CS 3700

Networks and Distributed Systems

Lecture 18: Peer-to-Peer Systems

IRevised 3/23/13

foue

Q Peer-to-Peer Overview

4 Example: Bittorrent
2 JTP: Micro Transport Protocol
2 Cheating on BitTorrent

Traditional Internet Services Model

= Client-server
O Many clients, 1 (or more) server(s)
0 Web servers, DNS, file downloads, video streaming

2 Problems
O Scalability: how many users can a server support?

= What happens when user traffic overload servers?
= Limited resources (bandwidth, CPU, storage)

O Reliability: if # of servers is small, what happens when they
break, fail, get disconnected, are mismanaged by humans?

O Efficiency: if your users are spread across the entire globe,
how do you make sure you answer their requests quickly?

The Alternative: Peer-to-Peer

.43
2 A simple idea
0O Users bring their own resources to the table
O A cooperative model: clients = peers = servers

o The benefits

O Scalability: # of “servers” grows with users

= BYOR: bring your own resources (storage, CPU, B/W)
O Reliability: load spread across many peers

= Probability of them all failing is very low...
O Efficiency: peers are distributed

= Peers can try and get service from nearby peers

The Peer-to-Peer Challenge

2 What are the key components for leveraging P2P¢
O Communication: how do peers talk to each other
O Service /data location: how do peers know who to talk to

2 New reliability challenges
O Network reachability, i.e. dealing with NATs
O Dealing with churn, i.e. short peer uptimes

© What about security?

O Malicious peers and cheating
O The Sybil attack

Centralized Approach

_ 6|
2 The original: Napster e

01999-2001
O Shawn Fanning, Sean Parker
O Invented at NEU

O Specialized in MP3s (but not for long)

2 Centralized index server(s)
O Supported all queries

7 What caused its downfall?
O Not scalable
O Centralization of liability

Napster Architecture

Napster
Central Server

S
o P

Searc
Gangnam Jdtyle

B and C have
the file

})
&
=

Centralized 1= Scalable?

2 Another centralized protocol: Maze
O Highly active network in China / Asia
O Over 2 million users, more than 13 TB transferred /day

O Central index servers run out of PKU
O Survives because RIAA/MPAA doesn’t exist in China

2 Why is this interesting?
O Shows centralized systems can work
= Of course have to be smart about it...

O Central servers “see” everything

= Quite useful for research / measurement studies

Maze Architecture

_ 9 |
2 Incentive system

Maze .
Central Server Traffic Logs

O Encourage people to w Who downloaded

upload * Who uploaded
O Assess the

trustworthyness of
files

A

«*
&

e e How much data

]
=
|

.

-

@«

Colluding Users
o

" Why and How of collusion

The Sybil Attack

O Collusion gets you points in Maze (incg

O Spawn take users/identities for free

ve system)

O Duplicate traffic across links

O Pair-wise mutual upload behavior SRR RN SHe
. ~ '
O Peer-to-IP ratio of clients RN R SR
. . e * . ¥
O Traffic concentration SBRRORIIIIIR BTy P
. '.‘ i P’ h L y
-~ “i. N + ' % b
! {
| § ‘J . -
Duplicate transfer graph: 100 | B ~ ., -
links w/ highest duplicate | voowh ¢ !

transfer rates

Unstructured P2P Applications

N
2 Centralized systems have single points of failure

2 Response: fully unstructured P2P
O No central server, peers only connect to each other
O Queries sent as controlled flood
O Later systems are hierarchical for performance reasons

2 Limitations
O Bootstrapping: how to join without central knowledge?
O Floods of traffic = high network overhead
O Probabilistic: can only search a small portion of the system
0 Uncommon files are easily lost

Gnutella
N

2 First massively popular unstructured P2P application
O Justin Frankel, Nullsoft, 2000
O AOL was not happy at all
2 QOriginal design: flat network
O Join via bootstrap node
O Connect to random set of existing hosts

O Resolve queries by localized flooding
= Time to live fields limit hops

o0 Recent incarnations use hierarchical structure
7 Problems

O High bandwidth costs in control messages
O Flood of queries took up all avail b/w for dialup users

File Search via Flooding in Gnutella

Redundancy

What if the
file is rare or
far away?

Traffic
Overhead

Peer Lifetimes
N

7 Study of host uptime and application uptime (MMCN 2002)
0 17,000+ Gnutella peers for 60 hours

0 7,000 Napster peers for 25 hours
CDFs of Host Uptimes

100 -
Gnutella Host Uptime

. Napster Host Uptime

=
3
T 60 - =
G
o
0 /
O 40 N
..g Internet Host Uptime
o (Gnutella)
U o9
2 Internet Host Uptime
(Napster)
0 : ‘
0 20 40 60 80 100

Host Uptime (Minutes)

Resilience to Failures and Attacks
B

2 Previous studies (Barabasi) show interesting dichotomy of resilience
for “scale-free networks”

O Resilient to random failures, but not attacks
2 Here’s what it looks like for Gnutella

1771 Peers in Feb, 2001 After tendbm SDPEefssrersammwedd

Hierarchical P2P Networks
6

7 FastTrack network (Kazao ©~ - llat)

TN
LSS

=

Improves scalability
Limits flooding
Still no guarantees of performance

What if a supernode leaves the network?

2 Very popular from its inception
O Hierarchical flooding helps improve scale
O Large shift to broadband helped quite a bit as well
O Based in Europe, more relaxed copyright laws

2 New problem: poison attacks
O Mainly used by RIAA-like organizations
O Create many Sybils that distribute “popular content”

= Files are corrupted, truncated, scrambled
= In some cases, audio/video about copyright infringement

O Quite effective in dissuading downloaders

Data Poisoning on Kazaa

S
% Why is poisoning effective? (IPTPS 2006)

O People don’t check their songs!
O Apparently not easy to detect file pollution!

Metadata Down.Quality Incomplete Noise Shuffle

0.9 f--=mmmmmmmm oo e T B

08 p---===-----———4 | [] [
O‘] ___
06 f--=====----==——{ | | | |- | f-----
05 p--====-----——4 | | | [| | | F----

Awareness

04 p==r----- -4 | | | |- f---

03 F - -1 | | | [|----—-------

02 F —4 | | | |- -

0.1 b o —

Distribution of Poisoned Files

T2 e —
2 Why are poisoned files so widely distributed?

O “Slackness”, even when users are “asked” to check files

0.7

<
(=
T

@
L
T

<
e
I

<
‘e
1
1
i
|
|

=
[
Ll
|
L}

<
T

Fraction of pollution checks

&

Slackness (Hours)

Skype: P2P VolP

7 P2P client supporting VolP, video, and text based conversation,
buddy lists, etc.

O Based on Kazaa network (FastTrack)

O Overlay P2P network consisting of ordinary and Super Nodes (SN)

O Ordinary node connects to network through a Super Node

7 Each user registers with a central server

O User information propagated in a decentralized fashion

9 Uses a variant of STUN to identify the type of NAT and firewall

What’s New About Skype

7 MSN, Yahoo, GoogleTalk all provide similar functionality
O But generally rely on centralized servers

2 So why peer-to-peer for Skype?

O One reason: cost

= If redirect VolP through peers, can leverage geographic
distribution

= i.e. traffic to a phone in Berlin goes to peer in Berlin, thus becomes
a local call

O Another reason: NAT traversal
= Choose peers to do P2P rendezvous of NAT’ed clients

2 Increasingly, MS is using infrastructure instead of P2P

e Joue

Q Peer-to-Peer Overview

4 Example: Bittorrent
2 JTP: Micro Transport Protocol
2 Cheating on BitTorrent

What is BitTorrent

o Designed for fast, efficient content distribution
O Ideal for large files, e.g. movies, DVDs, ISOs, etc.
O Uses P2P file swarming

7 Not a full fledged P2P system
O Does not support searching for files
O File swarms must be located out-of-band
O Trackers acts a centralized swarm coordinators

= Fully P2P, trackerless torrents are now possible
2 Insanely popular
0 35-70% of all Internet traffic

BitTorrent Overview

Tracker

Leechers

forrent File

25 |
0 Contains all meta-data related to a torrent

O File name(s), sizes
O Torrent hash: hash of the whole file
0 URL of tracker(s)

o BitTorrent breaks files into pieces
064 KB -1 MB per piece
O .torrent contains the size and SHA-1 hash of each piece

2 Basically, a .torrent tells you
O Everything about a given file
O Where to go to start downloading

Torrent Sites

0 Just standard web servers
O Allow users to upload .torrent files
O Search, ratings, comments, etc.

0 Some also host trackers

2 Many famous ones

W,
%‘*\/ 28 O Mostly because they host illegal content

N

mJB Picate Bay © Legitimate .torrents
O Linux distros
0 World of Warcraft patches

Tracker

Torrent Trackers

2 Really, just a highly specialized webserver

O BitTorrent protocol is built on top of HTTP

7 Keeps a database of swarms
O Swarms identified by torrent hash
O State of each peer in each swarm
= |P address, port, peer ID, TTL

= Status: leeching or seeding
= Optional: upload /download stats (to track fairness)

O Returns a random list of peers to new leechers

Peer Selection

2 Tracker provides each client with a list of peers
O Which peers are best?
= Truthful (not cheating)
= Fastest bandwidth
2 Option 1: learn dynamically
O Try downloading from many peers
O Keep only the best peers
O Strategy used by BitTorrent

2 Option 2: use external information
O E.g. Some torrent clients prefer peers in the same ISP

Sharing Pieces
29

Initial Seeder

2

12{s]e]slsl7fe
i f2faffs[s]7] e afsffsfslle

| Sasadobarr | hasdaber

The Beauty of BitTorrent

2J
7 More leechers = more replicas of pieces

2 More replicas = faster downloads
O Multiple, redundant sources for each piece

2 Even while downloading, leechers take load off the
seed(s)
O Great for content distribution
O Cost is shared among the swarm

Typical Swarm Behavior

Sub-Pieces and Pipelining

2 Each piece is broken into sub-pieces
0 ~16 KB in size
2 TCP Pipelining
O For performance, you want long lived TCP connections (to get
out of slow start)
O Peers generally request 5 sub-pieces at a time
O When one finished, immediately request another
O Don’t start a new piece until previous is complete

= Prioritizes complete pieces
= Only complete pieces can be shared with other peers

Piece Selection

~ Piece download order is critical

O Worst-case scenario: all leeches have identical pieces
= Nobody can share anything :(
O Worst-case scenario: the initial seed disappears

= If a piece is missing from the swarm, the torrent is broken

% What is the best strategy for selecting pieces?
O Trick question
O |t depends on how many pieces you already have

Download Phases

0% 2 Bootstrap: random selection
O Initially, you have no pieces to trade

O Essentially, beg for free pieces at random

0 Steady-state: rarest piece first
O Ensures that common pieces are saved for last

2 Endgame

O Simultaneously request final pieces from multiple
peers

% Downloaded

O Cancel connections to slow peers
O Ensures that final pieces arrive quickly

100%

Upload and Download Control

I
© How does each peer decide who to trade with?

2 Incentive mechanism
O Based on tit-for-tat, game theory
O “If you give a piece to me, I'll give a piece to you”
0 “lf you screw me over, you get nothing”
O Two mechanisms: choking and optimistic unchoke

A Bit of Game Theory

o lterated prisoner’s dilemma

2 Very simple game, two players, multiple rounds
O Both players agree: +2 points each
O One player defects: +5 for defector, +0 to other
O Both players defect: +0 for each

2 Maps well to trading pieces in BitTorrent
O Both peers trade, they both get useful data
O If both peers do nothing, they both get nothing
O If one peer defects, he gets a free piece, other peer gets
nothing

" What is the best strategy for this game?

Tit-for-Tat

o Best general strategy for iterated prisoner’s dilemma

2 Meaning: “Equivalent Retaliation”

1. Initially: cooperate Cooperate Cooperate +2 | +2

2. If opponent cooperates,
cooperate next round

3. If opponent defects,
defect next round

Iotals: +14/+14

Choking

2 Choke is a temporary refusal to upload
O Tit-for-tat: choke free riders
O Cap the number of simultaneous uploads
= Too many connections congests your network
O Periodically unchoke to test the network connection
= Choked peer might have better bandwidth

Optimistic Unchoke

2 Each peer has one optimistic unchoke slot
O Uploads to one random peer
O Peer rotates every 30 seconds

2 Reasons for optimistic unchoke
O Help to bootstrap peers without pieces

O Discover new peers with fast connections

BitTorrent Protocol Fundamentals
~40 |

Leecher Leecher

© BitTorrent divides time into rounds
O Each round, decide who to upload to/download from

O Rounds are typically 30 seconds
2 Each connection to a peer is controlled by four states
O Interested / uninterested — do | want a piece from you?
O Choked / unchoked — am | currently downloading from you?
= Connections are bidirectional

O You decide interest/choking on each peer

O Each peer decides interest/chocking on you

Most peers are d or D. No

Connec’rion S"'CI"'eS need to connect with

uninteresting peers.

Error states.

Connecl“on ShOUId © General { % Trackers | (- PN es | mm Files | | Speed | = Logger
be Closed. P Client % DownS.. Up Speed
Edbl20-87-69.dsl... uTorrent 3.2.3 8.6 0.3 kB/s
E=50545651f.skyb... Vuze 5.0.0.0 100.0 3.6 kB/s
K terested and unchoked B8 14-202-18-1.st.. pTorrent Mac 100.0
E5S010600265ac... uTorrent 2.0.4 100.0
50 RN B=50106586d8f3... BitTorrent 7.0, 100.0
secon S) E=5010624ab81... Transmission 2. 356

F — piece(s) failed to hash S c-24-130-191-.. pTorrent 3.3 000

® em36-244-251... BitTorrent 7.8.
u — interested and choked 417877178 [.. BitTorrent 7.8 later... 0.4 kB/s

U — interested and unchoked

O — optimistic unchoke o h- More on fh|5

2 — uninterested and unchoked g P—q next week
5 How was r locateds¢
O H - DHT (distrfouted hash table)

O L —local peer discovery (multicast)

5 Connection information
O | —incoming connection

O E/e — Using protocol encryption
O X — peer exchange

Upload-Only Mode

2 Once a peer completes a torrent, it becomes a seed

O No downloads, no tit-for-tat
O Who to upload to first?

2 BitTorrent policy
O Upload to the fastest known peer
0 Why?e
O Faster uploads = more available pieces
O More available pieces helps the swarm

Trackerless Torrents

2 New versions of BitTorrent have the ability to locate
swarms without a tracker

O Based on a P2P overlay
O Distributed hash table (DHT)

2 Recall: peers located via DHT are given “H” state

9 More on this next week

- Joue

d BitTorrent Basics
2 JTP: Micro Transport Protocol
2 Cheating on BitTorrent

BitTorrent and TCP

a5 P
o BitTorrent accounts for 35-70% of all Internet traffic

2 Thus, BitTorrent’s behavior impacts everyone

o BitTorrent’s use of TCP causes problems
O Long lived, BitTorrent TCP flows are “elephants”
= Ramp up past slow start, dominate router queues
O Many applications are “mice,” get trampled by elephants

= Short lived flows (e.g. HTTP traffic)
= Delay sensitive apps (i.e. VolP, SSH, online games)

2 Have you ever tried using SSH while using BitTorrent?

Making BitTorrent Play Nice

o Key issue: long-lived TCP flows are aggressive
O TCP is constantly probing for more bandwidth
O TCP induces queuing delay in the network

2 Does BitTorrent really need to be so aggressive?
O BitTorrent is not delay sensitive
= Do you care if your download takes a few minutes longer?
O BitTorrent is low-priority background traffic

= You probably want to do other things on the Internet while
BitTorrent is downloading

2 Solution: use less a less aggressive transport protocol for
BitTorrent

Micro Transport Protocol (UTP)

I
2 Designed by BitTorrent, Inc.
2 UDP-based transport protocol
2 Uses LEDBAT principals

2 Duplicates many TCP features
O Window based sending, advertised windows
0 Sequence numbers (packet based, not byte based)
O Reliable, in-order packet delivery

2 Today: widely adopted by BitTorrent clients and open-
sourced

UTP and LEDBAT

B | —
2 MUTP is based on IETF LEDBAT standard (RFC 6817)

o Low Extra Delay Background Transport
O Low delay congestion control algorithm
O Seeks to use all available bandwidth...
O ... without increasing queuing delay on the path

2 Goal: fast transfer of bulk data in the background
O Use all available bandwidth (fast transfer speed)

O ... but, do not starve other applications
= Background data transfer is not delay sensitive

= Backoff gracefully and give bandwidth to delay sensitive applications

LEDBAT Details

2 Delay-based congestion control protocol
O Similar algorithm to TCP Vegas
O Measure one-way delay, reduce rate when delay increases

2 Constraint: be less aggressive than TCP
O React early to congestion and slow down
O Do not induce queuing delay in the network

2 LEDBAT is a “scavenger” cc protocol
O Scavenge unused bandwidth for file transfer
O ... but don’t take bandwidth from other flows

UDP

N DATA=(que
0] 8 16
@ ‘.. .-

Seq. and Ack. Advertised window,
numbers like TCP like TCP

Timestamps and Delay
I

2 Timestamps used to measure one-way delay
O Timestamp: time at which packet was sent

O Timestamp Difference: sent time — received time

DATA to 0

Send at time f,

Received at time
to+100ms

-way delay i
Y Y Time difference

inserted into ACK

Sender knows one-way

ath f
delay = T00ms > are net sy

path doesn’t i

TP Con Nes MTP tries to keep one-way
delay ~100ms

. Estimate the baseline

delay on the path

o hst 2 minutes])
Is delay below our target (positive value),

or above our target (negative value)

A

Current delay on the Time difference fre ~ Convert units from

path above the most recent ACK fime” to “packets

Finally, adjust the window size (may

@ * i
be + or — adjustment) r * window_factor

scaled_ga

max_window = Pwindow + scaled_gain

More UTP Details

2 Delay-based mechanism replaces slow start and additive
increase

2 What if a packet drops?
O max_window = max_window * 0.5 (just like TCP)
° What if off_target is a large negative number?

O max_window = 1 packet (don’t starve the connection)

2 Error handling in UTP :
O Uses RTO like Tahoe to retransmit lost packets
O Uses fast retransmit like TCP Reno

Discussion

2 In this case, developing a new transport protocol was
(arguably) the right decision
O BitTorrent generates huge amounts of traffic
O Whole Internet benefits if BitTorrent is more friendly

2 However, inventing new protocols is hard
O UTP reimplements most of TCP
= RTO estimation, Nagle’s algorithm, etc.

O Early version of UTP performed much worse than TCP

= Lots of bugs related to packet pacing and sizing

o Takeaway: develop new transport protocols only if
absolutely necessary

Spotify

_55
2 Uses BT as basic protocol

O Uses server for first 15s
O Tries to find peers and

Peer-to-peer Network

download from them e
0 Only 8.8% of bytes come Local Cache s
from servers gﬁy |
3=
7 When 30s left \ I

O Starts searching for next track

O Uses sever with 10s to go if
no peers found

Spotify Client

- Joue

d BitTorrent Basics
2 JTP: Micro Transport Protocol
2 Cheating on BitTorrent

Incentives to Upload

A
2 Every round, a BitTorrent client calculates the number of
pieces received from each peer

O The peers who gave the most will receive pieces in the next
round

O These decisions are made by the unchoker

2 Assumption
O Peers will give as many pieces as possible each round
O Based on bandwidth constraints, etc.

2 Can an attacker abuse this assumption?

Unchoker Example

58
Round # Round t + 1
R — el 10
10 s el 10
4 €~
—>
7
e

Abusing the Unchocker

I
9 What if you really want to download from someone?

Round # Round t + 1

Send just
enough datq,

get 4t place

Sybil Attack

Round # Divide Round t + 1

resources
across 3 fake
peers

Receive 30
pieces

WTORJI Capacity = 42

BitTyrant

I
o Piatek et al. 2007

O Implements the “come in last strategy”
O Essentially, an unfair unchoker
O Faster than stock BitTorrent

= For the Tyrant user

2 Problem with BitTyrant
O Tragedy of the commons
O BitTyrant performs well if most peers are honest
O As more peers use BitTyrant, performace suffers
O If all users used BitTyrant, torrents wouldn’t work at all

PropShare Unchoker

2 Goal: modify BitTorrents incentive mechanisms to mitigate
“come in last” and Sybil attacks

o Levin et al. 2008

O Propose PropShare unchoker

O PropShare clients allocate upload bandwidth proportionally
across all peers

O There is no longer a “top four”

2 Can you cheat vs. PropShare?

PropShare Unchoker

2
Round t + 1
é 13/70 * upload_cap
é 10/70 * upload_cap
»4/70 * upload_cap
é 12/70 * upload_cap
% 7/70 * upload_cap
ﬁ 9/70 * upload_cap
é 15/70 * upload_cap

Total = 70

PropShare Resiliency to BitTyrant

64 !
Round # Round t + 1

g 13 /90
ﬁm/%

Total = 90

PropShare Resiliency to BitTyrant

65 1
Round # Round t + 1

el 13 /81
g 10/81
e 4/81

* Download always proportional to upload
* No way to game the system

Total = 81

PropShare Resiliency to Sybils

66
Round # Round t + 1

Total = 42

wmtal Capacity = 42

Unchoker Summary

A =
2 BitTyrant and PropShare are both faster than stock
BitTorrent

O But for different reasons
2 PropShare performs comparably to BitTyrant

2 PropShare does not suffer from a tragedy of the
commons
Oi.e. it's safe for all peers to use PropShare
O Not true for BitTyrant

Abusing Optimistic Unchoking

9 So far, assumed peers all have pieces to trade
O Thus, all peers are interesting

2 What about peers that have nothing?
O The bootstrap mechanism is supposed to help them

O Optimistic unchoke: reserve some bandwidth to give free
pieces away (presumably to new peers)

= BitThief (Locher et al. 2006)

O Abuses optimistic unchoke, uploads nothing
O Swarm collapses if all peers use BitThief

BitThief Details

264
o Large-view exploit
O The swarm is (potentially) huge

O BitThief client tries to get optimistic unchoke from many, many
peers

O Will only receive one free piece from each

= Since there is no reciprocal upload

O But in aggregate, this is enough to finish download

7 How to deal with this¢

O Enlist the help of peers
O Have them verify that a given client uploads

Encrypted Pieces

Seeder

BitThief can’t leave,
encrypted data is

useless
Q CC———————> w

Leecher BitThief

Abusing the Endgame

A =
2 Rare pieces are valuable

O Make you popular, many people want to trade with you
O More trading partners = faster downloads

o Selective piece revelation
O You can’t advertise pieces you don’t have

= Peers could detect this

O But you can hide information about the pieces you have

2 Why is this useful?

O Pieces sent at time t impact your popularity at time t+1
0 Sending common pieces first, monopolize rare pieces

Strategic Piece Revelation

nw
7 N\

Leecher ! E

echer

e

Conclusions

T
o BitTorrent is an extremely efficient tool for content
distribution
O Strong incentive system based on game theory
O Most popular file sharing client since 2001
O More active users than YouTube and Facebook combined

2 However, BitTorrent is a large system with many different
mechanisms
O Ample room to modify the client, alter behavior
O Cheating can happen, not all strategies are fair

