CS 3700

Networks and Distributed Systems

Lecture 10: Congestion Control

IRevised 2/9/2014

Transport Layer
0

o Function:

O Demultiplexing of data streams

Application

5 Optional functions:

Presentation O Creating long lived connections

. O Reliable, in-order packet deliver
Session o P Y
O Error detection

Transport O Flow and congestion control

_ 2 Key challenges:

y O Detecting and responding to congestion
Data Link : : L S
O Balancing fairness against high utilization

Physical

Cfoue

2 Congestion Control
d Evolution of TCP
d Problems with TCP

What is Congestion?

I =,
% Load on the network is higher than capacity

What is Congestion?

4y
% Load on the network is higher than capacity

O Capacity is not uniform across networks
= Modem vs. Cellular vs. Cable vs. Fiber Optics

O There are multiple flows competing for bandwidth
= Residential cable modem vs. corporate datacenter

O Load is not uniform over time
= 10pm, Sunday night = Bittorrent Game of Thrones

Why is Congestion Bad?

9 Results in packet loss
O Routers have finite buffers
O Internet traffic is self similar, no buffer can prevent all drops
O When routers get overloaded, packets will be dropped

2 Practical consequences
O Router queues build up, delay increases
O Wasted bandwidth from retransmissions
O Low network goodput

The Danger of Increasing Load
N

2 Knee — point after which

O Throughput increases very
slow

O Delay increases fast
2 Inan M/M/1 queue

O Delay = 1/(1 — utilization)
o Cliff — point after which

O Throughput 2 0

5 Delay > @

Knee Cliff

Load

Delay

Load

The Danger of Increasing Load

-6 !
Knee Cliff

2 Knee — point after which

O Throughput increases very
slow

O Delay increases fast
2 Inan M/M/1 queue

O Delay = 1/(1 — utilization)
o Cliff — point after which

O Throughput 2 0

5 Delay > @

|deal point

Load

Delay

Load

The Danger of Increasing LodqREIEESEY
- Collapse

2 Knee — point after which

Knee Cliff

O Throughput increases very
slow

O Delay increases fast
2 Inan M/M/1 queue
O Delay = 1/(1 — utilization) T load
o Cliff — point after which '
O Throughput 2 0

5 Delay > @

Goodput

|deal point

Delay

Load

Cong. Control vs. Cong. Avoidance
B

Congestion
Collapse

Goodput

Load

Cong. Control vs. Cong. Avoidance

Congestion Avoidance:
Stay left of the knee

Congestion
Collapse

Load

Cong. Control vs. Cong. Avoidance
B

Congestion Avoidance: Congestion Control:
Stay left of the knee Stay left of the cliff

Congestion
Collapse

Load

Advertised Window, Revisited

SN
2 Does TCP’s advertised window solve congestion?

Advertised Window, Revisited

SN
2 Does TCP’s advertised window solve congestion?

NO
2 The advertised window only protects the receiver

2 A sufficiently fast receiver can max the window
O What if the network is slower than the receiver?
O What if there are other concurrent flows?e

Advertised Window, Revisited

SN
2 Does TCP’s advertised window solve congestion?

NO

2 The advertised window only protects the receiver

o A sufficiently fast receiver can max the window
O What if the network is slower than the receiver?
O What if there are other concurrent flows?
7 Key points
O Window size determines send rate
O Window must be adjusted to prevent congestion collapse

Goals of Congestion Control
B

Goals of Congestion Control

.94
1. Adjusting to the bottleneck bandwidth

2. Adjusting to variations in bandwidth
3. Sharing bandwidth between flows

4. Maximizing throughput

General Approaches
o

2 Do nothing, send packets indiscriminately
O Many packets will drop, totally unpredictable performance
O May lead to congestion collapse

General Approaches
o

2 Do nothing, send packets indiscriminately
O Many packets will drop, totally unpredictable performance
O May lead to congestion collapse
o Reservations
O Pre-arrange bandwidth allocations for flows
O Requires negotiation before sending packets
O Must be supported by the network

General Approaches
So [

2 Do nothing, send packets indiscriminately
O Many packets will drop, totally unpredictable performance
O May lead to congestion collapse

o Reservations
O Pre-arrange bandwidth allocations for flows
O Requires negotiation before sending packets
O Must be supported by the network

2 Dynamic adjustment
O Use probes to estimate level of congestion
O Speed up when congestion is low
O Slow down when congestion increases
O Messy dynamics, requires distributed coordination

General Approaches
o

2 Do nothing, send packets indiscriminately
O Many packets will drop, totally unpredictable performance
O May lead to congestion collapse
2 Reservations
O Pre-arrange bandwidth allocations for flows
O Requires negotiation before sending packets
O Must be supported by the network
2 Dynamic adjustment
O Use probes to estimate level of congestion

O Speed up when congestion is low

O Slow down when congestion increases

O Messy dynamics, requires distributed coordination

TCP Congestion Control

2 Each TCP connection has a window
O Controls the number of unACKed packets

= Sending rate is ~ window /RTT

2 |ldea: vary the window size to control the send rate

TCP Congestion Control

2 Each TCP connection has a window
O Controls the number of unACKed packets

= Sending rate is ~ window /RTT
2 |ldea: vary the window size to control the send rate

9 Introduce a congestion window at the sender
O Congestion control is sender-side problem

Congestion Window (cwnd)
L [

5 Limits how much data is in transit

2 Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd —
(last_byte_sent — last_byte_acked);

Congestion Window (cwnd)
L [

5 Limits how much data is in transit

2 Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd —
(last_byte_sent — last_byte_acked);

last_byte_acked last_byte_sent

I S SR

S T ————

wnd

Congestion Window (cwnd)
L [

5 Limits how much data is in transit

2 Denominated in bytes

1. wnd = min(cwnd, adv_wnd);
2. effective_wnd = wnd —
(last_byte_sent — last_byte_acked);

last_byte_acked last_byte_sent effective_wnd

I S s—

S T ————

wnd

Two Basic Components

EEE N I —
1. Detect congestion

Two Basic Components

1. Detect congestion
O Packet dropping is most reliably signal
= Delay-based methods are hard and risky
O How do you detect packet drops? ACKs

= Timeout after not receiving an ACK
= Several duplicate ACKs in a row (ignore for now)

Two Basic Components

1. Detect congestion Except on

O Packet dropping is most reliably signal wireless

networks

= Delay-based methods are hard and risky
O How do you detect packet drops? ACKs

= Timeout after not receiving an ACK

= Several duplicate ACKs in a row (ignore for now)

Two Basic Components

1. Detect congestion Except on

O Packet dropping is most reliably signal wireless

networks

= Delay-based methods are hard and risky

O How do you detect packet drops? ACKs
= Timeout after not receiving an ACK
= Several duplicate ACKs in a row (ignore for now)
2. Rate adjustment algorithm
O Modify cwnd

O Probe for bandwidth
O Responding to congestion

Rate Adjustment

o Recall: TCP is ACK clocked

O Congestion = delay = long wait between ACKs
O No congestion = low delay = ACKs arrive quickly

Rate Adjustment

o Recall: TCP is ACK clocked

O Congestion = delay = long wait between ACKs
O No congestion = low delay = ACKs arrive quickly

2 Basic algorithm
0 Upon receipt of ACK: increase cwnd

= Data was delivered, perhaps we can send faster
= cwnd growth is proportional to RTT
0 On loss: decrease cwnd

= Data is being lost, there must be congestion

Rate Adjustment

5 Recall: TCP is ACK clocked

O Congestion = delay = long wait between ACKs
O No congestion = low delay = ACKs arrive quickly

2 Basic algorithm
0 Upon receipt of ACK: increase cwnd

= Data was delivered, perhaps we can send faster
= cwnd growth is proportional to RTT

0 On loss: decrease cwnd

= Data is being lost, there must be congestion

5 Question: increase /decrease functions to use?

Utilization and Fairness
B

Flow 2 Throughput

Flow 1 Throughput

Utilization and Fairness
B

Flow 2 Throughput

Flow 1 Throughput

Utilization and Fairness
B

Flow 2 Throughput

Flow 1 Throughput

Utilization and Fairness
B

Max

throughput for
flow 2

Lero
throughput for
flow 1

low 2 Throughput

Flow 1 Throughput

Utilization and Fairness
B

Zero

throughput for
flow 2

low 2 Throughput

Max

throughput for
Flow 1 Throughput flow 1

Utilization and Fairness

Less than full
utilization

Flow 1 Throughput

Utilization and Fairness

More than full
utilization
Less than full (congestion)
utilization

Flow 1 Throughput

Utilization and Fairness
B

Equal
throughput

(fairness)

Flow 2 Throughput

Flow 1 Throughput

Utilization and Fairness
B

|ldeal point
* Max efficiency
* Perfect fairness

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

I | —
~ Not stablel O

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Additive Decrease

I | —
~ Not stablel O

7 Veers away from
fairness

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Additive Decrease

A I EEEE—————

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Additive Decrease

A I EEEE—————

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Additive Decrease

A I EEEE—————

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Additive Decrease

A e
o Stable

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Additive Decrease

A7 8
o Stable
7 But does not

converge to
fairness

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Multiplicative Decrease

8
o Stable

Flow 2 Throughput

Flow 1 Throughput

Multiplicative Increase, Multiplicative Decrease

18§
o Stable
7 But does not

converge to
fairness

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

2 Converges to
stable and fair
cycle

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

2 Converges to
stable and fair
cycle

Flow 2 Throughput

Flow 1 Throughput

Additive Increase, Multiplicative Decrease

2 Converges to
stable and fair
cycle

2 Symmetric around
y—=X

Flow 2 Throughput

Flow 1 Throughput

Implementing Congestion Control

20 [
7 Maintains three variables:

O cwnd: congestion window
O adv_wnd: receiver advertised window
O ssthresh: threshold size (used to update cwnd)

9 For sending, use: wnd = min(cwnd, adv_wnd)

Implementing Congestion Control

20 |
7 Maintains three variables:

O cwnd: congestion window
O adv_wnd: receiver advertised window
O ssthresh: threshold size (used to update cwnd)

9 For sending, use: wnd = min(cwnd, adv_wnd)

2 Two phases of congestion control

1. Slow start (cwnd < ssthresh)
= Probe for bottleneck bandwidth

2. Congestion avoidance (cwnd >= ssthresh)
= AIMD

Slow Start

_21 |
2 Goal: reach knee quickly

Knee Cliff
A L '

2 Upon starting (or restarting) a connecti®
O cwnd =1
O ssthresh = adv_wnd
O Each time a segment is ACKed, cwnd++ " Load

Goodp

Slow Start

_21 |
2 Goal: reach knee quickly

Knee C!iff

2 Upon starting (or restarting) a connecti®

o
O cwnd =1 o
O ssthresh = adv_wnd LCD)
O Each time a segment is ACKed, cwnd++ Load

5 Continues until...
O ssthresh is reached
O Or a packet is lost

Slow Start

_21 |
2 Goal: reach knee quickly

Knee C!iff

2 Upon starting (or restarting) a connecti®

o
O cwnd =1 o
O ssthresh = adv_wnd 8
O Each time a segment is ACKed, cwnd++ Load

2 Continues until...
O ssthresh is reached
O Or a packet is lost
5 Slow Start is not actually slow

O cwnd increases exponentially

Slow Start Example
I

cwnd = 1

Slow Start Example
I

cwnd = 1 \
/

cwnd = 2

Slow Start Example
I

cwnd = 1

cwnd = 2

W\

cwnd = 4

Slow Start Example
I

=
=

cwnd = 8

Slow Start Example
I

cwnd = 1
5 cwnd grows rapidly \’\
2 Slows down when... /
O cwnd >= ssthresh cwnd = 2
O Or a packet drops >
cwnd = 4 <

cwnd = 8

Congestion Avoidance

23 5
o AIMD mode

" ssthresh is lower-bound guess about location of the knee

5 If cewnd >= ssthresh then

each time a segment is ACKed
increment cwnd by 1/cwnd (cwnd += 1 /cwnd).

2 So cwnd is increased by one only if all segments have
been acknowledged

Congestion Avoidance Example
24

cwnd = 1
cwnd = 2
12 .

m / cwnd = 4

& 9

=

g ,/ ssthresh = 8

2 6

E , / cwnd = 8

5 /

0

t=0 t=1 t=2 t=3 t=4 t=5t=6 t=7

cwnd = 9

Round Trip Times

Congestion Avoidance Example
24

cwnd = 1
cwnd = 2
12 .

m / cwnd = 4

G 9

=

g ssthresh = 8

v 6

R

c 3

b3

(@]

0
t=0 t= t=2

cwnd = 9

Round Trip Times

Congestion Avoidance Example
24

cwnd = 1
cwnd = 2
12
v cwnd = 4
G 9
=
> ssthresh = 8
v 6
R
c 3
b3
(@]
0

t=0t=1t=2t=3t=4t=5t=6t=7

cwnd = 9

Round Trip Times

TCP Pseudocode
N

Initially:
cwnd = 1;
ssthresh = adv_wnd;

New ack received:
if (cwnd < ssthresh)
/* Slow Start™/
cwnd = cwnd + 1;
else
/* Congestion Avoidance */
cwnd = cwnd + 1/cwnd;

Timeout:
/* Multiplicative decrease */
ssthresh = cwnd /2;
cwnd = 1;

The Big Picture
N

A ssthresh

cwnd

Time

The Big Picture
N

A ssthresh

cwnd

Slow Start

Time

The Big Picture
N

A ssthresh

Timeout

cwnd

Slow Start

Time

The Big Picture
N

A ssthresh

Timeout

cwnd

Slow Start

Time

The Big Picture
N

A ssthresh

Timeout

Congestion
Avoidance

cwnd

Slow Start

Time

The Big Picture
N

A ssthresh

Timeout

Congestion
Avoidance

cwnd

Slow Start

Time

The Big Picture
N

A ssthresh

Timeout

Congestion
Avoidance

cwnd

Slow Start

Time

2 Congestion Control
d Evolution of TCP
d Problems with TCP

The Evolution of TCP

28]
2 Thus far, we have discussed TCP Tahoe

O Original version of TCP

2 However, TCP was invented in 1974l
O Today, there are many variants of TCP

The Evolution of TCP

28]
2 Thus far, we have discussed TCP Tahoe

O Original version of TCP

2 However, TCP was invented in 1974l
O Today, there are many variants of TCP

2 Early, popular variant: TCP Reno
O Tahoe features, plus...
O Fast retransmit
O Fast recovery

TCP Reno: Fast Retransmit

2 Problem: in Tahoe, if cwnd = 1

segment is lost, there is a
long wait until the RTO

a
2
S
Q_
|
N

kv

o Reno: retransmit after 3
duplicate ACKs

cwnd = 4

TCP Reno: Fast Retransmit

2 Problem: in Tahoe, if cwnd = 1
segment is lost, there is a
long wait until the RTO

o Reno: retransmit after 3 cwnd = 2
duplicate ACKs

cwnd = 4

3 Duplicate
ACKs

kv

TCP Reno: Fast Recovery

o After a fast-retransmit set cwnd to ssthresh/2
Oi.e. don’t reset cwnd to 1
O Avoid unnecessary return to slow start

O Prevents expensive timeouts

2 But when RTO expires still do ewnd = 1
O Return to slow start, same as Tahoe
O Indicates packets aren’t being delivered at all
O i.e. congestion must be really bad

Fast Retransmit and Fast Recovery

Sy
A ssthresh

cwnd

Time

Fast Retransmit and Fast Recovery

Sy
A ssthresh

cwnd

Slow Start

Time

Fast Retransmit and Fast Recovery

Sy
A ssthresh

Timeout

cwnd

Slow Start

Time

Fast Retransmit and Fast Recovery

Sy
A ssthresh

Timeout

cwnd

Slow Start

Time

Fast Retransmit and Fast Recovery

Sy
A ssthresh

Timeout) .
Congestion Avoidance

Fast Retransmit /Recovery

cwnd

Slow Start

Time

Fast Retransmit and Fast Recovery

Sy
A ssthresh

Timeout . . .
Congestion Avoidance Timeout

Fast Retransmit /Recovery

cwnd

Slow Start

Time

Fast Retransmit and Fast Recovery

31 |
A ssthresh

Timeout . . .
Congestion Avoidance Timgout

Fast Retransmit /Recovery

cwnd

Slow Start

Time

o At steady state, cwnd oscillates around the optimal
window size

Fast Retransmit and Fast Recovery

31 |
A ssthresh

Timeout . _ .
Congestion Avoidance Timgout

Fast Retransmit /Recovery

cwnd

Slow Start

Time

o At steady state, cwnd oscillates around the optimal
window size

o TCP always forces packet drops

Many TCP Variants...

2 Tahoe: the original

O Slow start with AIMD
O Dynamic RTO based on RTT estimate

7 Reno: fast retransmit and fast recovery

Many TCP Variants...

2 Tahoe: the original

O Slow start with AIMD
O Dynamic RTO based on RTT estimate

7 Reno: fast retransmit and fast recovery

7 NewReno: improved fast retransmit
O Each duplicate ACK triggers a retransmission

O Problem: >3 out-of-order packets causes pathological
retransmissions

Many TCP Variants...

2 Tahoe: the original

O Slow start with AIMD
O Dynamic RTO based on RTT estimate

7 Reno: fast retransmit and fast recovery

7 NewReno: improved fast retransmit
O Each duplicate ACK triggers a retransmission

O Problem: >3 out-of-order packets causes pathological
retransmissions

% Vegas: delay-based congestion avoidance

Many TCP Variants...

2 Tahoe: the original

O Slow start with AIMD
O Dynamic RTO based on RTT estimate

7 Reno: fast retransmit and fast recovery

7 NewReno: improved fast retransmit
O Each duplicate ACK triggers a retransmission

O Problem: >3 out-of-order packets causes pathological
retransmissions

% Vegas: delay-based congestion avoidance

2 And many, many, many more...

TCP in the Real World

7 What are the most popular variants today?

0 Key problem: TCP performs poorly on high bandwidth-delay
product networks (like the modern Internet)

0 Compound TCP (Windows)

= Based on Reno
= Uses two congestion windows: delay based and loss based

= Thus, it uses a compound congestion controller

0 TCP CUBIC (Linux)

= Enhancement of BIC (Binary Increase Congestion Control)
= Window size controlled by cubic function
= Parameterized by the time T since the last dropped packet

High Bandwidth-Delay Product

2 Key Problem: TCP performs poorly when
O The capacity of the network (bandwidth) is large
O The delay (RTT) of the network is large
O Or, when bandwidth * delay is large

= b * d = maximum amount of in-flight data in the network

= a.k.a. the bandwidth-delay product

High Bandwidth-Delay Product

2 Key Problem: TCP performs poorly when
O The capacity of the network (bandwidth) is large
O The delay (RTT) of the network is large
O Or, when bandwidth * delay is large

= b * d = maximum amount of in-flight data in the network

= a.k.a. the bandwidth-delay product
7 Why does TCP perform poorly?
Y P P Y

O Slow start and additive increase are slow to converge
O TCP is ACK clocked

= i.e. TCP can only react as quickly as ACKs are received
= Large RTT = ACKs are delayed > TCP is slow to react

Poor Performance of TCP Reno CC
N

1 z 50 flows in both directions 50 flows in both directions
uo Buffer = BW x Delay Buffer = BW x Delay
1oz RTT = 80 ms uo BW = 155 Mb/s
4N 0.8 ¢ 4Oz 0.8 |
dOl 4N
) dDl
BAY 6 | 0.6 |
BAy
0.4 - 0.4 |
TCP-RED-ECN & TCP-RED-ECN =~
0 1000 2000 3000 4000 0 020406 08 1 12 14

Bottleneck Bandwidth (Mb /s) Round Trip Delay (sec)

Goals

2 Fast window growth

O Slow start and additive increase are too slow when
bandwidth is large

O Want to converge more quickly

Goals

2 Fast window growth

O Slow start and additive increase are too slow when
bandwidth is large

O Want to converge more quickly

2 Maintain fairness with other TCP varients
O Window growth cannot be too aggressive

Goals

2 Fast window growth

O Slow start and additive increase are too slow when
bandwidth is large

O Want to converge more quickly

2 Maintain fairness with other TCP varients
O Window growth cannot be too aggressive

2 Improve RTT fairness
O TCP Tahoe /Reno flows are not fair when RTTs vary widely

Goals

2 Fast window growth

O Slow start and additive increase are too slow when
bandwidth is large

O Want to converge more quickly

2 Maintain fairness with other TCP varients
O Window growth cannot be too aggressive

2 Improve RTT fairness
O TCP Tahoe /Reno flows are not fair when RTTs vary widely

2 Simple implementation

Compound TCP Implementation

2 I ——
o Default TCP implementation in Windows

2 Key idea: split cwnd into two separate windows
O Traditional, loss-based window
O New, delay-based window

Compound TCP Implementation

I
o Default TCP implementation in Windows
2 Key idea: split cwnd into two separate windows

O Traditional, loss-based window
O New, delay-based window

2 wnd = min(cwnd + dwnd, adv_wnd)
O cwnd is controlled by AIMD
O dwnd is the delay window

Compound TCP Implementation

2 I —
o Default TCP implementation in Windows

o Key idea: split cwnd into two separate windows
O Traditional, loss-based window
O New, delay-based window

2 wnd = min(cwnd + dwnd, adv_wnd)
O cwnd is controlled by AIMD
O dwnd is the delay window

9 Rules for adjusting dwnd:
O If RTT is increasing, decrease dwnd (dwnd >= 0)
O If RTT is decreasing, increase dwnd
O Increase /decrease are proportional to the rate of change

Compound TCP Example

I I ————
A

cwnd

Time

Compound TCP Example

I I ————
A

Timeout

cwnd

Slow Start

Time

Compound TCP Example

I I ————
A

Timeout

cwnd

Slow Start

Time

Compound TCP Example
B

Timeout

cwnd

Slow Start

Time

Compound TCP Example

38
A

Slower

Timeout cwnd
growth

cwnd

Slow Start

Time

Compound TCP Example

38
A

Slower

Timeout cwnd
growth

cwnd

Slow Start

Time

Compound TCP Example
53

Timeout

cwnd

Slow Start J [..oooeeinnnss

Time

Compound TCP Example

38
A Faster
cwnd
growth
Timeout

e

-

3

(3]

Slow Start

Time

Compound TCP Example

A Faster
cwnd
Slower growth
Timeout cwnd Timeout
growth
O
-
2
(9]
Slow Start

Time

Compound TCP Example

A Faster
cwnd
growth
Timeout Timeout
o]
-
2
o
Slow Start

Time

o Aggressiveness corresponds to changes in RTT

Compound TCP Example

A Faster
cwnd
Slower growth
Timeout cwnd Timeout
growth
O
c
2
(9]
Slow Start

Time

o Aggressiveness corresponds to changes in RTT

o Advantages: fast ramp up, more fair to flows with different RTTs

Compound TCP Example

A Faster
cwnd
Slower growth
Timeout cwnd Timeout
growth
o)
c
2
o
Slow Start

Time

o Aggressiveness corresponds to changes in RTT
o Advantages: fast ramp up, more fair to flows with different RTTs

7 Disadvantage: must estimate RTT, which is very challenging

TCP CUBIC Implementation

_39 |
o Default TCP implementation in Linux

o Replace AIMD with cubic function

Wewpic = C(T = K)* + W, 00 (1)

1 1 3f Wias3
C is a scaling constant, and K = {/ —2#==

OB = a constant fraction for multiplicative increase
OT - time since last packet drop
O W_max =2 cwnd when last packet dropped

TCP CUBIC Example

I I —————
A

cwnd

Time

TCP CUBIC Example

I I —————
A

Timeout

cwnd

Slow Start

Time

TCP CUBIC Example

cwnd

Slow Start

Time

TCP CUBIC Example

cwnd

Slow Start

Time

TCP CUBIC Example

40
A

Timeout

cwnd

Slow Start

Fast ramp

up

Time

TCP CUBIC Example

40
A

Timeout

Stable
Slow Start e

Fast ramp

cwnd

up

Time

TCP CUBIC Example

40 | Slowly accelerate to
A probe for bandwidth

Timeout

Stable
R [
Slow Start egron

Fast ramp

cwnd

up

Time

TCP CUBIC Example

40
A CUBIC Function

Timeout

cwnd

Slow Start

Time

TCP CUBIC Example

40
A CUBIC Function

Timeout

cwnd

Slow Start

Time

TCP CUBIC Example

40
A CUBIC Function

Timeout

cwnd

Slow Start

Time

TCP CUBIC Example

40
A CUBIC Function

Timeout

cwnd

Slow Start

Time

TCP CUBIC Example

40
A CUBIC Function
Timeout
b IIIIII
c
3
%)
Slow Start

Time

TCP CUBIC Example

40
A CUBIC Function

Timeout

cwnd

Slow Start

Time

2 Less wasted bandwidth due to fast ramp up

TCP CUBIC Example

40
A CUBIC Function
Timeout
t llllll
c
3
%)
Slow Start

Time
2 Less wasted bandwidth due to fast ramp up

o Stable region and slow acceleration help maintain fairness
O Fast ramp up is more aggressive than additive increase
O To be fair to Tahoe /Reno, CUBIC needs to be less aggressive

Simulations of CUBIC Flows
T

CUBIC window curve

40808 T T T

' CUBIC-1 ——
CUBIC-2 ——
TCP-1 ——

TCP-2

3508

30688

c2oaa

caea

CHND (packets)

1568

168a

Sea

16a iza 148 168 188 caa
Time (second?

Simulations of CUBIC Flows
S

CUBIC window curve

40808 T T T

' CUBIC-1

CUBIC-2
TCP-1
TCP-2

3508

2080

c2oaa

caea

CHND (packets)

1568

168a

Sea

& 1 1
168 iz8 148 168 188 cee

Time (second?

Deploying TCP Variants

o TCP assumes all flows employ TCP-like congestion control
O TCP-friendly or TCP-compatible
O Violated by UDP

Deploying TCP Variants

o TCP assumes all flows employ TCP-like congestion control
O TCP-friendly or TCP-compatible
O Violated by UDP

2 If new congestion control algorithms are developed, they
must be TCP-friendly

Deploying TCP Variants

2 TCP assumes all flows employ TCP-like congestion control
O TCP-friendly or TCP-compatible
O Violated by UDP

2 If new congestion control algorithms are developed, they
must be TCP-friendly

2 Be wary of unforeseen interactions
O Variants work well with others like themselves

O Different variants competing for resources may trigger unfair,
pathological behavior

TCP Perspectives

S —
o Cerf/Kahn

O Provide flow control
O Congestion handled by retransmission

TCP Perspectives

S —
o Cerf/Kahn

O Provide flow control

O Congestion handled by retransmission
5 Jacobson / Karels

O Need to avoid congestion

O RTT estimates critical

O Queuing theory can help

TCP Perspectives

S —
o Cerf/Kahn

O Provide flow control
O Congestion handled by retransmission

5 Jacobson / Karels
O Need to avoid congestion
O RTT estimates critical
O Quevuing theory can help

5 Winstein /Balakrishnan

O TCP is maximizing an objective function
= Fairness/efficiency
= Throughput/delay

O Let a machine pick the best fit for your environment

- foue

2 Congestion Control
d Evolution of TCP
d Problems with TCP

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window
Checksum Urgent Pointer

Options

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window

Charlzaiim | lrnant PAaintar

' Options .

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window

Charlzciim | lrnant Paintar
' Options .

2 Window scaling

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window

Charlzciim | lrnant Paintar
' Options .

2 Window scaling

2 SACK: selective acknowledgement

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window

Charlzciim | lrnant Paintar
' Options .

2 Window scaling

2 SACK: selective acknowledgement
2 Maximum segment size (MSS)

Common TCP Options

I I ————
o) 4 16 31

Source Port Destination Port
Sequence Number
Acknowledgement Number

Flags Advertised Window

Charlzciim | lrnant Paintar
' Options .

2 Window scaling

2 SACK: selective acknowledgement
2 Maximum segment size (MSS)
9 Timestamp

Window Scaling
T

2 Problem: the advertised window is only 16-bits
O Effectively caps the window at 65536B, 64KB
O Example: 1.5Mbps link, 513ms RTT

Window Scaling
T

2 Problem: the advertised window is only 16-bits
O Effectively caps the window at 65536B, 64KB
O Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB
64KB / 94KB = 68% of maximum possible speed

Window Scaling
T

2 Problem: the advertised window is only 16-bits
O Effectively caps the window at 65536B, 64KB
O Example: 1.5Mbps link, 513ms RTT

(1.5Mbps * 0.513s) = 94KB
64KB / 94KB = 68% of maximum possible speed

2 Solution: introduce a window scaling value
O wnd = adv_wnd << wnd_scale;
O Maximum shift is 14 bits, 1GB maximum window

SACK: Selective Acknowledgment

&8

f

SACK: Selective Acknowledgment

2 Problem: duplicate ACKs only tell us

about 1 missing packet Sé\)\)*)

O Multiple rounds of dup ACKs needed to
fill all holes

J
&
-—
A a
\J
B)
A
A
A

SACK: Selective Acknowledgment

2 Problem: duplicate ACKs only tell us

about 1 missing packet S:i*)

O Multiple rounds of dup ACKs needed to
fill all holes

5 Solution: selective ACK
O Include received, out-of-order

sequence numbers in TCP header
O Explicitly tells the sender about holes in /

the sequence

Other Common Options

7 Maximum segment size (MSS)
O Essentially, what is the hosts MTU
O Saves on path discovery overhead

Other Common Options

4
7 Maximum segment size (MSS)

O Essentially, what is the hosts MTU
O Saves on path discovery overhead

2 Timestamp
0 When was the packet sent (approximately)?

O Used to prevent sequence number wraparound
O PAWS algorithm

Issues with TCP

I I ——
o The vast majority of Internet traffic is TCP

2 However, many issues with the protocol
O Lack of fairness
O Synchronization of flows
O Poor performance with small flows
O Really poor performance on wireless networks
O Susceptibility to denial of service

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT

Fairness

50
2 Problem: TCP throughput depends on RTT
100 ms

Fairness

50
2 Problem: TCP throughput depends on RTT
100 ms

2 ACK clocking makes TCP inherently unfair

2 Possible solution: maintain a separate delay window
O Implemented by Microsoft’s Compound TCP

Synchronization of Flows
B

“ ldeal bandwidth sharing

Synchronization of Flows

7 QOscillating, but high overall
7 Idedal bandwidth sharing utilization

Synchronization of Flows
B

7 QOscillating, but high overall
7 Idedal bandwidth sharing utilization
A A

cwnd

7 In reality, flows synchronize
A

cwnd

Synchronization of Flows

7 QOscillating, but high overall
7 Idedal bandwidth sharing utilization
A A

One flow causes all
flows to drop
packets

Synchronization of Flows

7 QOscillating, but high overall
7 Idedal bandwidth sharing utilization
A A

Periodic lulls of low
utilization

One flow causes all
flows to drop
packets

Small Flows

7 Problem: TCP is biased against short flows
O 1 RTT wasted for connection setup (SYN, SYN/ACK)
O cwnd always starts at 1

Small Flows

7 Problem: TCP is biased against short flows
O 1 RTT wasted for connection setup (SYN, SYN/ACK)
O cwnd always starts at 1

2 Vast majority of Internet traffic is short flows
O Mostly HTTP transfers, <100KB
O Most TCP flows never leave slow start!

Small Flows

I
7 Problem: TCP is biased against short flows

O 1 RTT wasted for connection setup (SYN, SYN/ACK)
O cwnd always starts at 1

2 Vast majority of Internet traffic is short flows
O Mostly HTTP transfers, <100KB
O Most TCP flows never leave slow start!

2 Proposed solutions (driven by Google):
O Increase initial cwnd to 10

O TCP Fast Open: use cryptographic hashes to identify
receivers, eliminate the need for three-way handshake

Wireless Networks

2 Problem: Tahoe and Reno assume loss = congestion
O True on the WAN, bit errors are very rare
O False on wireless, interference is very common

Wireless Networks

2 Problem: Tahoe and Reno assume loss = congestion
O True on the WAN, bit errors are very rare
O False on wireless, interference is very common

7 TCP throughput ~ 1 /sqrt(drop rate)

O Even a few interference drops can kill performance

Wireless Networks

s34
2 Problem: Tahoe and Reno assume loss = congestion

O True on the WAN, bit errors are very rare

O False on wireless, interference is very common
7 TCP throughput ~ 1 /sqrt(drop rate)

O Even a few interference drops can kill performance
2 Possible solutions:

O Break layering, push data link info up to TCP

0 Use delay-based congestion detection (TCP Vegas)
O Explicit congestion notification (ECN)

Denial of Service

2 Problem: TCP connections require state
O Initial SYN allocates resources on the server
O State must persist for several minutes (RTO)

Denial of Service

2 Problem: TCP connections require state
O Initial SYN allocates resources on the server
O State must persist for several minutes (RTO)

7 SYN flood: send enough SYNs to a server to allocate all
memory /meltdown the kernel

Denial of Service

7 Problem: TCP connections require state
O Initial SYN allocates resources on the server
O State must persist for several minutes (RTO)

7 SYN flood: send enough SYNs to a server to allocate all
memory/meltdown the kernel

2 Solution: SYN cookies
O |dea: don'’t store initial state on the server
O Securely insert state into the SYN/ACK packet
O Client will reflect the state back to the server

SYN Cookies

I I ——
o)

Sequence Number

SYN Cookies

I I ——
o) 5 8 31

Timestamp = MSS Crypto Hash of Client IP & Port

SYN Cookies

I I ——
0 5 8 31

Timestamp | MSS Crypto Hash of Client IP & Port

2 Did the client really send me a SYN recently?
O Timestamp: freshness check
O Cryptographic hash: prevents spoofed packets

SYN Cookies

I I ——
0 5 8 31

Timestamp | MSS Crypto Hash of Client IP & Port

2 Did the client really send me a SYN recently?
O Timestamp: freshness check
O Cryptographic hash: prevents spoofed packets

2 Maximum segment size (MSS)
O Usually stated by the client during initial SYN
O Server should store this value...
O Reflect the clients value back through them

SYN Cookies in Practice

2 Advantages
O Effective at mitigating SYN floods
O Compatible with all TCP versions
O Only need to modify the server
O No need for client support

SYN Cookies in Practice

2 Advantages
O Effective at mitigating SYN floods
O Compatible with all TCP versions
O Only need to modify the server
O No need for client support

2 Disadvantages
O MSS limited to 3 bits, may be smaller than clients actual MSS
O Server forgets all other TCP options included with the client’s

SYN
= SACK support, window scaling, etc.

