CS3600 — SYSTEMS AN

D N

NORTHEASTERN UNIVERSITY

Lecture 6: Scheduling

- [WORKS

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming

- CPU-I/0 Burst Cycle - Process execution consists of a cycle
of CPU execution and I/0 wait

- CPU burst distribution

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

Alternating Sequence of CPU and
/O Bursts

CS3600 — Systems and Networks

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for 1/O

load store
add store
read from file

wait for I/O

<

> CPU burst

> /O burst

=<

AN

j CPU burst

> 1/O burst

> CPU burst

> 1/O burst

Based on slides by Silbershatz, Galvin, and Gagne

Histogram of CPU-burst Times

160 |-

140 |

120 |

100 |

80 |

frequency

60 |-

40

20 |

| | | | | »

0 8 16 24 32 40
burst duration (milliseconds)

CS3600 — Systems and Networks 4 Based on slides by Silbershatz, Galvin, and Gagne

CPU Scheduler

- Selects from among the processes in ready queue, and
allocates the CPU to one of them

- Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive

. Consider access to shared data

- Consider preemption while in kernel mode

- Consider interrupts occurring during crucial OS activities

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Dispatcher

- Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

- switching context
- switching to user mode

- jumping to the proper location in the user program to restart that
program

- Dispatch latency - time it takes for the dispatcher to stop one
process and start another running

CS3600 — Systems and Networks 6 Based on slides by Silbershatz, Galvin, and Gagne

Scheduling Criteria
- CPU utilization - keep the CPU as busy as possible

- Throughput - # of processes that complete their execution
per time unit

- Turnaround time - amount of time to execute a particular
process

- Waiting time — amount of time a process has been waiting in
the ready queue

- Response time - amount of time it takes from when a request
was submitted until the first response is produced, not output

(for time-sharing environment)
CS3600 — Systems and Networks 7 Based on slides by Silbershatz, Galvin, and Gagne

Scheduling Algorithm Optimization Criteria

- Max CPU utilization

- Max throughput
 Min turnaround time
- Min waiting time

- Min response time

CS3600 — Systems and Networks 8 Based on slides by Silbershatz, Galvin, and Gagne

Non-preemptive scheduling algorithms

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
= 24
P, 3
s 3

. Suppose that the processes arrive in the order: P, , P,, P;
The Gantt Chart for the schedule is:

0 24 27 30

Saitimgtamertor P, = 0; P, =24; P.= 27
- Average waiting time: (0424 +27)/3 =17

CS3600 — Systems and Networks 10 Based on slides by Silbershatz, Galvin, and Gagne

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
PZ ’ P3 / PI
- The Gantt chart for the schedule is:

P, P, P,

- Waiting time for P,=6,P,=0.P;=3
- Average waiting time: (6+0+3)/3=3
- Much better than previous case

- Convoy effect - short process behind long process
- Consider one CPU-bound and many |I/O-bound processes

CS3600 — Systems and Networks | | Based on slides by Silbershatz, Galvin, and Gagne

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst

- Use these lengths to schedule the process with the shortest
time

- SJF is optimal - gives minimum average waiting time for a
given set of processes

- The difficulty is knowing the length of the next CPU request
- Could ask the user

CS3600 — Systems and Networks) Based on slides by Silbershatz, Galvin, and Gagne

Example of SJF

Process Arrival Time Burst Time
P, 0.0 6
P 2.0 8
P; 4.0 7
P, 0.0 S

- Average waitingtime=(3+14+5+0)/4=5.5

CS3600 — Systems and Networks |3 Based on slides by Silbershatz, Galvin, and Gagne

Determining Length of Next CPU Burst

- Can only estimate the length - should be similar to the previous one

- Then pick process with shortest predicted next CPU burst

- Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual length of n'” CPU burst
2. t,,, =predicted value for the next CPU burst

3.0,0=a =1
4. Define:

T —al t(d-ak .

n=1

- Commonly, & set to -
- Preemptive version called shortest-remaining-time-first

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

Prediction of the Length of the
Next CPU Burst

2 -
1 1 1 1 | | 1 |
time ——»
CPU burst () 6 4 6 4 13 13 13
"guess” (1) 10 8 6 6 S 9 11 12

CS3600 — Systems and Networks |5 Based on slides by Silbershatz, Galvin, and Gagne

Priority Scheduling

- A priority number (integer) is associated with each process

- The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

- Preemptive
- Nonpreemptive

- SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

- Problem = Starvation - low priority processes may never
execute

- Solution = Aging - as time progresses increase the priority of
the process

CS3600 — Systems and Networks |6 Based on slides by Silbershatz, Galvin, and Gagne

Example of Priority Scheduling

Process Burst Time Priority
= 10 5
P, 1 1
P; 2 4
P, 1 5
P 5 2

- Priority scheduling Gantt Chart

P, P, P, P, P,

- Average waiting time = 8.2 msec

CS3600 — Systems and Networks ¥ Based on slides by Silbershatz, Galvin, and Gagne

Preemptive scheduling algorithms

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum g),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready

gueue.

- If there are n processes in the ready queue and the time
guantum is g, then each process gets 1/n of the CPU time in
chunks of at most g time units at once. No process waits more

than (n-1)g time units.
- Timer interrupts every quantum to schedule next process
- Performance

- g large = FIFO

- g small = g must be large with respect to context switch,
otherwise overhead is too high

CS3600 — Systems and Networks = Based on slides by Silbershatz, Galvin, and Gagne

Example of RR with Time Quantum =4

Process Burst Time
P, 24
P, 3
s 3

- Typically, higher average turnaround than SJF, but better response
- g should be large compared to context switch time
- g usually T0ms to 100ms, context switch < 10 usec

CS3600 — Systems and Networks LG, Based on slides by Silbershatz, Galvin, and Gagne

Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

CS3600 — Systems and Networks A Based on slides by Silbershatz, Galvin, and Gagne

Turnaround Time Varies With
The Time Quantum

process | time
12.5 |- P p
120 = P2 3
P, 1
£ 115} P, 7
=
S 11.0
O
E 105}
= Rule of Thumb:
S 10.0 - die o '
s .8 80% of CPU
© bursts should be
9.0 | shorter than g
| | 1 | | 1

1 2 3 4 5 6 7
time quantum

CS3600 — Systems and Networks L) Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
- foreground (interactive)
- background (batch)

- Process permanently in a given queue

- Each queue has its own scheduling algorithm:

- foreground - RR
- background - FCFS

- Scheduling must be done between the queues:

- Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

- Time slice — each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR

- 20% to background in FCFS

CS3600 — Systems and Networks 23 Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Queue Scheduling

highest priority

> interactive editing processes —>
— batch processes —p
ey student processes ——l

lowest priority

CS3600 — Systems and Networks A Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Feedback Queue

- MQ requires process to be assigned a priori

- A process can move between the various queues; aging can
be implemented this way

- Multilevel-feedback-queue scheduler defined by the
following parameters:

- number of queues

- schedu

- met
- met
- met

NOC
NOC

INng a
useo
usec

NOC

usecC

gorithms for each queue

toC
toC
to C

etermine w
etermine w

etermine w

nen to upgrade a process
nen to demote a process

nich queue a process will enter

when that process needs service

CS3600 — Systems and Networks

L5 Based on slides by Silbershatz, Galvin, and Gagne

Example of Multilevel Feedback Queue

- Three queues:
- Qy — RR with time quantum 8 milliseconds

. Q; — RR time quantum 16 milliseconds
7 Qz - FCFS

- Scheduling
- A new job enters queue Q, which is served RR 8ms
- When it gains CPU, job receives 8 milliseconds

. If it does not finish in 8 milliseconds, job is moved to queue Q;,

- At Q, job is again served RR and receives 8 additional
milliseconds
- If it still does not complete, it is preempted and moved to queue
Q,

CS3600 — Systems and Networks 26 Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Feedback Queues

>’ quantum = 8

¥

- 1

quantum = 16

FCES

CS3600 — Systems and Networks

7l

Based on slides by Silbershatz, Galvin, and Gagne

Thread Scheduling

. Distinction between user-level and kernel-level threads
- When threads supported, threads scheduled, not processes

- Many-to-one and many-to-many models, thread library
schedules user-level threads to run on LWP

- Known as process-contention scope (PCS) since scheduling
competition is within the process

- Typically done via priority set by programmer

- Kernel thread scheduled onto available CPU is system-
contention scope (SCS) — competition among all threads in

system
CS3600 — Systems and Networks 28 Based on slides by Silbershatz, Galvin, and Gagne

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available

- Asymmetric multiprocessing — only one processor accesses the
system data structures, alleviating the need for data sharing

- Symmetric multiprocessing (SMP) — each processor is self-
scheduling, all processes in common ready queue, or each has its
own private queue of ready processes

- Currently, most common

- Processor affinity — process has affinity for processor on which it is
currently running

- soft affinity
- hard affinity
- Variations including processor sets

CS3600 — Systems and Networks LY Based on slides by Silbershatz, Galvin, and Gagne

NUMA and CPU Scheduling

CPU CPU

\ .
fast access Wé’oo fast access
@SS

memory memory

computer

Note that memory-placement algorithms can also consider affinity

CS3600 — Systems and Networks 30 Based on slides by Silbershatz, Galvin, and Gagne

Multicore Processors

- Recent trend to place multiple processor cores on same
physical chip

- Faster and consumes less power

- Multiple threads per core also growing

- Takes advantage of memory stall to make progress on another
thread while memory retrieve happens

- Hyperthreading is an example

CS3600 — Systems and Networks S Based on slides by Silbershatz, Galvin, and Gagne

Multithreaded Multicore System

C compute cycle M memory stall cycle
iread . M C M C M C M
-

time

th

L - C M c M c M C
thread,
— C M C M C M C

time

CS3600 — Systems and Networks) Based on slides by Silbershatz, Galvin, and Gagne

Virtualization and Scheduling

- Virtualization software schedules multiple guests onto CPU(s)

- Each guest doing its own scheduling
- Not knowing it doesn’t own the CPUs
- Can result in poor response time
- Can effect time-of-day clocks in guests

- Can undo good scheduling algorithm efforts of guests

CS3600 — Systems and Networks 5} Based on slides by Silbershatz, Galvin, and Gagne

