
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 6: Scheduling

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Basic Concepts
• Maximum CPU utilization obtained with multiprogramming

• CPU–I/O Burst Cycle – Process execution consists of a cycle
of CPU execution and I/O wait

• CPU burst distribution

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Alternating Sequence of CPU and
I/O Bursts

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Histogram of CPU-burst Times

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

CPU Scheduler

• Selects from among the processes in ready queue, and
allocates the CPU to one of them

• Queue may be ordered in various ways

• CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates
• Scheduling under 1 and 4 is nonpreemptive
• All other scheduling is preemptive

• Consider access to shared data
• Consider preemption while in kernel mode
• Consider interrupts occurring during crucial OS activities

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Dispatcher

• Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
• switching context
• switching to user mode
• jumping to the proper location in the user program to restart that

program

• Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Scheduling Criteria

• CPU utilization – keep the CPU as busy as possible

• Throughput – # of processes that complete their execution
per time unit

• Turnaround time – amount of time to execute a particular
process

• Waiting time – amount of time a process has been waiting in
the ready queue

• Response time – amount of time it takes from when a request
was submitted until the first response is produced, not output
(for time-sharing environment)

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Scheduling Algorithm Optimization Criteria

• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time

8

Non-preemptive scheduling algorithms

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect - short process behind long process

• Consider one CPU-bound and many I/O-bound processes

P1P3P2

63 300

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU burst
• Use these lengths to schedule the process with the shortest

time

• SJF is optimal – gives minimum average waiting time for a
given set of processes
• The difficulty is knowing the length of the next CPU request
• Could ask the user

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of SJF
 Process Arriva l Time Burst Time
 P1 0.0 6

 P2 2.0 8

 P3 4.0 7

 P4 0.0 3

• SJF scheduling chart

• Average waiting time = (3 + 14 + 5 + 0) / 4 = 5.5

P4 P3P1

3 160 9

P2

24

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Determining Length of Next CPU Burst
• Can only estimate the length – should be similar to the previous one

• Then pick process with shortest predicted next CPU burst

• Can be done by using the length of previous CPU bursts, using
exponential averaging

• Commonly, α set to ½
• Preemptive version called shortest-remaining-time-first

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Prediction of the Length of the
Next CPU Burst

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest priority
(smallest integer ≡ highest priority)
• Preemptive
• Nonpreemptive

• SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

• Problem ≡ Starvation – low priority processes may never
execute

• Solution ≡ Aging – as time progresses increase the priority of
the process

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of Priority Scheduling

 Process Burst Time Priority
 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

• Priority scheduling Gantt Chart

• Average waiting time = 8.2 msec

P2 P3P5

1 180 16

P4

196

P1

17

Preemptive scheduling algorithms

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum q),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready
queue.

• If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.

• Timer interrupts every quantum to schedule next process
• Performance

• q large ⇒ FIFO
• q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of RR with Time Quantum = 4
 Process Burst Time
 P1 24
 P2 3
 P3 3

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but better response
• q should be large compared to context switch time
• q usually 10ms to 100ms, context switch < 10 usec

P1 P2 P3 P1 P1 P1 P1 P1
0 4 7 10 14 18 22 26 30

20

P1 P2 P3 P1 P1 P1 P1 P1

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Time Quantum and Context Switch Time

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Turnaround Time Varies With
The Time Quantum

Rule of Thumb:

80% of CPU
bursts should be
shorter than q

22

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Queue
• Ready queue is partitioned into separate queues, eg:

• foreground (interactive)
• background (batch)

• Process permanently in a given queue

• Each queue has its own scheduling algorithm:
• foreground – RR
• background – FCFS

• Scheduling must be done between the queues:
• Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.
• Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes; i.e., 80% to foreground in RR
• 20% to background in FCFS

23

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Queue Scheduling

24

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Feedback Queue

• MQ requires process to be assigned a priori

• A process can move between the various queues; aging can
be implemented this way

• Multilevel-feedback-queue scheduler defined by the
following parameters:
• number of queues
• scheduling algorithms for each queue
• method used to determine when to upgrade a process
• method used to determine when to demote a process
• method used to determine which queue a process will enter

when that process needs service

25

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of Multilevel Feedback Queue

• Three queues:
• Q0 – RR with time quantum 8 milliseconds

• Q1 – RR time quantum 16 milliseconds

• Q2 – FCFS

• Scheduling
• A new job enters queue Q0 which is served RR 8ms

• When it gains CPU, job receives 8 milliseconds

• If it does not finish in 8 milliseconds, job is moved to queue Q1

• At Q1 job is again served RR and receives 8 additional
milliseconds

• If it still does not complete, it is preempted and moved to queue
Q2

26

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multilevel Feedback Queues

27

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Thread Scheduling

• Distinction between user-level and kernel-level threads

• When threads supported, threads scheduled, not processes

• Many-to-one and many-to-many models, thread library
schedules user-level threads to run on LWP
• Known as process-contention scope (PCS) since scheduling

competition is within the process
• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU is system-
contention scope (SCS) – competition among all threads in
system

28

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multiple-Processor Scheduling
• CPU scheduling more complex when multiple CPUs are available

• Asymmetric multiprocessing – only one processor accesses the
system data structures, alleviating the need for data sharing

• Symmetric multiprocessing (SMP) – each processor is self-
scheduling, all processes in common ready queue, or each has its
own private queue of ready processes
• Currently, most common

• Processor affinity – process has affinity for processor on which it is
currently running
• soft affinity
• hard affinity
• Variations including processor sets

29

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

30

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multicore Processors

• Recent trend to place multiple processor cores on same
physical chip

• Faster and consumes less power

• Multiple threads per core also growing
• Takes advantage of memory stall to make progress on another

thread while memory retrieve happens

• Hyperthreading is an example

31

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Multithreaded Multicore System

32

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Virtualization and Scheduling
• Virtualization software schedules multiple guests onto CPU(s)

• Each guest doing its own scheduling
• Not knowing it doesn’t own the CPUs
• Can result in poor response time
• Can effect time-of-day clocks in guests

• Can undo good scheduling algorithm efforts of guests

33

