
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 24: Congestion Control

Prof. Alan Mislove (amislove@ccs.neu.edu)

Slides used with permissions from Edward W. Knightly,
T. S. Eugene Ng, Ion Stoica, Hui Zhang

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Alan Mislove amislove at ccs.neu.edu Northeastern University2

Abstract View

• We ignore internal structure of network and model it as
having a single bottleneck link

Sending Host
Buffer in bottleneck Router

Receiving Host

A B

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Three Congestion Control Problems

• Adjusting to bottleneck bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows

Alan Mislove amislove at ccs.neu.edu Northeastern University4

Single Flow, Fixed Bandwidth

• Adjust rate to match bottleneck bandwidth
–without any a priori knowledge
–could be gigabit link, could be a modem

A B
100 Mbps

Alan Mislove amislove at ccs.neu.edu Northeastern University5

Single Flow, Varying Bandwidth

• Adjust rate to match instantaneous bandwidth
• Bottleneck can change because of a routing change

A B
BW(t)

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Multiple Flows

Two Issues:
• Adjust total sending rate to match bottleneck

bandwidth
• Allocation of bandwidth between flows

A2 B2
100 Mbps

A1

A3 B3

B1

Alan Mislove amislove at ccs.neu.edu Northeastern University7

General Approaches

• Send without care
–many packet drops
–could cause congestion collapse

• Reservations
–pre-arrange bandwidth allocations
–requires negotiation before sending packets

• Pricing
–don’t drop packets for the high-bidders
–requires payment model

Alan Mislove amislove at ccs.neu.edu Northeastern University8

General Approaches (cont’d)

• Dynamic Adjustment (TCP)
–Every sender probe network to test level of congestion
–speed up when no congestion
–slow down when congestion
–suboptimal, messy dynamics, simple to implement

–Distributed coordination problem!

Alan Mislove amislove at ccs.neu.edu Northeastern University9

TCP Congestion Control

• TCP connection has window
–controls number of unacknowledged packets

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

• Introduce a new parameter called congestion window
(cwnd) at the sender
–Congestion control is mainly a sender-side operation

Alan Mislove amislove at ccs.neu.edu Northeastern University10

Congestion Window (cwnd)

• Limits how much data can be in transit
• Implemented as # of bytes
• Described as # packets in this lecture

EffectiveWindow = MaxWindow – (LastByteSent – LastByteAcked)

MaxWindow = min(cwnd, AdvertisedWindow)

LastByteAcked
LastByteSent

sequence number increases

MaxWindow

EffectiveWindow

Alan Mislove amislove at ccs.neu.edu Northeastern University11

Two Basic Components

• Detecting congestion

• Rate adjustment algorithm (change cwnd size)
–depends on congestion or not

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Detecting Congestion

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Detecting Congestion

• Packet dropping is best sign of congestion
–delay-based methods are hard and risky

• How do you detect packet drops? ACKs
–TCP uses ACKs to signal receipt of data
–ACK denotes last contiguous byte received

• actually, ACKs indicate next segment expected

• Two signs of packet drops
–No ACK after certain time interval: time-out
–Several duplicate ACKs (ignore for now)

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Detecting Congestion

• Packet dropping is best sign of congestion
–delay-based methods are hard and risky

• How do you detect packet drops? ACKs
–TCP uses ACKs to signal receipt of data
–ACK denotes last contiguous byte received

• actually, ACKs indicate next segment expected

• Two signs of packet drops
–No ACK after certain time interval: time-out
–Several duplicate ACKs (ignore for now)

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Detecting Congestion

• Packet dropping is best sign of congestion
–delay-based methods are hard and risky

• How do you detect packet drops? ACKs
–TCP uses ACKs to signal receipt of data
–ACK denotes last contiguous byte received

• actually, ACKs indicate next segment expected

• Two signs of packet drops
–No ACK after certain time interval: time-out
–Several duplicate ACKs (ignore for now)

• May not work well for wireless networks, why?

Alan Mislove amislove at ccs.neu.edu Northeastern University13

Sliding (Congestion) Window

• Sliding window: each ACK = permission to send a new
packet
– Ex. cwnd = 3

Alan Mislove amislove at ccs.neu.edu Northeastern University14

Self-clocking
• If we have a large window, ACKs “self-clock” the data

to the rate of the bottleneck link
• Observe: received ACK spacing ≅ bottleneck

bandwidth PrPb

Ar

AbAs

sender receiver

Tiny ACK
(very thin)

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Rate Adjustment

• Basic structure:
–Upon receipt of ACK (of new data): increase rate

• Data successfully delivered, perhaps can send faster
–Upon detection of loss: decrease rate

• But what increase/decrease functions should we use?
–Depends on what problem we are solving

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

R

RConnection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

loss: decrease window by factor of 2

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Alan Mislove amislove at ccs.neu.edu Northeastern University16

Fairness?

Two competing sessions:
• Additive increase (AI) gives slope of 1, as throughout increases
• multiplicative decrease (MD) decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

Fair and link fully utilized (rate R)

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University17

AIMD
A B

x
 C

D E
y

Limit rates:
x = y

Alan Mislove amislove at ccs.neu.edu Northeastern University18

AIMD Sharing Dynamics

A B
x

D E

0

15.0000

30.0000

45.0000

60.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

24
5

24
6

24
7

24
8

24
9

25
0

25
1

25
2

25
3

25
4

25
5

25
6

25
7

25
8

25
9

26
0

26
1

26
2

26
3

26
4

26
5

26
6

26
7

26
8

26
9

27
0

27
1

27
2

27
3

27
4

27
5

27
6

27
7

27
8

27
9

28
0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3

29
4

29
5

29
6

29
7

29
8

29
9

30
0

30
1

30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

31
3

31
4

31
5

31
6

31
7

31
8

31
9

32
0

32
1

32
2

32
3

32
4

32
5

32
6

32
7

32
8

32
9

33
0

33
1

33
2

33
3

33
4

33
5

33
6

33
7

33
8

33
9

34
0

34
1

34
2

34
3

34
4

34
5

34
6

34
7

34
8

34
9

35
0

35
1

35
2

35
3

35
4

35
5

35
6

35
7

35
8

35
9

36
0

36
1

36
2

36
3

36
4

36
5

36
6

36
7

36
8

36
9

37
0

37
1

37
2

37
3

37
4

37
5

37
6

37
7

37
8

37
9

38
0

38
1

38
2

38
3

38
4

38
5

38
6

38
7

38
8

38
9

39
0

39
1

39
2

39
3

39
4

39
5

39
6

39
7

39
8

39
9

40
0

40
1

40
2

40
3

40
4

40
5

40
6

40
7

40
8

40
9

41
0

41
1

41
2

41
3

41
4

41
5

41
6

41
7

41
8

41
9

42
0

42
1

42
2

42
3

42
4

42
5

42
6

42
7

42
8

42
9

43
0

43
1

43
2

43
3

43
4

43
5

43
6

43
7

43
8

43
9

44
0

44
1

44
2

44
3

44
4

44
5

44
6

44
7

44
8

44
9

45
0

45
1

45
2

45
3

45
4

45
5

45
6

45
7

45
8

45
9

46
0

46
1

46
2

46
3

46
4

46
5

46
6

46
7

46
8

46
9

47
0

47
1

47
2

47
3

47
4

47
5

47
6

47
7

47
8

47
9

48
0

48
1

48
2

48
3

48
4

48
5

48
6

48
7

48
8

48
9

49
0

49
1

49
2

49
3

49
4

49
5

49
6

49
7

49
8

49
9

50
0

• No congestion à rate increases by one packet/RTT every RTT
• Congestion à decrease rate by factor 2

Rates equalize à fair share

y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Alan Mislove amislove at ccs.neu.edu Northeastern University19

AIAD
A B

x
C

D E
y

Limit rates:
x and y depend

on initial
values

Alan Mislove amislove at ccs.neu.edu Northeastern University20

AIAD Sharing Dynamics

A B
x

D E
• No congestion à x increases by one packet/RTT every RTT
• Congestion à decrease x by 1

0

15

30

45

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

15
1

15
2

15
3

15
4

15
5

15
6

15
7

15
8

15
9

16
0

16
1

16
2

16
3

16
4

16
5

16
6

16
7

16
8

16
9

17
0

17
1

17
2

17
3

17
4

17
5

17
6

17
7

17
8

17
9

18
0

18
1

18
2

18
3

18
4

18
5

18
6

18
7

18
8

18
9

19
0

19
1

19
2

19
3

19
4

19
5

19
6

19
7

19
8

19
9

20
0

20
1

20
2

20
3

20
4

20
5

20
6

20
7

20
8

20
9

21
0

21
1

21
2

21
3

21
4

21
5

21
6

21
7

21
8

21
9

22
0

22
1

22
2

22
3

22
4

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

23
3

23
4

23
5

23
6

23
7

23
8

23
9

24
0

24
1

24
2

24
3

24
4

24
5

24
6

24
7

24
8

24
9

25
0

25
1

25
2

25
3

25
4

25
5

25
6

25
7

25
8

25
9

26
0

26
1

26
2

26
3

26
4

26
5

26
6

26
7

26
8

26
9

27
0

27
1

27
2

27
3

27
4

27
5

27
6

27
7

27
8

27
9

28
0

28
1

28
2

28
3

28
4

28
5

28
6

28
7

28
8

28
9

29
0

29
1

29
2

29
3

29
4

29
5

29
6

29
7

29
8

29
9

30
0

30
1

30
2

30
3

30
4

30
5

30
6

30
7

30
8

30
9

31
0

31
1

31
2

31
3

31
4

31
5

31
6

31
7

31
8

31
9

32
0

32
1

32
2

32
3

32
4

32
5

32
6

32
7

32
8

32
9

33
0

33
1

33
2

33
3

33
4

33
5

33
6

33
7

33
8

33
9

34
0

34
1

34
2

34
3

34
4

34
5

34
6

34
7

34
8

34
9

35
0

35
1

35
2

35
3

35
4

35
5

35
6

35
7

35
8

35
9

36
0

36
1

36
2

36
3

36
4

36
5

36
6

36
7

36
8

36
9

37
0

37
1

37
2

37
3

37
4

37
5

37
6

37
7

37
8

37
9

38
0

38
1

38
2

38
3

38
4

38
5

38
6

38
7

38
8

38
9

39
0

39
1

39
2

39
3

39
4

39
5

39
6

39
7

39
8

39
9

40
0

40
1

40
2

40
3

40
4

40
5

40
6

40
7

40
8

40
9

41
0

41
1

41
2

41
3

41
4

41
5

41
6

41
7

41
8

41
9

42
0

42
1

42
2

42
3

42
4

42
5

42
6

42
7

42
8

42
9

43
0

43
1

43
2

43
3

43
4

43
5

43
6

43
7

43
8

43
9

44
0

44
1

44
2

44
3

44
4

44
5

44
6

44
7

44
8

44
9

45
0

45
1

45
2

45
3

45
4

45
5

45
6

45
7

45
8

45
9

46
0

46
1

46
2

46
3

46
4

46
5

46
6

46
7

46
8

46
9

47
0

47
1

47
2

47
3

47
4

47
5

47
6

47
7

47
8

47
9

48
0

48
1

48
2

48
3

48
4

48
5

48
6

48
7

48
8

48
9

49
0

49
1

49
2

49
3

49
4

49
5

49
6

49
7

49
8

49
9

50
0

y

Alan Mislove amislove at ccs.neu.edu Northeastern University21

Adapting cwin

• So far: sliding window + self-clocking of ACKs
• How to know the best cwnd (and best transmission

rate)?

• Phases of TCP congestion control
1.Slow start (getting to equilibrium)

1. Want to find this very very fast and not waste time
2.Congestion Avoidance

– Additive increase - gradually probing for additional bandwidth
– Multiplicative decrease - decreasing cwnd upon loss/timeout

Alan Mislove amislove at ccs.neu.edu Northeastern University22

Phases of Congestion Control

• Congestion Window (cwnd)
Initial value is 1 MSS (=maximum segment size) counted as bytes

• Slow-start threshold Value (ss_thresh)
 Initial value is the advertised window size

• slow start (cwnd < ssthresh)
• congestion avoidance (cwnd >= ssthresh)

Alan Mislove amislove at ccs.neu.edu Northeastern University23

TCP: Slow Start

• Goal: discover roughly the proper sending rate quickly

• Whenever starting traffic on a new connection, or
whenever increasing traffic after congestion was
experienced:

• Intialize cwnd =1
• Each time a segment is acknowledged, increment

 cwnd by one (cwnd++).

• Continue until
– Reach ss_thresh
– Packet loss

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

segment 1cwnd = 1

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4 segment 4
segment 5
segment 6
segment 7

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK for segments 4+5+6+7

Alan Mislove amislove at ccs.neu.edu Northeastern University24

Slow Start Illustration
• The congestion window size

grows very rapidly

• TCP slows down the
increase of cwnd when
cwnd >= ss_thresh

• Observe:
– Each ACK generates two

packets
– slow start increases rate

exponentially fast (doubled
every RTT)!

ACK for segment 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK for segments 2 + 3

cwnd = 4 segment 4
segment 5
segment 6
segment 7

ACK for segments 4+5+6+7

cwnd = 8

Alan Mislove amislove at ccs.neu.edu Northeastern University25

Congestion Avoidance (After Slow Start)

• Slow Start figures out roughly the rate at which the
network starts getting congested

• Congestion Avoidance continues to react to network
condition
– Probes for more bandwidth, increase cwnd if more bandwidth

available
– If congestion detected, aggressive cut back cwnd

Alan Mislove amislove at ccs.neu.edu Northeastern University26

Congestion Avoidance: Additive Increase

• After exiting slow start, slowly increase cwnd to probe for
additional available bandwidth
– Competing flows may end transmission
– May have been “unlucky” with an early drop

• If cwnd > ss_thresh then
 each time a segment is acknowledged
 increment cwnd by 1/cwnd (cwnd += 1/cwnd).

• cwnd is increased by one only if all segments have been
acknowledged
– Increases by 1 per RTT, vs. doubling per RTT

Alan Mislove amislove at ccs.neu.edu Northeastern University27

Example of Slow Start + Congestion
Avoidance

Assume that ss_thresh = 8

0

4

8

11

15

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7Roundtrip times

C
w

nd
 (i

n
se

gm
en

ts
)

ssthresh

Alan Mislove amislove at ccs.neu.edu Northeastern University28

Detecting Congestion via Timeout

• If there is a packet loss, the ACK for that packet will
not be received

• The packet will eventually timeout
– No ack is seen as a sign of congestion

Alan Mislove amislove at ccs.neu.edu Northeastern University29

Congestion Avoidance: Multiplicative Decrease

• Timeout = congestion

• Each time when congestion occurs,
– ss_thresh is set to half the current size of the congestion

window:
ss_thresh = cwnd / 2

– cwnd is reset to one:
cwnd = 1

– and slow-start is entered

Alan Mislove amislove at ccs.neu.edu Northeastern University30

TCP illustration

Time

ss_thresh

Timeout

Slow Start

Congestion
Avoidance

cwnd ss_thresh

Alan Mislove amislove at ccs.neu.edu Northeastern University31

Responses to Congestion (Loss)

• There are algorithms developed for TCP to respond to
congestion

– TCP Tahoe - the basic algorithm (discussed previously)
– TCP Reno - Tahoe + fast retransmit & fast recovery

• Most end hosts today implement TCP Reno

• and many more:
– TCP Vegas (research: use timing of ACKs to avoid loss)
– TCP SACK (future deployment: selective ACK)

Alan Mislove amislove at ccs.neu.edu Northeastern University32

TCP Reno

• Problem with Tahoe: If a segment is lost, there is a
long wait until timeout

• Reno adds a fast retransmit and fast recovery
mechanism

• Upon receiving 3 duplicate ACKs, retransmit the
presumed lost segment (“fast retransmit”)

• But do not enter slow-start. Instead enter congestion
avoidance (“fast recovery”)

Alan Mislove amislove at ccs.neu.edu Northeastern University33

Fast Retransmit
• Resend a segment after

3 duplicate ACKs
– remember a duplicate

ACK means that an out-of
sequence segment was
received

– ACK-n means packets 1,
…, n all received

• Notes:
– duplicate ACKs due to

packet reordering!
– if window is small don’t

get duplicate ACKs!

ACK 1

segment 1cwnd = 1

cwnd = 2 segment 2
segment 3

ACK 3
cwnd = 4 segment 4

segment 5
segment 6
segment 7

ACK 2

3 duplicate
ACKs

ACK 3

ACK 3

ACK 3

Alan Mislove amislove at ccs.neu.edu Northeastern University34

Fast Recovery

• After a fast-retransmit
– cwnd = cwnd/2 (vs. 1 in Tahoe)
– ss_thresh = cwnd
– i.e. starts congestion avoidance at new cwnd

• Not slow start from cwnd = 1

• After a timeout
– ss_thresh = cwnd/2
– cwnd = 1
– Do slow start
– Same as Tahoe

Alan Mislove amislove at ccs.neu.edu Northeastern University35

Fast Retransmit and Fast Recovery

• Retransmit after 3 duplicate ACKs
– prevent expensive timeouts

• Slow start only once per session (if no timeouts)
• In steady state, cwnd oscillates around the ideal

window size.

Time

cwnd

Slow Start

Congestion
Avoidance

Alan Mislove amislove at ccs.neu.edu Northeastern University36

TCP Congestion Control Summary

• Measure available bandwidth
–slow start: fast, hard on network
–AIMD: slow, gentle on network

• Detecting congestion
–timeout based on RTT

• robust, causes low throughput
–Fast Retransmit: avoids timeouts when few packets lost

• can be fooled, maintains high throughput

• Recovering from loss
–Fast recovery: don’t set cwnd=1 with fast retransmits

Alan Mislove amislove at ccs.neu.edu Northeastern University37

TCP Reno Quick Review

• Slow-Start if cwnd < ss_thresh
–cwnd++ upon every new ACK (exponential growth)
–Timeout: ss_thresh = cwnd/2 and cwnd = 1

• Congestion avoidance if cwnd >= ss_thresh
–Additive Increase Multiplicative Decrease (AIMD)
–ACK: cwnd = cwnd + 1/cwnd
–Timeout: ss_thresh = cwnd/2 and cwnd = 1

• Fast Retransmit & Recovery
–3 duplicate ACKS (interpret as packet loss)
–Retransmit lost packet
–cwnd=cwnd/2, ss_thresh = cwnd

Alan Mislove amislove at ccs.neu.edu Northeastern University38

TCP Reno Saw Tooth Behavior

Time

Congestion
Window

Initial
Slowstart

Fast
Retransmit

and Recovery

Slowstart
to pace
packets

Timeouts
may still

occur

