
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 22: Reliable transport

Prof. Alan Mislove (amislove@ccs.neu.edu)

Slides used with permissions from Edward W. Knightly,
T. S. Eugene Ng, Ion Stoica, Hui Zhang

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

Alan Mislove amislove at ccs.neu.edu Northeastern University2

Overview

• Goal: transmit correct information
• Problem: bits can get corrupted

–Electrical interference, thermal noise
• Problem: packets can be lost

• Solution
–Detect errors
–Recover from errors

• Correct errors
• Retransmission

Alan Mislove amislove at ccs.neu.edu Northeastern University3

Outline

ØRevisit error detection
• Reliable Transmission

Alan Mislove amislove at ccs.neu.edu Northeastern University4

Naïve approach

• Send a message twice
• Compare two copies at the receiver

– If different, some errors exist

• How many bits of error can you detect?

• What is the overhead?

Alan Mislove amislove at ccs.neu.edu Northeastern University5

Error Detection

• Problem: detect bit errors in packets (frames)
• Solution: add extra bits to each packet
• Goals:

–Reduce overhead, i.e., reduce the number of redundancy bits
–Increase the number and the type of bit error patterns that can be

detected
• Examples:

–Two-dimensional parity
–Checksum
–Cyclic Redundancy Check (CRC)
–Hamming Codes

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Parity

• Even parity
– Add a parity bit to 7 bits of data to make an even number of 1’s

• How many bits of error can be detected by a parity bit?
• What’s the overhead?

0110100

1011010

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Parity

• Even parity
– Add a parity bit to 7 bits of data to make an even number of 1’s

• How many bits of error can be detected by a parity bit?
• What’s the overhead?

0110100

1011010

1

Alan Mislove amislove at ccs.neu.edu Northeastern University6

Parity

• Even parity
– Add a parity bit to 7 bits of data to make an even number of 1’s

• How many bits of error can be detected by a parity bit?
• What’s the overhead?

0110100

1011010

1

0

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

1000110

Alan Mislove amislove at ccs.neu.edu Northeastern University7

Two-dimensional Parity

• Add one extra bit to a 7-bit code such that the number of 1’s in the
resulting 8 bits is even (for even parity, and odd for odd parity)

• Add a parity byte for the packet
• Example: five 7-bit character packet, even parity

0110100

1011010

0010110

1110101

1001011

1

0

1

1

0

1000110 1

Alan Mislove amislove at ccs.neu.edu Northeastern University8

How Many Errors Can you Detect?

• All 1-bit errors
• Example:

0110100

1011010

0000110

1110101

1001011

1

0

1

1

0

1000110 1

error bit

Alan Mislove amislove at ccs.neu.edu Northeastern University8

How Many Errors Can you Detect?

• All 1-bit errors
• Example:

0110100

1011010

0000110

1110101

1001011

1

0

1

1

0

1000110 1

error bit
odd number of 1’s

Alan Mislove amislove at ccs.neu.edu Northeastern University9

How Many Errors Can you Detect?

• All 2-bit errors
• Example:

0110100

1011010

0000111

 1110101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on columns

Alan Mislove amislove at ccs.neu.edu Northeastern University10

How Many Errors Can you Detect?

• All 3-bit errors
• Example:

0110100

1011010

0000111

 1100101

1001011

1

0

1

1

0

1000110 1

error bits

odd number of 1’s on column

Alan Mislove amislove at ccs.neu.edu Northeastern University11

How Many Errors Can you Detect?

• Most 4-bit errors
• Example of 4-bit error that is not detected:

0110100

1011010

0000111

 1100100

1001011

1

0

1

1

0

1000110 1

error bits

How many errors can you correct?

Alan Mislove amislove at ccs.neu.edu Northeastern University12

Checksum

• Sender: add all words of a packet and append the
result (checksum) to the packet

• Receiver: add all words of a received packet and
compare the result with the checksum

• Example: Internet checksum
–Use 1’s complement addition

Alan Mislove amislove at ccs.neu.edu Northeastern University13

1’s Complement

• Negative number –x is x with all bits inverted
• When two numbers are added, the carry-on is added to

the result
• Example: -15 + 16; assume 8-bit representation

15 = 00001111 à -15 = 11110000

16 = 00010000
+

Alan Mislove amislove at ccs.neu.edu Northeastern University13

1’s Complement

• Negative number –x is x with all bits inverted
• When two numbers are added, the carry-on is added to

the result
• Example: -15 + 16; assume 8-bit representation

15 = 00001111 à -15 = 11110000

16 = 00010000
+

00000000 1

Alan Mislove amislove at ccs.neu.edu Northeastern University13

1’s Complement

• Negative number –x is x with all bits inverted
• When two numbers are added, the carry-on is added to

the result
• Example: -15 + 16; assume 8-bit representation

15 = 00001111 à -15 = 11110000

16 = 00010000
+

00000000 1
+

1

00000001

Alan Mislove amislove at ccs.neu.edu Northeastern University13

1’s Complement

• Negative number –x is x with all bits inverted
• When two numbers are added, the carry-on is added to

the result
• Example: -15 + 16; assume 8-bit representation

15 = 00001111 à -15 = 11110000

16 = 00010000
+

00000000 1
+

1

00000001

 -15+16 = 1

Alan Mislove amislove at ccs.neu.edu Northeastern University14

Internet Checksum Implementation

u_short cksum(u_short *buf, int count) {
 register u_long sum = 0;

 while (count--) {
 sum += *buf++;

 if (sum & 0xFFFF0000) {
 /* carry occurred, so wrap around */
 sum &= 0xFFFF;
 sum++;
 }
 }

 return ~(sum & 0xFFFF);
}

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Properties

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Properties

• How many bits of error can Internet checksum detect?

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Properties

• How many bits of error can Internet checksum detect?
• What’s the overhead?

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Properties

• How many bits of error can Internet checksum detect?
• What’s the overhead?
• Why use this algorithm?

– Link layer typically has stronger error detection
– Most Internet protocol processing in the early days (70’s 80’s)

was done in software with slow CPUs, argued for a simple
algorithm

– Seems to be OK in practice

Alan Mislove amislove at ccs.neu.edu Northeastern University15

Properties

• How many bits of error can Internet checksum detect?
• What’s the overhead?
• Why use this algorithm?

– Link layer typically has stronger error detection
– Most Internet protocol processing in the early days (70’s 80’s)

was done in software with slow CPUs, argued for a simple
algorithm

– Seems to be OK in practice

• What about the end-to-end argument?

Alan Mislove amislove at ccs.neu.edu Northeastern University

Example of checksum calculation

• If data is

• Convert to 16-bit words, then add, carry, and invert

16

1001 1101 0010 1101 1100 0011 1101 0101

1001 1101 0010 1101
1100 0011 1101 0101
0110 0001 0000 0010
 1
0110 0001 0000 0011

1001 1110 1111 1100

Sum
Carry
Final sum

Internet checksum

1

Alan Mislove amislove at ccs.neu.edu Northeastern University17

Overview

• Revisit error detection
ØReliable transmission

Alan Mislove amislove at ccs.neu.edu Northeastern University18

Retransmission

• Problem: obtain correct information once errors are
detected

• Retransmission is one popular approach
• Algorithmic challenges

–Achieve high link utilization, and low overhead

Alan Mislove amislove at ccs.neu.edu Northeastern University19

Reliable Transfer

• Retransmit missing packets
–Numbering of packets and ACKs

• Do this efficiently
–Keep transmitting whenever possible
–Detect missing ACKs and retransmit quickly

• Two schemes
–Stop & Wait
–Sliding Window

• Go-back-n and Selective Repeat variants

Alan Mislove amislove at ccs.neu.edu Northeastern University20

Stop & Wait
• Send; wait for acknowledgement (ACK); repeat
• If timeout, retransmit

ACK

DATA

Time

Sender

Receiver

RTT Inefficient if
TRANS << RTT

TRANS

Round-Trip-Time

Alan Mislove amislove at ccs.neu.edu Northeastern University21

Stop & Wait

ACK

DATA

Time

Sender

Receiver

Timeout

TRANS

Lost

Alan Mislove amislove at ccs.neu.edu Northeastern University22

Is a Sequence Number Needed?

timeouttimeout

Frame

Frame Frame

Frame

ACK

ACK

ACK

ACK

Alan Mislove amislove at ccs.neu.edu Northeastern University22

Is a Sequence Number Needed?

• Need a 1 bit sequence number (i.e. alternate between
0 and 1) to distinguish duplicate frames

timeouttimeout

Frame

Frame Frame

Frame

ACK

ACK

ACK

ACK

Alan Mislove amislove at ccs.neu.edu Northeastern University23

Problem with Stop-and-Go

Alan Mislove amislove at ccs.neu.edu Northeastern University23

Problem with Stop-and-Go

• Lots of time wasted in waiting for acknowledgements

Alan Mislove amislove at ccs.neu.edu Northeastern University23

Problem with Stop-and-Go

• Lots of time wasted in waiting for acknowledgements

• What if you have a 10Gbps link and a delay of 10ms?
– Need 100Mbit to fill the pipe with data

• If packet size is 1500B (like Ethernet), because you
can only send one packet per RTT
– Throughput = 1500*8bit/(2*10ms) = 600Kbps!
– A utilization of 0.006%

Alan Mislove amislove at ccs.neu.edu Northeastern University24

• window = set of adjacent sequence numbers
• The size of the set is the window size (WS)

– Assume it is n

• Let A be the last ack’d packet of sender without gap; then window
of sender = {A+1, A+2, …, A+n}

– Sender window size (SWS)

• Sender can send packets in its window

• Let B be the last received packet without gap by receiver, then
window of receiver = {B+1,…, B+n}

– Receiver window size (RWS)

• Receiver can accept out of sequence packets, if in window

Sliding Window

A… …

Alan Mislove amislove at ccs.neu.edu Northeastern University25

Example

Time

SWS = 9

Alan Mislove amislove at ccs.neu.edu Northeastern University26

Basic Timeout and Acknowledgement
• Every packet k transmitted is associated with a timeout

• If by timeout(k), the ack for k has not yet been
received, the sender retransmits k

• Basic acknowledgement scheme
– Receiver sends ack for packet k when all packets with

sequence numbers <= k have been received
– An ack k means every packet up to k has been received

– Suppose packets B, C, D have been received, but receiver is
still waiting for A. No ack is sent when receiving B,C,D. But as
soon as A arrives, an ack for D is sent by the receiver, and the
receiver window slides

… …A B C D

Alan Mislove amislove at ccs.neu.edu Northeastern University27

Example with Errors

Time

Window size = 3 packets

Sender Receiver

1
2
3

4
5
6

7

Timeout
Packet 5

5

Alan Mislove amislove at ccs.neu.edu Northeastern University28

Efficiency

Time

SWS = 9, i.e. 9
packets in one RTT
instead of 1

à Can be fully
efficient as long as WS
is large enough

RTT

Alan Mislove amislove at ccs.neu.edu Northeastern University29

Observations

• With sliding windows, it is possible to fully utilize a link,
provided the window size is large enough. Throughput
is ~ (n/RTT)
–Stop & Wait is like n = 1.

• Sender has to buffer all unacknowledged packets,
because they may require retransmission

• Receiver may be able to accept out-of-order packets,
but only up to its buffer limits

Alan Mislove amislove at ccs.neu.edu Northeastern University30

Setting Timers

• The sender needs to set retransmission timers in order
to know when to retransmit a packet that may have
been lost

• How long to set the timer for?
–Too short: may retransmit before data or ACK has arrived,

creating duplicates
–Too long: if a packet is lost, will take a long time to recover

(inefficient)

Alan Mislove amislove at ccs.neu.edu Northeastern University31

Timing Illustration
1

1

Timeout too long à
inefficiency

1

1

Timeout too short à
duplicate packets

RTT

Timeout

Timeout

RTT

Alan Mislove amislove at ccs.neu.edu Northeastern University32

Adaptive Timers

• The amount of time the sender should wait is about the
round-trip time (RTT) between the sender and receiver

• For link-layer networks (LANs), this value is essentially
known

• For multi-hop WANS, rarely known
• Must work in both environments, so protocol should

adapt to the path behavior
• E.g. TCP timeouts are adaptive, will discuss later in the

course

