
C BOOTCAMP

DAY 2

CS3600, Northeastern University

Alan Mislove

Slides adapted from Anandha Gopalan’s CS132 course at Univ. of Pittsburgh

Alan Mislove C Bootcamp Day 2

Pointers



Alan Mislove C Bootcamp Day 2

Pointers

Pointers are an address in memory
Includes variable addresses, constant addresses, function address...

It is a data type just like any other (int, float, double, char)

On 32-bit machines, pointers are 4 bytes in size
On 64-bit machines, pointers are 8 bytes

Pointers point to a particular data type
The compiler checks pointers for correct use just as it checks int, float, etc.



Alan Mislove C Bootcamp Day 2

Declaring pointers

No data type called pointer
Instead, use * to denote a pointer

int *ptrx; // pointer to data type int
float *ft; // pointer to data type float
short *st; // pointer to data type short

Compiler associates pointers with corresponding data types
Variables ptrx and ft contain addresses that hold int and float values

How big (in bytes) are ptrx, ft, and st?



Alan Mislove C Bootcamp Day 2

Referencing/dereferencing pointers

How can you create a pointer to a variable?
Use &, which returns the address of the argument

int y = 7;
int *x = &y; // assigns the address of y to x

How can you get the value pointed to?
Dereference the pointer using * (unf., * is used both in definitions and here)

Go to the address which is stored in x, and return the value at that address.
int y = 7; // y is 7
int *x = &y; // x is the memory address of y
int z = *x; // z is now 7

(*a)++; // increments the value pointed to a
*(a + 1); // accesses the value pointed to by the address (a + 1)



Alan Mislove C Bootcamp Day 2

Pointer quiz

int y = 10;
int x = y;
y++;
x++;

What is the value of y?

int y = 10;
int *x = &y;
y++;
(*x)++;

What is the value of y?



Alan Mislove C Bootcamp Day 2

Arrays and pointers

Compiler associates the address of the array to/with the name
int temp[34];

Array name (temp) is the pointer to the first element of array

To access the nth element of the array:
Address = starting address + n * size of element
Starting address = name of the array
Size of element = size of data type of array
array[10] de-references the value at the nth location in the array

int temp[10]; // Assume temp = 100 (memory address)
temp[5] = *(100 + (4 x 5)) = *(120) // dereference address 120



Alan Mislove C Bootcamp Day 2

Passing arrays

Passing an array passes a pointer
Passing an array as an argument passes the address
Hence arrays are always passed by reference

int general (int size, int name []); //Expects a pointer to an int array
int general (int size, int *name); //Expects a pointer to an int

void foo(int a[]) {
 a[0] = 17;
}

int b[1] = { 5 };
foo(b);

What is the value of b[0]?



Alan Mislove C Bootcamp Day 2

Functions and pointers

Functions must return a value of the declared type

Just like variables, functions can return a pointer
What does the following function return?

float *calc_area (float radius);

Function formal arguments may be of type pointer:
double calc_size (int *stars);

For example, scanf takes in parameters as pointers:
int scanf(const char *format, ...); // int*, int*

scanf("%d%f”", &x, &f);



Alan Mislove C Bootcamp Day 2

Passing in pointers

Why pass a variable address at all and complicate functions?
By design we can return only one value
Sometimes we need to return back more than one value

For example, consider scanf("%d%f”", &x, &f);
Three values are returned (in x, f, and the return value)

Pointers allows us to return more than one value



Alan Mislove C Bootcamp Day 2

Pointer arithmetic

Pointers can be added to and also subtracted from
Pointers contain addresses

Adding to a pointer goes to next specified location (dep. on data type)
<data type> *ptr;

ptr + d means ptr + d * sizeof (<data type>);

For example
int *ptr;
ptr + 2 means ptr + 2*4 which is ptr + 8

 char *ptr;
ptr + d means ptr + 2*1 which is ptr + 2



Alan Mislove C Bootcamp Day 2

Example

include <stdio.h>
int main () {
 int *i;
 int j = 10;
 i = &j;
 printf ("address of j is : %p\n", i);
 printf ("address of j + 1 is : %p\n", i + 1);
}

What is the output?
$./a.out
address of j is : 0xbffffa60
address of j + 1 is : 0xbffffa64
$

Note that j + 1 is actually 4 more than j



Alan Mislove C Bootcamp Day 2

Strings



Alan Mislove C Bootcamp Day 2

Character strings

A sequence of character constants such as “This is a string”
Each character is a character constant in a consecutive memory block

Representation in memory

Each character is stored in ASCII, in turn is stored in binary
Character strings are actually character arrays

A string constant is a character array whose elements cannot change
char *msg = "This is a string";



T h i s i s a s t r i n g \0

Alan Mislove C Bootcamp Day 2

Strings as arrays

char *msg = "This is a string !";

The variable msg is associated with a pointer to the first element
msg is an array of 19 characters
\0 is also considered a character

Appended to each string by the compiler
Used to distinguish strings in memory, acts as the end of the string
Also called the NULL character

Character pointers
char *ptr;
ptr = "This is a string";

ptr is a character pointer containing the address of the first character (T)
Which is the first element of the character array containing "This is a string"



Alan Mislove C Bootcamp Day 2

String functions

Pointers to character strings can be manipulated as other pointers
char *point1, *point2 = “welcome”;
point1 = point2;
if (point1 == point2) { // valid, but will only compare pointers

Utilities provided as part of the C standard libraries
Most of the functions can be found in the header file string.h or stdlib.h
Always check the man page to find out the header file of that function

bash$ man 3 strlen



Alan Mislove C Bootcamp Day 2

strcmp, strlen

int strcmp (char *ptr1, char *ptr2)

Compares strings pointed to by ptr1 and ptr2
Returns 0 if identical strings, non-zero otherwise.

if (strcmp (“welcome”, “cs132”) == 0) { ... }

char *ptr = “welcome”;
if (strcmp (“welcome”, ptr) == 0) // true

int strlen (const char *ptr)

Returns count of characters in string.
Does not include NULL character in count

int x = strlen (“welcome”); // x has value 7



Alan Mislove C Bootcamp Day 2

strcpy

char *strcpy (char *ptr1, char *ptr2)

Copies entire string pointed to by ptr2 onto ptr1.
Returns address of string at ptr1 (we had this anyway, but we get it back
anyway, useful sometimes)

char *ptr1 = “welcome”;
char ptr2 [10];
strcpy (ptr2, ptr1);

Now ptr2 has *a copy* of the string “welcome”

IMPORTANT: ptr1 must have enough space to contain the entire string
char ptr[4] = “Hey”; // string of 4 characters
strcpy (ptr, “hello”); // (likely) RUN-TIME ERROR



Alan Mislove C Bootcamp Day 2

Getting numbers from strings

int atoi (const char *ptr);

Converts an alphanumeric string to an integer if possible
Returns 0 and sets global variable errno if an error occurs

double atof (const char *ptr);

Converts an alphanumeric string to a double if possible

int a = atoi("17"); //a is now 17
double b = atof("89.29393"); //b is now 89.29393



Alan Mislove C Bootcamp Day 2

Structures



Alan Mislove C Bootcamp Day 2

Structures



An aggregate data type which contains a fixed number of components
Declaration:

struct name {
 // components
 // more components
};

For example
struct dob {
 int month;
 int day;
 int year;
};

Each dob has a month, day, and year (ints) inside it

Alan Mislove C Bootcamp Day 2

Using structures

Declare variables using struct keyword
All internal variables are allocated space

struct dob d1, d2;

Access member values using ‘.’ notation
d1.day = 10;
d2.year = 1976;
printf("%d\n", d2.year);

A structure can be assigned directly to another structure
struct dob d1, d2;
d1.day = 10;
d1.month = 12;
d1.year = 1976;
d2 = d1; // now d2 has the same values as d1 for its fields.



Alan Mislove C Bootcamp Day 2

Operations on structures

Cannot check to see if two structures are alike directly
struct dob d1, d2;
if (d1 == d2) // WRONG !!!

To compare, we need to check every internal value

Cannot print structures directly
Must print one field at a time

Pointers to structures use the ‘->’ notation
struct dob *d1;
d1->year = 1976;
d1->day = 26;
d1->month = 6;



Alan Mislove C Bootcamp Day 2

A little more on structures

Can be initialized field by field or during declaration
struct dob d1 = {26, 06, 1976};

Can create arrays of structures
struct dob d1[10]; // array of 10 structs dob

And access them in the usual manner
d1[1].day = 26;
d1[1].month = 6;
d1[1].year = 1976;



Alan Mislove C Bootcamp Day 2

Making a structure into a type

Type definition allows an alias for an existing type identifier
typedef type name;

For example
typedef struct dob_s {
 int day;
 int month;
 int year;
} dob;

Now, can simply do
dob my_dob;
my_dob.year = 17;



Alan Mislove C Bootcamp Day 2

C command line



Alan Mislove C Bootcamp Day 2

argc and argv

How can we access the command line?
Done using two variables argc and argv, passed as an argument to main

int main (int argc, char *argv[])

argc contains the total number of arguments, which includes the command
argv contains the list of pointers to all the arguments (length argc)

Who fills up these two variables?
Done by the OS
argv is automatically resized to include the whole command



Alan Mislove C Bootcamp Day 2

Using the arguments

include <stdio.h>

int main (int argc, char *argv[]) {
 int i;
 printf ("The number of arguments = %d\n", argc);
 for (i = 0; i < argc; i++)
 printf ("%d. %s\n", i, argv[i]); // print each argument.
}

Will print out each of the arguments passed in

bash$./a.out
 The number of arguments = 1
 0. ./a.out
bash$$./a.out first second
 The number of arguments = 3
 0. ./a.out
 1. first
 2. second



