
Systems and Networks Project 4: Simple Transport Protocol

CS3600 Fall 2014 July 28, 2014

This project is due at 11:59:59pm on December 10, 2014 and is worth 15% of your grade. You must
complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

Note that there is a milestone deadline for this project, at 11:59:59pm on November 24, 2014. More
details are in the Milestone section below.

1 Description

You will design a simple transport protocol that provides reliable datagram service. Your protocol
will be responsible for ensuring data is delivered in order, without duplicates, missing data, or
errors. Since the local area networks at Northeastern are far too reliable to be interesting, we will
provide you with access to a machine that will emulate an unreliable network.

For the assignment, you will write code that will transfer a file reliably from between two
nodes (a sender and a receiver). You do NOT have to implement connection open/close etc. You
may assume that the receiver is run first and will wait indefinitely, and the sender can just send
the data to the receiver.

2 Requirements

You have to design your own packet format and use UDP as a carrier to transmit packets. Your
packet might include fields for packet type, acknowledgement number, advertised window, data,
etc. This part of the assignment is entirely up to you. Your code MUST:

• The sender must accept data from STDIN, sending data until EOF is reached

• The sender and receive must work together to transmit the data reliably

• The receiver must print out the received data to STDOUT in order and without errors

• The send and receiver must print out specified debugging messages to STDERR

• Your sender and receiver must gracefully exit

• Your code must be able to transfer a file with any number of packets dropped, damaged,
duplicated, and delayed, and under a variety of different available bandwidths and link
latencies

You may implement any reliability algorithm(s) you choose. However, more sophisticated al-
gorithms (i.e., those which perform better) will be given higher credit. For example, some desired
properties include (but are not limited to):

• Fast: Require little time to transfer a file.

1

• Low overhead: Require low data volume to be exchanged over the network, including data
bytes, headers, retransmissions, acknowledgements, etc.

Regardless, correctness matters most; performance is a secondary concern. We will test your
code and measure these two performance metrics; better performance will result in higher credit.
Remember that network-facing code should be written defensively. Your code should check the
integrity of every packet received. We will test your code by corrupting packets, reordering pack-
ets, delaying packets, and dropping packets; you should handle these errors gracefully, recover,
and not crash.

3 Your programs

For this project, you will submit two programs: a sending program 3600send that accepts data and
sends it across the network, and a receiving program 3600recv that receives data and prints it out
in-order. You must use C to implement both programs, and we will give you basic starter code
(see below). You may not use any transport protocol libraries in your project (such as TCP); you
must use UDP. You must construct the packets and acknowledgements yourself, and interpret the
incoming packets yourself.

3.1 Starter code

Very basic starter code for the assignment is available in /course/cs3600f14/code/project4.
You must use this code as a basis for your project. Provided is a simple implementation that sends
one packet at a time; it does not handle any packet retransmissions, delayed packets, or duplicated
packets. So, it will work if the network is perfectly reliable. Moreover, if the latency is significant,
the implementation will use very little of the available bandwidth.

To get started, you should copy down this directory into your own local directory (i.e., cp -r

/course/cs3600f14/code/project4 ∼/). You can compile your code by running make. You can
also delete any compiled code and object files by running make clean.

3.2 Requirements

The command line syntax for your sending is given below. The client program takes command
line argument of the remote IP address and port number, and the name of the file to transmit.
The syntax for launching your sending program is therefore:

./3600send <recv_host>:<recv_port>

recv_host (Required) The IP address of the remote host in a.b.c.d format.

recv_port (Required) The UDP port of the remote host.

To aid in grading and debugging, your sending program should print out messages to the
console: When a sender sends a packet (including retransmission), it should print the following
to STDERR:

<timestamp> [send data] start (length)

2

where timestamp is a timestamp (down to the microsecond), start is the beginning offset of the
data sent in the packet, and length is the amount of the data sent in that packet. When your
3600send receives an acknowledgement, you should also print to STDERR

<timestamp> [recv ack] end

where end is the last offset that was acknowledged. Youmay also print somemessages of your own
to indicate timeouts, etc, depending on your design, but make it concise and readable; a function
mylog(char *fmt, ...) is provided for this purpose.

The command line syntax for your receiving program is given below. The client program will
start up and will bind to a local port—once bound, it will print out the following to STDERR:

<timestamp> [bound] port

The syntax for launching your sending program is therefore:

./3600recv

To aid in grading and debugging, your receiving program should print outmessages to STDERR:
When the receiver receives a valid data packet, it should print

<timestamp> [recv data] start (length) status

where start is the beginning offset of the data sent in the packet, and length is the amount of the
data sent in that packet, and status is one of ACCEPTED (in-order), ACCEPTED (out-of-order),
or IGNORED. If a corrupt packet arrives, it should print to STDERR

<timestamp> [recv corrupt packet]

Similar to 3600send, you may add your own output messages.
Both the sender and the receiver should print out a message to STDERR after completion of

file transfer, and then exit:

<timestamp> [completed]

You should develop your client program on the CCIS Linuxmachines (ideally cs3600tcp.ccs.neu.edu),
as these have the necessary compiler and library support. You are welcome to use your own
Linux/OS X/Windows machines, but you are responsible for getting your code working, and your
code must work when graded on cs3600tcp.ccs.neu.edu. If you do not have a CCIS account,
you should get one ASAP in order to complete the project.

4 Testing your code

In order for you to test your code over an unreliable network, we have set up a machine that
will configurably emulate a network that will drop, reorder, damage, duplicate, and delay your
packets. This machine is part of the CCIS network, and you can log in to it with your CCIS
username and credentials. If you have any problems accessing the machine, please post on Piazza
or email cs3600f14-staff@ccs.neu.edu.

3

4.1 Emulating a network

Themachine is cs3600tcp.ccs.neu.edu; you shouldmake sure you are able to ssh to themachine
and run your code on it. You will need to use the loopback interface in order to leverage the
emulated network. In other words, you might run something like ./3600recv in one terminal,
record the port it local binds to (say, 3992), and then run ./3600send 127.0.0.1:3992 in another
terminal.

You may configure the emulated network conditions by calling the following program:

/course/cs3600f14/bin/project4/netsim [--bandwidth <bw-in-mbps>]

[--latency <latency-in-ms>] [--delay <percent>]

[--drop <percent>] [--reorder <percent>]

[--corrupt <percent>] [--duplicate <percent>]

bandwidth This sets the bandwidth of the link in Mbit per second. If not specified, this is 1 Mb/s.

latency This sets the latency of the link in ms. If not specified, this value is 10 ms.

delay This sets the percent of packets the emulator should delay. If not specified, this is 0.

drop This sets the percent of packets the emulator should drop. If not specified, this is 0.

reorder This sets the percent of packets the emulator should reorder. If not specified, this is 0.

corrupt This sets the percent of packets the emulator should introduce errors into. If not speci-
fied, this is 0.

duplicate This sets the percent of packets the emulator should duplicate. If not specified, this
is 0.

Once you call this program, it will configure the emulator to delay/drop/reorder/mangle/duplicate
all UDP and ICMP packets sent by or to you at the specified rate. For example, if you called

/course/cs3600f14/bin/project4/netsim --bandwidth 0.5 --latency 100 --delay 20 --drop 40

the simulator will configure a network with 500 Kb/s bandwidth and a latency of 100 ms, and
will randomly delay 20% of your packets and drop 40%. In order to reset it so that none of your
packets are disturbed, you can simply call

/course/cs3600f14/bin/project4/netsim

with no arguments. Note that the configuration is done on a per-user-account, rather than per-
group, basis. The simulator is also stateful, meaning your settings will persist across multiple
sessions.

4.2 Helper script

In order to make testing your code easier, we have also included a perl script that will launch your
receiver, read the port number, launch your sender, feed the sender input, read the output from
the receiver, compare the two, and print out statistics about the transfer. This script is included
in the starter code, and you can run it by executing

4

./run

This script also takes a couple of arguments to determine what it should do:

./run [--size (small|medium|large|huge)] [--printlog] [--timeout <seconds>]

size The size of the data to send, including 1 KB (small), 10 KB (medium), 100 KB (large), MB
(huge). Default is small.

printlog Instructs the script to print a (sorted) log of the debug output of 3600send and 3600recv.
This may add significant processing time, depending on the amount of output.

timeout The maximum number of seconds to run the sender and receiver before killing them.
Defaults to 30 seconds.

The output of this script include some statistics about the transfer:

bash$./run --size large

Time elapsed: 1734.921 ms

Packets sent: 140

Bytes sent: 107000

Effective goodput: 461.116 Kb/s

Data match: Yes

where Data match is whether the data was transferred correctly.

Note: The run script will onlywork on the cs3600tcp.ccs.neu.edumachine, as it assumes certain
libraries exist. You should not run the script on other machines.

4.3 Testing script

Additionally, we have included a basic test script that runs your code under a variety of network
conditions and also check your code’s compatibility with the grading script. If your code fails in
the test script we provide, you can be assured that it will fare poorly when run under the grading
script. To run the test script, simply type

bash$ make test

This will compile your code and then test your DNS client on a number of inputs, comparing
the results against the reference solution. If any errors are detected, the test will print out the
expected and actual output.

Note: The testing script will onlywork on the cs3600tcp.ccs.neu.edu machine, as it changes the
network emulation. You should not run the script on other machines.

4.4 Performance testing

As mentioned in class, 20% of your grade on this project will come from performance. Your
project will be graded against the submissions of your peers. To help you know how you’re doing,
the testing script will also run a series of performance tests at the end; for each test that you
successfully complete, it will report your time elapsed and bytes sent to a common data base. For
example, you might see

5

Performance tests

Huge 5Mb/s, 10 ms [PASS]

13.889 sec elapsed, 1.1MB sent

This indicates that you passed the test in 13.889 seconds and sent a total of 1.1MB of data (includ-
ing retransmissions, overhead, etc). This score will be reported to the common database.

In order to see how your project ranks, you can run

amislove@cs3600tcp:~$ /course/cs3600f14/bin/project4/printstats

----- TEST: Huge 5Mb/s, 10 ms -----

Quickest:

1:amislove 9.322 sec

2:othergroup 13.889 sec

Most Efficient:

1:othergroup 1.1MB sent

2:amislove 2.8GB sent

which will print out the rank of each group for each performance test, divided into time spend
and bytes sent. In this particular example, amislove’s project is quicker but has higher overhead.
Obviously, you would ideally have both lower time and fewer bytes sent.

5 Grading

The grading in this project will consist of

60% Program correctness

15% Performance

15% Style and documentation

10% Milestone functionality

By definition, you going to be graded on how gracefully you handle errors; your code should
never print out incorrect data. Your code will definitely see corrupted packets, delays, duplicated
packets, and so forth. You should always assume that everyone is trying to break your program.
To paraphrase John F. Woods, “Always code as if the [the remote machine you’re communicating
with] will be a violent psychopath who knows where you live."

6 Submitting your project

6.1 Registering your team

You and your partner should first register as a team by running the /course/cs3600f14/bin/register
script. You should pick out a team name (no spaces or non-alphanumeric characters, please) and
run

6

/course/cs3600f14/bin/register project4 <teamname>

This will either report back success or will give you an error message. If you have trouble regis-
tering, please contact the course staff.

You must register your team by 11:59:59pm on November 17, 2014.

6.2 Milestone

In order to ensure that you are making sufficient progress, you will have an interim milestone
deadline. For the milestone, your code must pass the Basic (friendly network) tests in the testing
script. In other words, your code must correctly transmit data when the network reliably delivers
your packets without any duplication, drops, etc.

You should submit your milestone by running the /course/cs3600f14/bin/turnin script.
Specifically, you should create a project3 directory, and place all of your code in it. Then, run

/course/cs3600f14/bin/turnin project4-milestone <dir>

Where <dir> is the name of the directory with your submission. The script will print out every
file that you are submitting, make sure that it prints out all of the files you wish to submit! You
should receive an email confirmation of your submission.

You must submit your milestone by 11:59:59pm on November 24, 2014. No slip days can be used on
the milestone.

6.3 Final submission

For the final submission, you should submit your (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is
good, and an overview of how you tested your code. You should also describe the basic transport
protocol that you implemented, and why you made that choice.

You should submit your project by running the /course/cs3600f14/bin/turnin script. Specif-
ically, you should create a project4 directory, and place all of your code and README files in it.
Then, run

/course/cs3600f14/bin/turnin project4 <dir>

Where <dir> is the name of the directory with your submission. Again, the script will print out
every file that you are submitting, make sure that it prints out all of the files you wish to submit!
You should receive an email confirmation of your submission.

You must submit your project by 11:59:59pm on December 10, 2014.

7 Advice

A few pointers that you may find useful while working on this project:

7

• Start by getting your codeworkingwithout any packet manipulation. You can check whether
your code successfully transmits the file by using the included run script, or manually us-
ing diff and md5sum programs in Linux. Test your code with each type of manipulation
separately and then in combination. Note that you have to introduce multiple reliability
mechanisms (checksums, timeouts, retransmits, etc) in order to handle all of the possible
errors.

• Check the Piazza forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

• Finally, get started early and come to the instructor’s office hours and TA lab hours. You are
welcome to come to the lab and work, and ask the TA any questions you may have.

8

	Description
	Requirements
	Your programs
	Starter code
	Requirements

	Testing your code
	Emulating a network
	Helper script
	Testing script
	Performance testing

	Grading
	Submitting your project
	Registering your team
	Milestone
	Final submission

	Advice

