
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 8: Deadlocks

Prof. David Choffnes (choffnes@ccs.neu.edu)

[Prepared by Prof. Alan Mislove (amislove@ccs.neu.edu)]

mailto:choffnes@ccs.neu.edu
mailto:choffnes@ccs.neu.edu
mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock

• A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set

• Example
• System has 2 disk drives

• P1 and P2 each hold one disk drive and each needs another one

• Example
• semaphores A and B, initialized to 1

 P0 P1

 wait (A); wait(B);

 wait (B); wait(A);

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

System Model

• Resource types R1, R2, . . ., Rm

CPU cores, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:
• request

• use
• release

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process
holding it, after that process has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that
P0 is waiting for a resource that is held by P1, P1 is waiting for a resource that is
held by P2, …, Pn–1 is waiting for a resource that is held by Pn, and Pn is waiting
for a resource that is held by P0.

Deadlock can arise if four conditions
hold simultaneously.

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

• V is partitioned into two types:
• P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in
the system

• request edge – directed edge Pi → Rj

• assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph (Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj Pi

Pi
Rj

Rj

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of a Resource Allocation Graph

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource Allocation Graph With A Deadlock

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Graph With A Cycle But No Deadlock

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

• If graph contains no cycles ⇒ no deadlock

• If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

• Recovery - Allow the system to enter a deadlock state and then
recover

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Methods for Handling Deadlocks

• Avoidance - Ensure that the system will never enter a deadlock
state

• Recovery - Allow the system to enter a deadlock state and then
recover

• Ignorance - Ignore the problem and pretend that deadlocks never
occur in the system; used by most operating systems, including
UNIX

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Deadlock Avoidance

• Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a
circular-wait condition

• Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes

Requires that the system has some additional a
priori information available

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Safe State
• When a process requests an available resource, system must decide if

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < I

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Safe State
• When a process requests an available resource, system must decide if

immediate allocation results in a safe state

• System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL
the processes in the systems such that for each Pi, the resources that Pi

can still request can be satisfied by currently available resources +
resources held by all the Pj, with j < I

• That is:
• If Pi resource needs are not immediately available, then Pi can wait until all

Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return
allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on
15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Facts

• If a system is in safe state ⇒ no deadlocks

• If a system is in unsafe state ⇒ possibility of deadlock

• Avoidance ⇒ ensure that a system will never enter an unsafe state.

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Avoidance algorithms

• Single instance of a resource type
• Use a resource-allocation graph

• Multiple instances of a resource type
• Use the banker’s algorithm

• In book, not discussed in class

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Scheme

• Claim edge Pi → Rj indicates that process Pj may request
resource Rj; represented by a dashed line

• Claim edge converts to request edge when a process requests a
resource

• Request edge converted to an assignment edge when the
resource is allocated to the process

• When a resource is released by a process, assignment edge
reconverts to a claim edge

• Resources must be claimed a priori in the system
18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Unsafe State In Resource-Allocation Graph

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Resource-Allocation Graph Algorithm
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting the request
edge to an assignment edge does not result in the formation
of a cycle in the resource allocation graph

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

But enough about deadlock

22

Research	
 Opportuni0es	
 for	
 Undergrads

• Why	
 do	
 research	
 in	
 CCIS	
 at	
 NEU?
–Work	
 on	
 interes0ng	
 problems
–You’re	
 considering	
 grad	
 school
–You’re	
 curious	
 in	
 general
–Because	
 you’re	
 already	
 done	
 wri0ng	
 your	
 FAT	
 file	
 system

Research	
 Opportuni0es	
 for	
 Undergrads

• Why	
 do	
 research	
 in	
 CCIS	
 at	
 NEU?
–Work	
 on	
 interes0ng	
 problems
–You’re	
 considering	
 grad	
 school
–You’re	
 curious	
 in	
 general
–Because	
 you’re	
 already	
 done	
 wri0ng	
 your	
 FAT	
 file	
 system

• Why	
 do	
 research	
 with	
 me	
 at	
 NEU?
–Build	
 things
–Make	
 a	
 difference
–You	
 want	
 to	
 play	
 with	
 cell	
 phone	
 networks	
 and	
 apps

Quick	
 survey

Quick	
 survey

• Today,	
 have	
 you	
 used	
 your	
 phone	
 to	
 check
–Facebook?
–TwiNer?
–E-­‐mail?

Quick	
 survey

• Today,	
 have	
 you	
 used	
 your	
 phone	
 to	
 check
–Facebook?
–TwiNer?
–E-­‐mail?

• How	
 many	
 have	
 made	
 a	
 voice	
 call?

Can	
 you	
 ping	
 me	
 now?

• Phones	
 are	
 increasingly	
 used	
 for	
 data,	
 but	

designed	
 for	
 voice

• Performance	
 suffers	
 for	
 a	
 number	
 of	
 reasons
–Network	
 is	
 slow
–Devices	
 are	
 slow
–Too	
 many	
 apps	
 open	
 at	
 once
–Apps	
 are	
 poorly	
 wriNen

Apps	
 for	
 the	
 Greater	
 Good

• Goal:	
 Make	
 mobile	
 performance	
 more	

transparent
–Head-­‐to-­‐head	
 comparisons	
 (SpeedBump)
–Get	
 what	
 you	
 pay	
 for	
 (ShortChanged)
–Mobile	
 network	
 cartography	
 (MapMyNetwork)

• Goal:	
 Use	
 data	
 to	
 improve	
 performance
–Comparison	
 shopping	
 (TimeToSwitch)
–Performance	
 localiza0on	
 (SpeedSpoNer)

Tracking	
 the	
 trackers

• a

27

hNp://daemonfstudios.com/demos/meddleVis2/

28

http://daemonfstudios.com/demos/meddleVis2/
http://daemonfstudios.com/demos/meddleVis2/

