
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 3: Processes

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Concept

• An operating system executes a variety of programs:
• Batch system – jobs
• Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost
interchangeably

• Process – a program in execution; process execution must
progress in sequential fashion

• A process includes:
• program counter
• stack
• data section

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

The Process
• Multiple parts

• The program code, also called text section
• Current activity including program counter, processor registers
• Stack containing temporary data

• Function parameters, return addresses, local variables

• Data section containing global variables (r/o and r/w)
• Heap containing memory dynamically allocated during run time

• Program is passive entity, process is active
• Program becomes process when executable file loaded into memory

• Execution of program started via GUI mouse clicks, command line
entry of its name, etc

• One program can be several processes
• Consider multiple users executing the same program

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process in Memory

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Storage of variables

5

	 #include <stdio.h>

int int1 = 1;
char *str1 = “hello”;
const char *str2 = “const”;

int main(int argc, char** argv) {
 int int2 = 0;
 char *str3 = “inner”;
 char *str4 = (char *) malloc(10*sizeof(char));
 printf(“%s -- %s\n”, message, foo);
 return 0;
}

•Where are int1, int2, str1--4, and the char*s stored?

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process State

• As a process executes, it changes state
• new: The process is being created
• running: Instructions are being executed
• waiting: The process is waiting for some event to occur
• ready: The process is waiting to be assigned to a processor
• terminated: The process has finished execution

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Diagram of Process State

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Control Block (PCB)

• Kernel keeps information associated with each process
• Process state
• Program counter
• CPU registers
• CPU scheduling information
• Memory-management information
• Accounting information
• I/O status information

• Stored in a data structure call the Process Control Block (PCB)

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Control Block (PCB)

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

CPU Switch From Process to Process

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Scheduling

• To maximize CPU use, want to quickly switch processes
onto CPU for time sharing

• Process scheduler selects among available processes
for next execution on CPU

• Maintains scheduling queues of processes
• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in main

memory, ready and waiting to execute
• Device queues – set of processes waiting for an I/O device
• Processes migrate among the various queues

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Representation in Linux
• Represented by the C structure
struct task_struct {
 pid t pid; /* process identifier */
 long state; /* state of the process */
 unsigned int time slice /* scheduling information */
 struct task struct *parent; /* this process’s parent */
 struct list head children; /* this process’s children */
 struct files struct *files; /* list of open files */
 struct mm struct *mm; /* address space of this process */
}

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Ready Queue And Various
I/O Device Queues

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Representation of Process Scheduling

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Schedulers

• Long-term scheduler (or job scheduler) – selects which
processes should be brought into memory and put on the
ready queue

• Short-term scheduler (or CPU scheduler) – selects which
process should be executed next and allocates CPU
• Sometimes the only scheduler in a system

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Schedulers (Cont.)
• Short-term scheduler is invoked very frequently

(milliseconds) ⇒ (must be fast)

• Long-term scheduler is invoked very infrequently (seconds,
minutes) ⇒ (may be slow)

• The long-term scheduler controls the degree of
multiprogramming

• Processes can be described as either:
• I/O-bound process – spends more time doing I/O than

computations, many short CPU bursts
• CPU-bound process – spends more time doing

computations; few very long CPU bursts

16

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Addition of Medium Term Scheduling

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Context Switch
• When CPU switches to another process, the system must

save the state of the old process and load the saved state for
the new process via a context switch.

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no useful
work while switching
• The more complex the OS and the PCB -> longer the context

switch

• Time dependent on hardware support
• Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once
18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Creation
• Parent process create children processes, which, in turn

create other processes, forming a tree of processes

• Generally, process identified and managed via a process
identifier (pid)

• Resource sharing
• Parent and children share all resources
• Children share subset of parent’s resources
• Parent and child share no resources

• Execution
• Parent and children execute concurrently
• Parent waits until children terminate

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Creation (Cont.)

• Address space
• Child duplicate of parent
• Child has a program loaded into it

• UNIX examples
• fork system call creates new process

• How to tell apart new (child) and old (parent) process?

• exec system call used after a fork to replace the process’ memory space
with a new program

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Creation

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

C Program Forking Separate Process
#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{
pid_t pid;
	 /* fork another process */
	 pid = fork();
	 if (pid < 0) { /* error occurred */
	 	 fprintf(stderr, "Fork Failed");
	 	 return 1;
	 }
	 else if (pid == 0) { /* child process */
	 	 execlp("/bin/ls", "ls", NULL);
	 }
	 else { /* parent process */
	 	 /* parent will wait for the child */
	 	 wait (NULL);
	 	 printf ("Child Complete");
	 }
	 return 0;
}

22

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

A Tree of Processes on Solaris

23

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process Termination
• Process executes last statement and asks the operating

system to delete it (exit)
• Output data from child to parent (via wait)
• Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes (abort)
• Child has exceeded allocated resources
• Task assigned to child is no longer required
• If parent is exiting

• Some operating systems do not allow child to continue if its parent
terminates
All children terminated - cascading termination

24

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Process I/O

• Open files with
• int open(char *path, int flags)
• flags allow process to specify read, write, truncate, append
• returned int is file descriptor

• Use in subsequent file I/O methods
• File descriptors are inherited by children

• Other operations
• int read (int fd, void *buf, int length)
• int write (int fd, void *buf, int length)
• int lseek (int fd, off_t pos)
• int close(int fd)

• Special descriptors exist
• 0 (stdin), 1 (stdout), 2 (stderr) -- normally attached to terminal

25

