
CS3600 — SYSTEMS AND NETWORKS
!

SPRING 2013

Lecture 7: Synchronization
!

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Background

Processes often need to coordinate and share information

!
But, concurrent access to shared data may result in data inconsistency

!
Maintaining data consistency requires mechanisms to ensure the orderly execution
of cooperating processes

!
This lecture: how do we ensure correct execution when multiple processes may be
accessing the same data?

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Producer-Consumer Problem

• Paradigm for cooperating processes, producer process
produces information (repeatedly) that is consumed by a
consumer process

!
• Processes allowed to share memory

!
• How can we implement a producer and consumer using

shared memory?
• Assume two shared variables: buffer[] and counter

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Producer
in = 0;
!
while (true) {
!
 /* produce an item */

 while (counter == BUFFER_SIZE) {} // do nothing
 buffer[in] = nextProduced;
 in = (in + 1) % BUFFER_SIZE;
 counter++;
}

4

Consumer
out = 0;
!
while (true) {
 while (counter == 0) {} // do nothing
 nextConsumed = buffer[out];
 out = (out + 1) % BUFFER_SIZE;
 counter--;

 /* consume the item */
!
}

We have a shared integer counter that keeps track of the number of full buffer entries.
Initially, counter is set to 0. It is incremented by the producer after it produces a new
buffer and is decremented by the consumer after it consumes a buffer.

!
Does this solution work?

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Race Condition
counter++ could be implemented as 
 
 load %eax counter  
 add %eax %eax 1 (%eax++)  
 store counter %eax !
counter-- could be implemented as 
 
 load %eax counter  
 add %eax %eax -1 (%eax--)  
 store counter %eax !
Consider this execution interleaving with “counter = 5” initially:

 S0: producer execute load %eax counter {producer’s %eax = 5} 
S1: producer execute add %eax %eax 1 {producer’s %eax = 6}  
S2: consumer execute load %eax counter {consumer’s %eax = 5}  
S3: consumer execute add %eax %eax -1 {consumer’s %eax = 4}  
S4: producer execute store %eax counter {counter = 6 }  
S5: consumer execute store %eax counter {counter = 4}

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Generalization: Critical Section Problem
Consider system of n processes {p0, p1, … pn-1}

Each process has critical section segment of code

Process may be changing common variables, updating table, writing file, etc

When one process in critical section, no other may be in its critical section

Critical section problem is to design protocol to solve this

Each process must ask permission to enter critical section in entry section, may follow
critical section with exit section, then remainder section

Especially challenging with preemptive kernels

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Critical Section
General structure of process pi is

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Reqs. for solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing in
their critical sections

!
2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter their

critical section, then the selection of the processes that will enter the critical section next cannot be
postponed indefinitely

!
3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their

critical sections after a process has made a request to enter its critical section and before that request is
granted

! Assume that each process executes at a nonzero speed

! No assumption concerning relative speed of the n processes

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Peterson’s Solution

Two process solution

!
Assume that the LOAD and STORE instructions are atomic; that is, cannot be
interrupted

!
The two processes share two variables:

int turn; !
Boolean flag[2]; !

!
The variable turn indicates whose turn it is to enter the critical section

!
The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = true implies that process Pi is ready!

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

do {
!
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j) {}
!
 critical section
!
 flag[i] = FALSE;
!
 remainder section
!
} while (TRUE); !

!
Provable that

!
1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

Algorithm for Process Pi

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Synchronization Hardware

Many systems provide hardware support for critical section code

!
Uniprocessors – could disable interrupts

Currently running code would execute without preemption

Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

!
Modern machines provide special atomic hardware instructions

Atomic = non-interruptable

Either test memory word and set value

Or swap contents of two memory words

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

do {
!
 acquire lock
!
 critical section
!
 release lock
!
 remainder section
!
} while (TRUE);

Solution to Critical-section  
Problem Using Locks

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

TestAndSet Instruction

boolean TestAndSet (boolean *target) {
!
 boolean rv = *target;
 *target = TRUE;
 return rv:
!
}

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Solution using TestAndSet

Shared boolean variable lock, initialized to FALSE

Solution:

!
lock = false;
!
do {
!
 // busy wait while lock is true
 while (TestAndSet (&lock)) {}

// critical section

 lock = FALSE;

// remainder section

} while (TRUE);

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Swap Instruction

void Swap (boolean *a, boolean *b) {

 boolean temp = *a;
 *a = *b;
 *b = temp:
!
}

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Solution using Swap

Shared Boolean variable lock initialized to FALSE; Each process has a local Boolean variable key

Solution:

!
lock = FALSE;	
do {	
 key = TRUE;	
!
 // try to grab the lock	
 while (key == TRUE)	
 Swap (&lock, &key);	
 	
// critical section	
 	
 lock = FALSE;	
 	
// remainder section	
 	
} while (TRUE);

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Bounded-waiting Mutual Exclusion  
with TestandSet()

do {
 waiting[i] = TRUE;
 key = TRUE;

 while (waiting[i] && key)
 key = TestAndSet(&lock);
!
 waiting[i] = FALSE;

// critical section

 j = (i + 1) % n;
 while ((j != i) && !waiting[j])
 j = (j + 1) % n;

 if (j == i)
 lock = FALSE;
 else
 waiting[j] = FALSE;

// remainder section

} while (TRUE);

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore
Synchronization tool that does not (necessarily) require busy waiting

Semaphore S – integer variable

Two standard operations modify S: wait() and signal()

Originally called P() and V()

Less complicated

Can only be accessed via two indivisible (atomic) operations
!
!
wait (S) {
 while S <= 0
 ; // no-op
 S--;
}  

!
signal (S) {
 S++;
}

18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore as  
General Synchronization Tool

Counting semaphore – integer value can range over an unrestricted domain

Binary semaphore – integer value can range only between 0  
and 1; can be simpler to implement

Also known as mutex locks

Can implement a counting semaphore S as a binary semaphore

Provides mutual exclusion 

Semaphore mutex; // initialized to 1
do {
!
 wait (mutex);
!
// critical Section
!
 signal (mutex);
!
// remainder section
!
} while (TRUE);

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore Implementation
Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the same
time

!
Thus, implementation becomes the critical section problem where the wait and signal code are placed in the
critical section

Could now have busy waiting in critical section implementation

But implementation code is short

Little busy waiting if critical section rarely occupied

!
Note that applications may spend lots of time in critical sections and therefore this is not a good solution

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore Implementation without busy waiting

With each semaphore there is an associated waiting queue

Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

!
Two operations:

block – place the process invoking the operation on the appropriate waiting queue

wakeup – remove one of processes in the waiting queue and place it in the ready queue

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Semaphore Implementation without busy waiting

Implementation of wait:

!
wait(semaphore *S) {
 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
} !

Implementation of signal:

!
signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
}

22

CS3600 — Systems and Networks, Spring 2012 Based on slides by Silbershatz, Galvin, and Gagne

Bounded-Buffer Problem

N buffers, each can hold one item

!
Semaphore mutex initialized to the value 1

!
Semaphore full initialized to the value 0

!
Semaphore empty initialized to the value N

23

CS3600 — Systems and Networks, Spring 2012 Based on slides by Silbershatz, Galvin, and Gagne

Bounded Buffer Problem (Cont.)

The structure of the producer process

!
do {
 // produce an item

 wait (empty);
 wait (mutex);

 // add the item to the buffer

 signal (mutex);
 signal (full);
!
} while (TRUE);

24

CS3600 — Systems and Networks, Spring 2012 Based on slides by Silbershatz, Galvin, and Gagne

Bounded Buffer Problem (Cont.)

The structure of the consumer process

!
do {
!
 wait (full);
 wait (mutex);

 // remove an item from buffer

 signal (mutex);
 signal (empty);

 // consume the item

} while (TRUE);

25

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Monitors
A high-level abstraction that provides a convenient and effective mechanism for
process synchronization

Abstract data type, internal variables only accessible by code within the
procedure

Only one process may be active within the monitor at a time

But not powerful enough to model some synchronization schemes

!
monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }

}

26

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Problems with synchronization

Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of
the waiting processes

Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);
Starvation – indefinite blocking

A process may never be removed from the semaphore queue in which it is suspended

Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-
priority process

Solved via priority-inheritance protocol

27

