CS3600 — SYSTEMS AN

D N

NORTHEASTERN UNIVERSITY

Lecture 3: Processes

- [WORKS

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Process Concept

- An operating system executes a variety of programs:
- Batch system - jobs
- Time-shared systems — user programs or tasks

- Textbook uses the terms job and process almost
interchangeably

- Process — a program in execution; process execution must
progress in sequential fashion

- A process includes:
- program counter
- stack
- data section

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

The Process

- Multiple parts
- The program code, also called text section
- Current activity including program counter, processor registers
- Stack containing temporary data

- Function parameters, return addresses, local variables
- Data section containing global variables (r/o and r/w)
- Heap containing memory dynamically allocated during run time
- Program is passive entity, process is active
- Program becomes process when executable file loaded into memory

- Execution of program started via GUI mouse clicks, command line
entry of its name, etc

- One program can be several processes
- Consider multiple users executing the same program

CS3600 — Systems and Networks 3 Based on slides by Silbershatz, Galvin, and Gagne

CS3600 — Systems and Networks

Process in Memory

max

stack

heap

data

text

Based on slides by Silbershatz, Galvin, and Gagne

Storage of variables

#include <stdio.h>

1LIARE 4 AHE K ek B
slgvisssshigi=hall o :
EensiERGharestr2 = “const”;

B maiin@in s arge, char®* argv) 4
LG ThlAneZ = (B
@GRS ESE= S ner
char *str4 = (char *) malloc(10*sizeof(char));
printf(“%s -- %s\n”, message, fo0);
return 0;

}

‘Where are int1, int2, str1--4, and the char*s stored?

CS3600 — Systems and Networks 5 Based on slides by Silbershatz, Galvin, and Gagne

Process State

- As a process executes, it changes state
- new: The process is being created
- running: Instructions are being executed
- waiting: The process is waiting for some event to occur
- ready: The process is waiting to be assigned to a processor
- terminated: The process has finished execution

CS3600 — Systems and Networks 6 Based on slides by Silbershatz, Galvin, and Gagne

Diagram of Process State

o admitted interrupt exit

scheduler dispatch

I/O or event completion I/O or event wait

CS3600 — Systems and Networks 7 Based on slides by Silbershatz, Galvin, and Gagne

Process Control Block (PCB)

- Kernel keeps information associated with each process
- Process state
- Program counter
- CPU regqisters
- CPU scheduling information
- Memory-management information
- Accounting information
- |/0 status information

. Stored in a data structure call the Process Control Block (PCB)

CS3600 — Systems and Networks 8 Based on slides by Silbershatz, Galvin, and Gagne

Process Control Block (PCB)

process state

process number

program counter

registers

memory limits

list of open files

CS3600 — Systems and Networks 9 Based on slides by Silbershatz, Galvin, and Gagne

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing /
h 4 ™

D save state into PCB,

> idle

reload state from PCB;,]
- idle interrupt or system call executing

! T

save state into PCB;

. . idle

) reload state from PCB, y

executing \

CS3600 — Systems and Networks 10 Based on slides by Silbershatz, Galvin, and Gagne

Process Scheduling

- To maximize CPU use, want to quickly switch processes
onto CPU for time sharing

- Process scheduler selects among available processes
for next execution on CPU

- Maintains scheduling queues of processes

- Job queue - set of all processes in the system

- Ready queue - set of all processes residing in main
memory, ready and waiting to execute

- Device queues - set of processes waiting for an I/O device
- Processes migrate among the various queues

CS3600 — Systems and Networks | | Based on slides by Silbershatz, Galvin, and Gagne

Process Representation in Linux

- Represented by the C structure

Esiabieieels kSt ruct |
TSI SRl Y e D recess didentifier */
Iehls @ tl-trc - (- sfiate of ‘the process */
EislERRcrsic dEniE i mel'siliice / * scheduling information %/
SRalleER e lieRcitelict *parent; /* this process’s parent */
CysanlaEEie e aidl® chi ldren; /* this process’s children =/
Cldmbilcaamsmtllcist S ruce *files; /* list of open files */
Cialle e e cEeLIct s *mm; /[F @ddress space of this process:*/

7 N 7 N S N
sSiruct tasx struct siruct 1as« struct sStruct task siruct
process infocrmation process information e & o process inforMmasen
“ T xS x_/
current

(cumrently executing proccess)

CS3600 — Systems and Networks) Based on slides by Silbershatz, Galvin, and Gagne

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit O

terminal
unit O

CS3600 — Systems and Networks

Ready Queue And Various
/O Device Queues

queue header PCB, PCB,
head > >
tail \ registers registers
head -ﬁ__\ /
tail —=
head —+——=
@il] PCB, PCB,, PCBg
/ SN .
head 4
tail .\
PCBs
head » =2
B |
13

Based on slides by Silbershatz, Galvin, and Gagne

Representation of Process Scheduling

_: ready queue @) >

/O /O queue «— |/O request
time slice E
expired

iInterrupt wait for an
Occurs interrupt

child fork a
@ child

CS3600 — Systems and Networks 2 Based on slides by Silbershatz, Galvin, and Gagne

Schedulers

- Long-term scheduler (or job scheduler) - selects which
processes should be brought into memory and put on the
ready queue

- Short-term scheduler (or CPU scheduler) - selects which
process should be executed next and allocates CPU

- Sometimes the only scheduler in a system

CS3600 — Systems and Networks |5 Based on slides by Silbershatz, Galvin, and Gagne

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently
(milliseconds) = (must be fast)

- Long-term scheduler is invoked very infrequently (seconds,
minutes) = (may be slow)

- The long-term scheduler controls the degree of
multiprogramming

- Processes can be described as either:

- I/0-bound process — spends more time doing /O than
computations, many short CPU bursts

- CPU-bound process - spends more time doing
computations; few very long CPU bursts

CS3600 — Systems and Networks |6 Based on slides by Silbershatz, Galvin, and Gagne

Addition of Medium Term Scheduling

swap in

partially executed

swapped-out processes

swap out

ready queue

CS3600 — Systems and Networks

l"

>@L » end

I/O waiting
queues

Based on slides by Silbershatz, Galvin, and Gagne

Context Switch

- When CPU switches to another process, the system must
save the state of the old process and load the saved state for
the new process via a context switch.

- Context of a process represented in the PCB

- Context-switch time is overhead; the system does no useful
work while switching

- The more complex the OS and the PCB -> longer the context
switch

- Time dependent on hardware support

- Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once
CS3600 — Systems and Networks |8 Based on slides by Silbershatz, Galvin, and Gagne

Process Creation

- Parent process create children processes, which, in turn
create other processes, forming a tree of processes

- Generally, process identified and managed via a process
identifier (pid)

- Resource sharing
- Parent and children share all resources
- Children share subset of parent’s resources
- Parent and child share no resources

« Execution
- Parent and children execute concurrently
- Parent waits until children terminate

CS3600 — Systems and Networks = Based on slides by Silbershatz, Galvin, and Gagne

Process Creation (Cont.)

- Address space
- Child duplicate of parent
- Child has a program loaded into it

- UNIX examples

- fork system call creates new process
- How to tell apart new (child) and old (parent) process?

- exec system call used after a fork to replace the process’ memory space
with a new program

CS3600 — Systems and Networks 20 Based on slides by Silbershatz, Galvin, and Gagne

Process Creation

parent : resumes
walt o

child exec(»

CS3600 — Systems and Networks A Based on slides by Silbershatz, Galvin, and Gagne

C Program Forking Separate Process

#1include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()

{
BEdEE 1l
/* fork another process */
el = e)P
EieiEpnicE—S0) /v e FroriocelnRe detys
EpELnEREEstderr Forlet Eaitlad S
return 1;
ks
else 1f (pid == @) { /* child process */
execlp("/bin/1s", "1s", NULL);
ks
else { /* parent process */
7 axele&ane AR IL e aEelE dEaE @antllel 7/
wait (NULL);
printf ("Child Complete");
¥
return 0;
I

CS3600 — Systems and Networks L) Based on slides by Silbershatz, Galvin, and Gagne

A Tree of Processes on Solaris

pageout
pid =2

dtlogin
pid = 251

telnetdaemon X_session
pid =7776 pid = 294
sdt_shel
pid = 340

Csh
pid = 1400

l cat
pid = 2536

CS3600 — Systems and Networks s Based on slides by Silbershatz, Galvin, and Gagne

Csh
pid =7778

Netscape l emacs
pid = 7785 pid = 8105

Process Termination

- Process executes last statement and asks the operating
system to delete it (exit)

- Output data from child to parent (via wait)
- Process' resources are deallocated by operating system

- Parent may terminate execution of children processes (abort)
- Child has exceeded allocated resources
- Task assigned to child is no longer required
- If parent is exiting

- Some operating systems do not allow child to continue if its parent
terminates

All children terminated - cascading termination

CS3600 — Systems and Networks e Based on slides by Silbershatz, Galvin, and Gagne

Process I/0O

- Open files with
- int open(char *path, int flags)
- flags allow process to specify read, write, truncate, append

- returned int is file descriptor
. Use in subsequent file I/O methods
- File descriptors are inherited by children

- Other operations

- int read (int fd, void *buf, int length)
- int write (int fd, void *buf, int length)

- int Iseek (int fd, off_t pos)
- int close(int fd)

- Special descriptors exist
- 0 (stdin), 1 (stdout), 2 (stderr) -- normally attached to terminal

CS3600 — Systems and Networks 25 Based on slides by Silbershatz, Galvin, and Gagne

