
CS3600 — SYSTEMS AND NETWORKS
NORTHEASTERN UNIVERSITY

Lecture 11: File System Implementation

Prof. Alan Mislove (amislove@ccs.neu.edu)

mailto:amislove@ccs.neu.edu
mailto:amislove@ccs.neu.edu

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

File-System Structure

• File structure
• Logical storage unit
• Collection of related information

• File system resides on secondary storage (disks)
• Provided user interface to storage, mapping logical to physical
• Provides efficient and convenient access to disk by allowing data to

be stored, located retrieved easily
• Disk provides in-place rewrite and random access

• I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block – storage structure consisting of information
about a file

• Device driver controls the physical device

2

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

File-System Implementation
• We have system calls at the API level, but how do we implement their

functions?
• On-disk and in-memory structures

• Boot control block contains info needed by system to boot OS from
that volume
• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table) contains
volume details
• Total # of blocks, # of free blocks, block size, free block pointers or array

• Directory structure organizes the files
• Names and inode numbers, master file table

• Per-file File Control Block (FCB) contains many details about the file
• Inode number, permissions, size, dates
• NFTS stores into in master file table using relational DB structures

3

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

A Typical File Control Block

4

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

In-Memory File System Structures

5

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Partitions and Mounting
• Partition can be a volume containing a file system (“cooked”) or raw –

just a sequence of blocks with no file system
• Boot block can point to boot volume or boot loader set of blocks that

contain enough code to know how to load the kernel from the file
system
• Or a boot management program for multi-os booting

• Root partition contains the OS, other partitions can hold other Oses,
other file systems, or be raw
• Mounted at boot time
• Other partitions can mount automatically or manually

• At mount time, file system consistency checked
• Is all metadata correct?

• If not, fix it, try again
• If yes, add to mount table, allow access

6

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Directory Implementation

• Linear list of file names with pointer to the data blocks
• Simple to program
• Time-consuming to execute

• Linear search time
• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure
• Decreases directory search time
• Collisions – situations where two file names hash to the same

location
• Only good if entries are fixed size, or use chained-overflow

method

7

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Allocation Methods
• An allocation method refers to how disk blocks are allocated for

files
• Contiguous allocation
• Linked allocation
• Indexed allocation

• Contiguous allocation – each file occupies set of contiguous
blocks
• Best performance in most cases
• Simple – only starting location (block #) and length (number of

blocks) are required
• Problems include finding space for file, knowing file size, external

fragmentation, need for compaction off-line (downtime) or on-line

8

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Contiguous Allocation of Disk Space

9

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Allocation Methods - Linked
• Linked allocation – each file a linked list of blocks

• File ends at nil pointer
• No external fragmentation
• Each block contains pointer to next block
• No compaction, external fragmentation
• Free space management system called when new block needed
• Improve efficiency by clustering blocks into groups but increases internal

fragmentation
• Reliability can be a problem
• Locating a block can take many I/Os and disk seeks

• FAT (File Allocation Table) variation
• Beginning of volume has table, indexed by block number
• Much like a linked list, but faster on disk and cacheable
• New block allocation simple

10

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Linked Allocation

11

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

File-Allocation Table

12

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Allocation Methods - Indexed
• Indexed allocation

• Each file has its own index block(s) of pointers to its data blocks

• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead of
index block

• Mapping from logical to physical in a file of maximum size of 256K
bytes and block size of 512 bytes. We need only 1 block for index table

13

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Example of Indexed Allocation

14

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Indexed Allocation – Mapping (Cont.)

• Mapping from logical to physical in a file of unbounded length
(block size of 512 words)

• Linked scheme – Link blocks of index table (no limit on size)

• Two-level index (4K blocks could store 1,024 four-byte pointers
in outer index -> 1,048,567 data blocks and file size of up to 4GB)

15

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Indexed Allocation – Two-level index

outer-index

index table
file

16

...

...
...

...

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Combined Scheme: UNIX UFS
(4K bytes per block, 32-bit addresses)

Note:
More
index
blocks

than can
be

addressed
with 32-bit
file pointer

17

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Performance
• Best method depends on file access type

• Contiguous great for sequential and random
• Linked good for sequential, not random
• Declare access type at creation -> select either contiguous or linked
• Indexed more complex

• Single block access could require 2 index block reads then data block
read

• Clustering can help improve throughput, reduce CPU overhead

18

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Performance (Cont.)
• Adding instructions to the execution path to save one disk I/O is

reasonable
• Intel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

• Typical disk drive at 250 I/Os per second
• 159,000 MIPS / 250 = 630 million instructions during one disk I/O

• Fast SSD drives provide 60,000 IOPS
• 159,000 MIPS / 60,000 = 2.65 million instructions during one disk I/O

19

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Free-Space Management

• File system maintains free-space list to track available blocks/
clusters
• (Using term “block” for simplicity)

• Bit vector or bit map (n blocks)

bit[i] =
1 ⇒ block[i] free
0 ⇒ block[i] occupied

20

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Free-Space Management (Cont.)

• Bit map requires extra space
• Example:

 block size = 4KB = 212 bytes
 disk size = 240 bytes (1 terabyte)
 n = 240/212 = 228 bits (or 256 MB)
 if clusters of 4 blocks -> 64MB of memory

• Easy to get contiguous files

• Linked list (free list)
• Cannot get contiguous space easily
• No waste of space
• No need to traverse the entire list (if # free blocks recorded)

21

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Linked Free Space List on Disk

22

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Performance

• Keeping data and metadata close together
• Buffer cache – separate section of main memory for

frequently used blocks
• Synchronous writes sometimes requested by apps or needed

by OS
• No buffering / caching – writes must hit disk before

acknowledgement
• Asynchronous writes more common, buffer-able, faster

• Free-behind and read-ahead – techniques to optimize
sequential access

• Reads frequently slower than writes

23

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Recovery
• Consistency checking – compares data in directory structure

with data blocks on disk, and tries to fix inconsistencies
• Can be slow and sometimes fails

• Use system programs to back up data from disk to another
storage device (magnetic tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data from backup

24

CS3600 — Systems and Networks Based on slides by Silbershatz, Galvin, and Gagne

Log Structured File Systems
• Log structured (or journaling) file systems record each metadata

update to the file system as a transaction
• All transactions are written to a log

• A transaction is considered committed once it is written to the log
(sequentially)

• Sometimes to a separate device or section of disk
• However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file
system structures
• When the file system structures are modified, the transaction is

removed from the log
• If the file system crashes, all remaining transactions in the log must

still be performed
• Faster recovery from crash, removes chance of inconsistency of

metadata
25

