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Abstract View

• We ignore internal structure of network and model it as 
having a single bottleneck link

Sending Host
Buffer in bottleneck Router

Receiving Host

A B
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Three Congestion Control Problems

• Adjusting to bottleneck bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows
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Single Flow, Fixed Bandwidth

• Adjust rate to match bottleneck bandwidth
–without any a priori knowledge
–could be gigabit link, could be a modem

A B
100 Mbps
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Single Flow, Varying Bandwidth

• Adjust rate to match instantaneous bandwidth
• Bottleneck can change because of a routing change

A B
BW(t)
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Multiple Flows

Two Issues:
• Adjust total sending rate to match bottleneck 

bandwidth
• Allocation of bandwidth between flows

A2 B2
100 Mbps

A1

A3 B3

B1
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General Approaches

• Send without care
–many packet drops
–could cause congestion collapse

• Reservations
–pre-arrange bandwidth allocations
–requires negotiation before sending packets

• Pricing
–don’t drop packets for the high-bidders
–requires payment model
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General Approaches (cont’d)

• Dynamic Adjustment (TCP)
–Every sender probe network to test level of congestion
–speed up when no congestion
–slow down when congestion
–suboptimal, messy dynamics, simple to implement

–Distributed coordination problem!



Alan Mislove  amislove at ccs.neu.edu            Northeastern University9

TCP Congestion Control

• TCP connection has window
–controls number of unacknowledged packets

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

• Introduce a new parameter called congestion window 
(cwnd) at the sender
–Congestion control is mainly a sender-side operation
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Congestion Window (cwnd) 

• Limits how much data can be in transit
• Implemented as # of bytes
• Described as # packets in this lecture

EffectiveWindow = MaxWindow – (LastByteSent – LastByteAcked)

MaxWindow = min(cwnd, AdvertisedWindow) 

LastByteAcked
LastByteSent

sequence number increases

MaxWindow

EffectiveWindow



Alan Mislove  amislove at ccs.neu.edu            Northeastern University11

Two Basic Components

• Detecting congestion

• Rate adjustment algorithm (change cwnd size)
–depends on congestion or not
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Detecting Congestion
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Detecting Congestion

• Packet dropping is best sign of congestion
–delay-based methods are hard and risky

• How do you detect packet drops?  ACKs
–TCP uses ACKs to signal receipt of data
–ACK denotes last contiguous byte received

• actually, ACKs indicate next segment expected

• Two signs of packet drops
–No ACK after certain time interval: time-out
–Several duplicate ACKs (ignore for now)
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Detecting Congestion

• Packet dropping is best sign of congestion
–delay-based methods are hard and risky

• How do you detect packet drops?  ACKs
–TCP uses ACKs to signal receipt of data
–ACK denotes last contiguous byte received

• actually, ACKs indicate next segment expected

• Two signs of packet drops
–No ACK after certain time interval: time-out
–Several duplicate ACKs (ignore for now)

• May not work well for wireless networks, why?
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Sliding (Congestion) Window

• Sliding window: each ACK = permission to send a new 
packet
– Ex. cwnd = 3
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Self-clocking
• If we have a large window, ACKs “self-clock” the data 

to the rate of the bottleneck link
• Observe: received ACK spacing ≅ bottleneck 

bandwidth PrPb

Ar

AbAs

sender receiver

Tiny ACK
(very thin)
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Rate Adjustment

• Basic structure:
–Upon receipt of ACK (of new data): increase rate

• Data successfully delivered, perhaps can send faster
–Upon detection of loss: decrease rate

• But what increase/decrease functions should we use?
–Depends on what problem we are solving
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Fairness?
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Fairness?

Two competing sessions:
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 
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congestion avoidance: additive increase
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 
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loss: decrease window by factor of 2
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 
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Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n 

2 
th

ro
ug

hp
ut

Fair and link fully utilized (rate R)
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x = y
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AIMD Sharing Dynamics

A B
x
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• No congestion à rate increases by one packet/RTT every RTT
• Congestion à decrease rate by factor 2

Rates equalize à fair share
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AIAD Sharing Dynamics

A B
x

D E
• No congestion à x increases by one packet/RTT every RTT
• Congestion à decrease x by 1
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Adapting cwin

• So far: sliding window + self-clocking of ACKs
• How to know the best cwnd (and best transmission 

rate)?

• Phases of TCP congestion control
1.Slow start (getting to equilibrium)

1. Want to find this very very fast and not waste time
2.Congestion Avoidance 

– Additive increase - gradually probing for additional bandwidth
– Multiplicative decrease - decreasing cwnd upon loss/timeout
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Phases of Congestion Control

• Congestion Window (cwnd)
Initial value is 1 MSS (=maximum segment size) counted as bytes

• Slow-start threshold Value (ss_thresh)
 Initial value is the advertised window size

• slow start (cwnd < ssthresh)
• congestion avoidance (cwnd >= ssthresh)
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TCP: Slow Start

• Goal: discover roughly the proper sending rate quickly

• Whenever starting traffic on a new connection, or 
whenever increasing traffic after congestion was 
experienced:

•  Intialize cwnd =1 
•  Each time a segment is acknowledged, increment 

    cwnd by one (cwnd++).

• Continue until
– Reach ss_thresh
– Packet loss
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Slow Start Illustration
• The congestion window size 

grows very rapidly

• TCP slows down the 
increase of cwnd when 
cwnd >= ss_thresh 

• Observe: 
– Each ACK generates two 

packets
– slow start increases rate 

exponentially fast (doubled 
every RTT)!
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Slow Start Illustration
• The congestion window size 
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Congestion Avoidance (After Slow Start)

• Slow Start figures out roughly the rate at which the 
network starts getting congested

• Congestion Avoidance continues to react to network 
condition
– Probes for more bandwidth, increase cwnd if more bandwidth 

available
– If congestion detected, aggressive cut back cwnd
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Congestion Avoidance: Additive Increase

• After exiting slow start, slowly increase cwnd to probe for 
additional available bandwidth
– Competing flows may end transmission
– May have been “unlucky” with an early drop

• If cwnd > ss_thresh then 
        each time a segment is acknowledged 
         increment cwnd by 1/cwnd  (cwnd += 1/cwnd).

• cwnd is increased by one only if all segments have been 
acknowledged
– Increases by 1 per RTT, vs. doubling per RTT
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Example  of Slow Start + Congestion 
Avoidance

Assume that ss_thresh = 8
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Detecting Congestion via Timeout

• If there is a packet loss, the ACK for that packet will 
not be received

• The packet will eventually timeout
– No ack is seen as a sign of congestion
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Congestion Avoidance: Multiplicative Decrease

• Timeout = congestion 

• Each time when congestion occurs, 
– ss_thresh is set to half the current size of the congestion 

window:
ss_thresh = cwnd / 2 

– cwnd is reset to one:
cwnd = 1

– and slow-start is entered
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TCP illustration

Time

ss_thresh

Timeout

Slow Start

Congestion
Avoidance

cwnd ss_thresh
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Responses to Congestion (Loss)

• There are algorithms developed for TCP to respond to 
congestion

– TCP Tahoe  - the basic algorithm (discussed previously)
– TCP Reno  - Tahoe + fast retransmit & fast recovery

• Most end hosts today implement TCP Reno

• and many more:
– TCP Vegas (research: use timing of ACKs to avoid loss)
– TCP SACK (future deployment: selective ACK)
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TCP Reno

• Problem with Tahoe: If a segment is lost, there is a 
long wait until timeout 

• Reno adds a fast retransmit and fast recovery 
mechanism

• Upon receiving 3 duplicate ACKs, retransmit the 
presumed lost segment (“fast retransmit”)

• But do not enter slow-start. Instead enter congestion 
avoidance (“fast recovery”)
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Fast Retransmit
• Resend a segment after 

3 duplicate ACKs
– remember a duplicate 

ACK means that an out-of 
sequence segment was 
received

– ACK-n means packets 1, 
…, n all received

• Notes: 
– duplicate ACKs due to 

packet reordering!
– if window is small don’t 

get duplicate ACKs!

ACK 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 3
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 2

3 duplicate
ACKs

ACK 3

ACK 3

ACK 3
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Fast Recovery

• After a fast-retransmit 
– cwnd = cwnd/2  (vs. 1 in Tahoe)
– ss_thresh = cwnd
– i.e. starts congestion avoidance at new cwnd

• Not slow start from cwnd = 1

• After a timeout
– ss_thresh = cwnd/2
– cwnd = 1
– Do slow start
– Same as Tahoe
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Fast Retransmit and Fast Recovery

• Retransmit after 3 duplicate ACKs
– prevent expensive timeouts

• Slow start only once per session (if no timeouts)
• In steady state, cwnd oscillates around the ideal 

window size.

Time

cwnd

Slow Start

Congestion
Avoidance
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TCP Congestion Control Summary

• Measure available bandwidth
–slow start: fast, hard on network
–AIMD: slow, gentle on network

• Detecting congestion
–timeout based on RTT

• robust, causes low throughput
–Fast Retransmit: avoids timeouts when few packets lost

• can be fooled, maintains high throughput

• Recovering from loss
–Fast recovery: don’t set cwnd=1 with fast retransmits
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TCP Reno Quick Review

• Slow-Start if cwnd < ss_thresh
–cwnd++ upon every new ACK (exponential growth)
–Timeout: ss_thresh = cwnd/2 and cwnd = 1

• Congestion avoidance if cwnd >= ss_thresh
–Additive Increase Multiplicative Decrease (AIMD)
–ACK: cwnd = cwnd + 1/cwnd
–Timeout: ss_thresh = cwnd/2 and cwnd = 1

• Fast Retransmit & Recovery
–3 duplicate ACKS (interpret as packet loss)
–Retransmit lost packet
–cwnd=cwnd/2, ss_thresh = cwnd
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TCP Reno Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast 
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur


