incentive system)
! Spawn fake users/identities for free
Collusion detectors (ICDCS 2007)
! Duplicate traffic across links
! Pair-wise mutual upload behavior
! Peer-to-IP ratio of clients
! Traffic concentration

10

Duplicate transfer graph: 100
links w/ highest duplicate

transfer rates

The Sybil Attack

Unstructured P2P Applications

Centralized systems have single points of failure
Response: fully unstructured P2P
! No central server, peers only connect to each other
! Queries sent as controlled flood
! Later systems are hierarchical for performance reasons
Limitations
! Bootstrapping: how to join without central knowledge?
! Floods of traffic = high network overhead
! Probabilistic: can only search a small portion of the system
! Uncommon files are easily lost

11

Gnutella

First massively popular unstructured P2P application
! Justin Frankel, Nullsoft, 2000
! AOL was not happy at all
Original design: flat network
! Join via bootstrap node
! Connect to random set of existing hosts
! Resolve queries by localized flooding

■ Time to live fields limit hops

Recent incarnations use hierarchical structure
Problems
! High bandwidth costs in control messages
! Flood of queries took up all avail b/w for dialup users

12

File Search via Flooding in Gnutella
13

What if the
file is rare or
far away?

Redundancy

Traffic
Overhead

Peer Lifetimes

Study of host uptime and application uptime (MMCN 2002)
! 17,000+ Gnutella peers for 60 hours
! 7,000 Napster peers for 25 hours

14

Host Uptime (Minutes)

Pe
rc

en
ta

ge
 o

f
H

os
ts

Resilience to Failures and Attacks

Previous studies (Barabasi) show interesting dichotomy of resilience
for “scale-free networks”
! Resilient to random failures, but not attacks
Here’s what it looks like for Gnutella

1771 Peers in Feb, 2001 After random 30% of peers removedAfter top 4% of peers are removed

15

Hierarchical P2P Networks

FastTrack network (Kazaa, Grokster, Morpheus, Gnutella++)

supernode

16

• Improves scalability
• Limits flooding
• Still no guarantees of performance
• What if a supernode leaves the network?

Kazaa

Very popular from its inception
! Hierarchical flooding helps improve scale
! Large shift to broadband helped quite a bit as well
! Based in Europe, more relaxed copyright laws

New problem: poison attacks
! Mainly used by RIAA-like organizations
! Create many Sybils that distribute “popular content”
■ Files are corrupted, truncated, scrambled
■ In some cases, audio/video about copyright infringement

! Quite effective in dissuading downloaders

17

Data Poisoning on Kazaa

Why is poisoning effective? (IPTPS 2006)
! People don’t check their songs!
! Apparently not easy to detect file pollution!

Noise ShuffleIncompleteDown.QualityMetadata

18

Distribution of Poisoned Files

Why are poisoned files so widely distributed?
! “Slackness”, even when users are “asked” to check files

19

Skype: P2P VoIP

P2P client supporting VoIP, video, and text based conversation,
buddy lists, etc.
! Based on Kazaa network (FastTrack)
! Overlay P2P network consisting of ordinary and Super Nodes (SN)
! Ordinary node connects to network through a Super Node
Each user registers with a central server
! User information propagated in a decentralized fashion
Uses a variant of STUN to identify the type of NAT and firewall

20

What’s New About Skype

MSN, Yahoo, GoogleTalk all provide similar functionality
! But generally rely on centralized servers

So why peer-to-peer for Skype?
! One reason: cost
■ If redirect VoIP through peers, can leverage geographic

distribution
■ i.e. traffic to a phone in Berlin goes to peer in Berlin, thus becomes

a local call
! Another reason: NAT traversal
■ Choose peers to do P2P rendezvous of NAT’ed clients

Increasingly, MS is using infrastructure instead of P2P

21

❑ Peer-to-Peer Overview

❑ Example: Bittorrent
❑ µTP: Micro Transport Protocol
❑ Cheating on BitTorrent

Outline22

What is BitTorrent
23

Designed for fast, efficient content distribution
! Ideal for large files, e.g. movies, DVDs, ISOs, etc.
! Uses P2P file swarming
Not a full fledged P2P system
! Does not support searching for files
! File swarms must be located out-of-band
! Trackers acts a centralized swarm coordinators
■ Fully P2P, trackerless torrents are now possible

Insanely popular
! 35-70% of all Internet traffic

BitTorrent Overview
24

Tracker

Swarm

Leechers

Seeder

.torrent File
25

Contains all meta-data related to a torrent
! File name(s), sizes
! Torrent hash: hash of the whole file
! URL of tracker(s)
BitTorrent breaks files into pieces
! 64 KB – 1 MB per piece
! .torrent contains the size and SHA-1 hash of each piece
Basically, a .torrent tells you
! Everything about a given file
! Where to go to start downloading

Torrent Sites
26

Just standard web servers
! Allow users to upload .torrent files
! Search, ratings, comments, etc.
Some also host trackers
Many famous ones
! Mostly because they host illegal content
Legitimate .torrents
! Linux distros
! World of Warcraft patches

Torrent Trackers
27

Really, just a highly specialized webserver
! BitTorrent protocol is built on top of HTTP
Keeps a database of swarms
! Swarms identified by torrent hash
! State of each peer in each swarm
■ IP address, port, peer ID, TTL
■ Status: leeching or seeding
■ Optional: upload/download stats (to track fairness)

! Returns a random list of peers to new leechers

Tracker

Peer Selection
28

Tracker provides each client with a list of peers
! Which peers are best?
■ Truthful (not cheating)
■ Fastest bandwidth

Option 1: learn dynamically
! Try downloading from many peers
! Keep only the best peers
! Strategy used by BitTorrent
Option 2: use external information
! E.g. Some torrent clients prefer peers in the same ISP

Sharing Pieces
29

Initial Seeder

1 2 3 4 5 6 7 8

Leecher

1 2 3

Leecher

54 76 8 1 2 3 54 76 8

Seeder Seeder

The Beauty of BitTorrent
30

More leechers = more replicas of pieces
More replicas = faster downloads
! Multiple, redundant sources for each piece
Even while downloading, leechers take load off the
seed(s)
! Great for content distribution
! Cost is shared among the swarm

Typical Swarm Behavior
31

Sub-Pieces and Pipelining
32

Each piece is broken into sub-pieces
! ~16 KB in size
TCP Pipelining
! For performance, you want long lived TCP connections (to get

out of slow start)
! Peers generally request 5 sub-pieces at a time
! When one finished, immediately request another
! Don’t start a new piece until previous is complete
■ Prioritizes complete pieces
■ Only complete pieces can be shared with other peers

Piece Selection
33

Piece download order is critical
! Worst-case scenario: all leeches have identical pieces
■ Nobody can share anything :(

! Worst-case scenario: the initial seed disappears
■ If a piece is missing from the swarm, the torrent is broken

What is the best strategy for selecting pieces?
! Trick question
! It depends on how many pieces you already have

Download Phases
34

Bootstrap: random selection
! Initially, you have no pieces to trade
! Essentially, beg for free pieces at random
Steady-state: rarest piece first
! Ensures that common pieces are saved for last
Endgame
! Simultaneously request final pieces from multiple

peers
! Cancel connections to slow peers
! Ensures that final pieces arrive quickly

0%

100%

%
 D

ow
nl

oa
de

d

Upload and Download Control
35

How does each peer decide who to trade with?
Incentive mechanism
! Based on tit-for-tat, game theory
! “If you give a piece to me, I’ll give a piece to you”
! “If you screw me over, you get nothing”
! Two mechanisms: choking and optimistic unchoke

A Bit of Game Theory
36

Iterated prisoner’s dilemma
Very simple game, two players, multiple rounds
! Both players agree: +2 points each
! One player defects: +5 for defector, +0 to other
! Both players defect: +0 for each
Maps well to trading pieces in BitTorrent
! Both peers trade, they both get useful data
! If both peers do nothing, they both get nothing
! If one peer defects, he gets a free piece, other peer gets

nothing
What is the best strategy for this game?

Tit-for-Tat
37

Best general strategy for iterated prisoner’s dilemma
Meaning: “Equivalent Retaliation”

Round Points

1 Cooperate Cooperate +2 / +2

2 Cooperate Defect +0 / +5

3 Defect Cooperate +5 / +0

4 Cooperate Cooperate +2 / +2

5 Cooperate Defect +0 / +5

6 Defect Defect +0 / +0

7 Defect Cooperate +5 / +0

Totals: +14 / +14

Rules
1. Initially: cooperate
2. If opponent cooperates,

cooperate next round
3. If opponent defects,

defect next round

Choking
38

Choke is a temporary refusal to upload
! Tit-for-tat: choke free riders
! Cap the number of simultaneous uploads
■ Too many connections congests your network

! Periodically unchoke to test the network connection
■ Choked peer might have better bandwidth

Optimistic Unchoke
39

Each peer has one optimistic unchoke slot
! Uploads to one random peer
! Peer rotates every 30 seconds
Reasons for optimistic unchoke
! Help to bootstrap peers without pieces
! Discover new peers with fast connections

BitTorrent Protocol Fundamentals
40

BitTorrent divides time into rounds
! Each round, decide who to upload to/download from
! Rounds are typically 30 seconds
Each connection to a peer is controlled by four states
! Interested / uninterested – do I want a piece from you?
! Choked / unchoked – am I currently downloading from you?
Connections are bidirectional
! You decide interest/choking on each peer
! Each peer decides interest/chocking on you

Leecher
1 2 3

Leecher
4

Connection States
41

Download control
! d – interested and choked
! D – interested and unchoked
! K – uninterested and unchoked
! S – snubbed (no data received in

60 seconds)
! F – piece(s) failed to hash
Upload control
! u – interested and choked
! U – interested and unchoked
! O – optimistic unchoke
! ? – uninterested and unchoked

Connection information
! I – incoming connection
! E/e – Using protocol encryption

! h – used UDP hole punching
! P – connection uses µTP
How was this peer located?
! H – DHT (distributed hash table)
! L – local peer discovery (multicast)
! X – peer exchange

Most peers are d or D. No
need to connect with
uninteresting peers.Error states.

Connection should
be closed.

More on this
later…

More on this
next week

Upload-Only Mode
42

Once a peer completes a torrent, it becomes a seed
! No downloads, no tit-for-tat
! Who to upload to first?
BitTorrent policy
! Upload to the fastest known peer
! Why?
! Faster uploads = more available pieces
! More available pieces helps the swarm

Trackerless Torrents
43

New versions of BitTorrent have the ability to locate
swarms without a tracker
! Based on a P2P overlay
! Distributed hash table (DHT)
Recall: peers located via DHT are given “H” state
More on this next week

❑ BitTorrent Basics
❑ µTP: Micro Transport Protocol
❑ Cheating on BitTorrent

Outline44

BitTorrent and TCP
45

BitTorrent accounts for 35-70% of all Internet traffic
Thus, BitTorrent’s behavior impacts everyone
BitTorrent’s use of TCP causes problems
! Long lived, BitTorrent TCP flows are “elephants”
■ Ramp up past slow start, dominate router queues

! Many applications are “mice,” get trampled by elephants
■ Short lived flows (e.g. HTTP traffic)
■ Delay sensitive apps (i.e. VoIP, SSH, online games)

Have you ever tried using SSH while using BitTorrent?

Making BitTorrent Play Nice
46

Key issue: long-lived TCP flows are aggressive
! TCP is constantly probing for more bandwidth
! TCP induces queuing delay in the network
Does BitTorrent really need to be so aggressive?
! BitTorrent is not delay sensitive
■ Do you care if your download takes a few minutes longer?

! BitTorrent is low-priority background traffic
■ You probably want to do other things on the Internet while

BitTorrent is downloading

Solution: use less a less aggressive transport protocol for
BitTorrent

Micro Transport Protocol (µTP)
47

Designed by BitTorrent, Inc.
UDP-based transport protocol
Uses LEDBAT principals
Duplicates many TCP features
! Window based sending, advertised windows
! Sequence numbers (packet based, not byte based)
! Reliable, in-order packet delivery
Today: widely adopted by BitTorrent clients and open-
sourced

µTP and LEDBAT
48

µTP is based on IETF LEDBAT standard (RFC 6817)
Low Extra Delay Background Transport
! Low delay congestion control algorithm
! Seeks to use all available bandwidth…
! … without increasing queuing delay on the path
Goal: fast transfer of bulk data in the background
! Use all available bandwidth (fast transfer speed)
! … but, do not starve other applications

■ Background data transfer is not delay sensitive
■ Backoff gracefully and give bandwidth to delay sensitive applications

LEDBAT Details
49

Delay-based congestion control protocol
! Similar algorithm to TCP Vegas
! Measure one-way delay, reduce rate when delay increases
Constraint: be less aggressive than TCP
! React early to congestion and slow down
! Do not induce queuing delay in the network
LEDBAT is a “scavenger” cc protocol
! Scavenge unused bandwidth for file transfer
! … but don’t take bandwidth from other flows

µTP Header
50

Destination Port
0 16 31

Payload Length
Source Port

Checksum

84

Connection ID
Timestamp (microseconds)

Type

Advertised Window (bytes)
Timestamp Difference (microseconds)

Sequence Number Ack Number

U
D

P
µT

P

Ver. Extension

Many fields are like TCP
Important new fields are the timestamps

UDP header,
gives you ports

Seq. and Ack.
numbers like TCP

Advertised window,
like TCP

Version = 1 Like TCP options

Random number,
uniquely identifies
each connection

Like TCP flags: SYN=4,
FIN=1, RST=3, DATA=0,

STATE=2 (ACK)

Timestamps and Delay
51

Timestamps used to measure one-way delay
! Timestamp: time at which packet was sent
! Timestamp Difference: sent time – received time

DATA t0 0

Question: why use one-way delay instead of RTT?
! Queues on Internet paths are not symmetric
! Delay on the reverse path doesn’t impact the forward path

ACK t1 100ms

Send at time t0
Received at time
t0+100ms

Time difference
inserted into ACK

Sender knows one-way
delay = 100ms

µTP Congestion Controller
52

CCONTROL_TARGET = 100ms

base_delay = min([list of time difference samples from the last 2 minutes])
our_delay = last_time_diff_sample – base_delay

off_target = CCONTROL_TARGET – our_delay

delay_factor = off_target / CCONTROL_TARGET
window_factor = oustanding_packets / max_window
scaled_gain = MAX_CWND_INCR_PER_RTT * delay_factor * window_factor

max_window = max_window + scaled_gain

µTP tries to keep one-way
delay ~100ms

Estimate the baseline
delay on the path

Time difference from
most recent ACK

Current delay on the
path above the

baseline

Is delay below our target (positive value),
or above our target (negative value)

Convert units from
“time” to “packets”

Finally, adjust the window size (may
be + or – adjustment)

More µTP Details
53

Delay-based mechanism replaces slow start and additive
increase
What if a packet drops?
! max_window = max_window * 0.5 (just like TCP)
What if off_target is a large negative number?
! max_window = 1 packet (don’t starve the connection)
Error handling in µTP :
! Uses RTO like Tahoe to retransmit lost packets
! Uses fast retransmit like TCP Reno

Discussion
54

In this case, developing a new transport protocol was
(arguably) the right decision
! BitTorrent generates huge amounts of traffic
! Whole Internet benefits if BitTorrent is more friendly
However, inventing new protocols is hard
! µTP reimplements most of TCP
■ RTO estimation, Nagle’s algorithm, etc.

! Early version of µTP performed much worse than TCP
■ Lots of bugs related to packet pacing and sizing

Takeaway: develop new transport protocols only if
absolutely necessary

Spotify
55

Uses BT as basic protocol
! Uses server for first 15s
! Tries to find peers and  

download from them
! Only 8.8% of bytes come  

from servers

When 30s left
! Starts searching for next track
! Uses sever with 10s to go if  

no peers found

❑ BitTorrent Basics
❑ µTP: Micro Transport Protocol
❑ Cheating on BitTorrent

Outline56

Incentives to Upload
57

Every round, a BitTorrent client calculates the number of
pieces received from each peer
! The peers who gave the most will receive pieces in the next

round
! These decisions are made by the unchoker
Assumption
! Peers will give as many pieces as possible each round
! Based on bandwidth constraints, etc.
Can an attacker abuse this assumption?

Unchoker Example
58

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

10

Abusing the Unchocker
59

What if you really want to download from someone?

Round t Round t + 1

13

10

4

12

7

9

15

10

10

10

1020

Send a lot of
data, get 1st

place

11

Send just
enough data,
 get 4th place

10

Sybil Attack
60

Round t Round t + 1

Total Capacity = 42

13

10

12

15

10

10

10

1042

Only receive
10 pieces

14 10

14

14

10

10

Divide
resources

across 3 fake
peers

Receive 30
pieces

BitTyrant
61

Piatek et al. 2007
! Implements the “come in last strategy”
! Essentially, an unfair unchoker
! Faster than stock BitTorrent
■ For the Tyrant user

Problem with BitTyrant
! Tragedy of the commons
! BitTyrant performs well if most peers are honest
! As more peers use BitTyrant, performace suffers
! If all users used BitTyrant, torrents wouldn’t work at all

PropShare Unchoker
62

Goal: modify BitTorrents incentive mechanisms to mitigate
“come in last” and Sybil attacks
Levin et al. 2008
! Propose PropShare unchoker
! PropShare clients allocate upload bandwidth proportionally

across all peers
! There is no longer a “top four”
Can you cheat vs. PropShare?

PropShare Unchoker
63

Round t Round t + 1

13

10

4

12

7

9

15

13/70 * upload_cap

10/70 * upload_cap

12/70 * upload_cap

15/70 * upload_cap

Total = 70

4/70 * upload_cap

7/70 * upload_cap

9/70 * upload_cap

PropShare Resiliency to BitTyrant
64

Round t Round t + 1

13

10

4

12

7

9

15

13/90

10/90

12/90

15/90

Total = 90

4/90

7/90

9/90

20 20/90

PropShare Resiliency to BitTyrant
65

Round t Round t + 1

13

10

4

12

7

9

15

13/81

10/81

12/81

15/81

Total = 81

4/81

7/81

9/81

11 11/81

• Download always proportional to upload
• No way to game the system

PropShare Resiliency to Sybils
66

Round t Round t + 1

Total = 42

42 42/42

Total = 42

14 14/42

14

14

14/42

14/42

Total Capacity = 42

PropShare is Sybil resistant

Unchoker Summary
67

BitTyrant and PropShare are both faster than stock
BitTorrent
! But for different reasons
PropShare performs comparably to BitTyrant
PropShare does not suffer from a tragedy of the
commons
! i.e. it’s safe for all peers to use PropShare
! Not true for BitTyrant

Abusing Optimistic Unchoking
68

So far, assumed peers all have pieces to trade
! Thus, all peers are interesting
What about peers that have nothing?
! The bootstrap mechanism is supposed to help them
! Optimistic unchoke: reserve some bandwidth to give free

pieces away (presumably to new peers)
BitThief (Locher et al. 2006)
! Abuses optimistic unchoke, uploads nothing
! Swarm collapses if all peers use BitThief

BitThief Details
69

Large-view exploit
! The swarm is (potentially) huge
! BitThief client tries to get optimistic unchoke from many, many

peers
! Will only receive one free piece from each
■ Since there is no reciprocal upload

! But in aggregate, this is enough to finish download
How to deal with this?
! Enlist the help of peers
! Have them verify that a given client uploads

Encrypted Pieces
70

Seeder

1 2

Leecher

1 2

BitThief

1 2

BitThief can’t leave,
encrypted data is

useless

Abusing the Endgame
71

Rare pieces are valuable
! Make you popular, many people want to trade with you
! More trading partners = faster downloads
Selective piece revelation
! You can’t advertise pieces you don’t have
■ Peers could detect this

! But you can hide information about the pieces you have
Why is this useful?
! Pieces sent at time t impact your popularity at time t+1
! Sending common pieces first, monopolize rare pieces

Strategic Piece Revelation
72

1 2

Leecher Leecher

3 4

1 2 3 4 1 2 3 4

Conclusions
73

BitTorrent is an extremely efficient tool for content
distribution
! Strong incentive system based on game theory
! Most popular file sharing client since 2001
! More active users than YouTube and Facebook combined
However, BitTorrent is a large system with many different
mechanisms
! Ample room to modify the client, alter behavior
! Cheating can happen, not all strategies are fair

