
Systems and Networks Project 1: UNIX Shell
CS3600 Fall 2014 July 28, 2014

This project is due at 11:59:59pm on September 29, 2014 and is worth 10% of your grade. You must
complete it with a partner. You may only complete it alone or in a group of three if you have the
instructor’s explicit permission to do so for this project.

Note that there is a milestone deadline at 11:59:59pm on September 22, 2014. More details are in the
Milestone section below.

1 Description

There are several goals for this assignment. First, you will get a chance to familiarize yourself
with the c programming language. Second, you will learn how to use some of the i/o facilities
and library functions provided by unix and c. Third, you get some experience with the process
creation and program starting facilities in unix. Fourth, you’ll get some experience making your
program robust (i.e., resistant to crashing).

Your assignment is to write a shell: a program that starts up other programs. Your shell,
called 3600sh will read input lines from standard input, parse them into a command name and
arguments, and then start a new process running that command. When you start your shell, it
will provide a prompt and then wait for a command line of the form:

foobar -l this and that

This starts a program stored in a file called foobar with four arguments: -l, this, and, and that.

2 Requirements

Your shell will read commands, line by line, from standard input, execute the commands, and
write the output of commands to standard output

2.1 Starter code

Very basic starter code for the assignment is available in /course/cs3600f14/code/project1.
You must use this code as a basis for your project. Provided is 3600sh start code and header file,
and a Makefile. The Makefile is configured to correctly compile your code and to test your code
on sample input.

To get started, you should copy down this directory into your own local directory (i.e., cp -r

/course/cs3600f14/code/project1 ∼/cs3600). You can compile your code by running make.
You can also delete any compiled code and object files by running make clean.

2.2 Input format

Each line has exactly one command and zero or more arguments, and is of the form:

cmd arg_1 ... arg_k

1



Each of these items is separated by one more more blank characters (spaces or tabs). There is one
command per input line. Your shell will fork a child process and then overwrite itself (via exec)
with the command in the file named by cmd. The shell parent process will default to waiting for
the child process to complete before prompting for the next command.

2.3 Features

Your client must support the following features:

Command prompt When requesting input, your shell should print a prompt with the format

[user]@[host]:[dir]>[space]

For example, this might look like

amislove@joshua:/usr>

If, for any reason, you are unable to launch the program that the user requested, you should
print out an error

Error: [meaningful error]

and then issue another prompt. In particular, if you are unable to find the requested exe-
cutable, you should print out

Error: Command not found.

Or, if the requested executable is not executable by you due to a permissions error, you
should print

Error: Permission denied.

Arguments You must support an arbitrary number of command-line arguments for each com-
mand, and each argument may be of arbitrary length. Note that there may be any number of
spaces or tabs between arguments, at the beginning of the command, and at the end of the
command. Your shell should “eat” these extra spaces or tabs, and they should not be passed
to the program. For example, if you see

���ls����-a��-l������

(where � indicates a space or tab) should have the same exact effect as the command

ls�-a�-l

2



Background processesOptionally, at the end of any command input, can be a & character, which
means that the parent process does not wait for the child process to complete before prompt-
ing for the next command. Note that the & character may be followed by spaces or tabs
(which you should “eat”), and may not be separated by spaces or tabs from the final argu-
ment of the command. For example, the command

���ls����-a&������

should have the same effect as the command

ls�-a�&

If any arguments follow a &, your shell should print out

Error: Invalid syntax.

Escape characters Your shell should allow users to pass arguments with spaces in them through
the use of backslash-space (\�) and with tabs through the use of backslash-t (\t). For exam-
ple, if the user runs

echo foo\ bar\tbaz

You should launch the echo program with a single argument of foo bar baz, rather
than three separate arguments. Note that the backslash characters are “eaten” by your shell.
Your shell should allow users to send the backslash character by entering a double backslash
(\\). For example, if the user runs

echo foo \\bar blah\ baz

You should launch the echo programwith three arguments of foo, \bar, and blah baz. Sim-
ilarly, you should allow users to send the ampersand character through the use of backslash-
ampersand (\&). For example,

echo ls\&\ &

should launch echo with one argument ls& (note the space), and should do so in the back-
ground.

If the user enters a backslash followed by any character other than a \, space, t, or &, your
shell should print out

Error: Unrecognized escape sequence.

Input/output redirection Your shell should allow the user to specify that a command be run with
STDOUT, STDIN, and/or STDERR being read from/written to a file. The syntax for redirecting
standard input is

cmd arg1 arg2 ... argN < stdin_file

3



where stdin_file is the name of the file that should be fed to standard input to cmd. Simi-
larly, redirecting STDOUT is done by

cmd arg1 arg2 ... argN > stdout_file

and STDERR is done by

cmd arg1 arg2 ... argN 2> stderr_file

Both > and 2> should create the file if it does not exist, and should truncate the file to zero-
length before writing.

Of course, these redirections can be combined in any order, so you should support com-
mands like

cmd arg1 arg2 ... argN < stdin_file 2> stderr_file > stdout_file

Each redirection must contain a filename, and each redirection can only be used once. If the
file does not exist, or if you do not have the appropriate permissions to read/write it, you
should print out

Error: Unable to open redirection file.

If redirections exist, they must come after the command and all of its arguments, but before
any ampersand (the backgrounding character). Thus, if you receive a command like

cmd arg1 arg2 ... argN & < stdin_file

or

cmd arg1 arg2 ... argN 2> <

or

cmd arg1 arg2 ... argN > &

or

cmd arg1 arg2 ... argN > file > file2

you should print out

Error: Invalid syntax.

Shell commands Your shell should support the special exit command, which causes the shell
to exit. You should print out

So long, and thanks for all the fish!

4



3 Running and debugging your program

Read this section in its entirety before your begin implementing and testing your shell. If you
have any questions, please contact the course staff.

In past semesters, students have managed to take down various CCIS resources by incorrectly
using functions like fork and by leaving old processes burning the CPU. A few notes:

Do not run your code on login.ccs.neu.edu This machine is the central login server, so IT asks
that you not develop your code there. Instead, use any other CCIS machine (fun fact: you
can ssh into any of the lab machines, and those serve as great places to develop and test
your code).

Do not leave old processes hanging around In the past, students have caused the load average
(the average number of processes waiting to run) on CCIS machines to spike in the hundreds,
which makes the machines rather unusable. Make sure to clean up any old processes you
have left running (see notes on ps/kill below).

Be careful with fork() Recall that I mentioned fork bombs in class – this is when a process
recursively fork()s, causing more and more processes to be created. Make sure that you
code doesn’t do this. Your code should *never* recursively call fork (a child forking another
child). Double- and triple-check your fork() calls to make sure this doesn’t happen.

Learn how to use ps and kill To list the processes that you have running, use the ps command:

bash$ ps

PID TTY TIME CMD

36284 ttys000 0:00.28 -bash

39471 ttys001 0:00.34 -bash

This means that I have two bash process running. If you see, like, 100 3600sh processes,
congratulations! — your processes is likely running a fork bomb. To fix this, you can run

bash$ killall -KILL 3600sh

Sometimes you’ll have to run this multiple times in succession in order to make sure they’re
all dead. Don’t worry; this will only kill your processes (and no one else’s). Note that if the
3600sh process is running under your partner’s login, she/he will have to be the one to run
that command.

Every so often (and before you leave the machine) check to make sure that you haven’t left
any processes hanging around using up CPU.

4 Implementation hints

The command line is processed (by the shell) into a list of character strings, one for each argument
(including the command name). These arguments are passed as parameters to the exec command
(you’ll probably want to use execvp). Make sure that your program can handle input lines that

5



have very long command names and arguments. You must also be able to deal gracefully with
command lines that are arbitrarily long.

You should develop your client program on the CCIS Linux machines, as these have the nec-
essary compiler and library support. You are welcome to use your own Linux/OS X machines,
but you are responsible for getting your code working, and your code must work when graded on
the CCIS Linux machines. If you do not have a CCIS account, you should get one ASAP in order
to complete the project. Your code must be -Wall clean on gcc. Do not ask the TA for help on
(or post to the forum) code that is not -Wall clean unless getting rid of the warning is what the
problem is in the first place.

You will want to make sure that you break your program up into modules, such that each
module represents a sensible type abstraction. If you have questions on how to do this, please
come see me or the TA.

5 Testing

First test that your program can start up simple programs and pass parameters to them. Then
test it by running standard UNIX/Linux utilities like ls. Your program should not crash, no
matter how weird the input; in all cases, your program should print an error and ask for another
command. For example, suppose that the input has zero-value characters (bytes) or lines that have
1,000,000 characters? As a result, you may not be able to use the input routines that first occur to
you.

You can create test scripts to test your shell with by simply putting commands in a test file,
one on each line. For example, you can create the file script.txt with the contents

ls -al

whoami

foobar

and then run your shell on this input with

bash$ ./3600sh < script.txt

Your shell should read the input file as if it were coming from the keyboard, and print the results
(and any error messages) out to your terminal.

Additionally, we have included a basic test script to check the output of your code against
our reference solution and check your code’s compatibility with the grading script. If your code
fails in the test script we provide, you can be assured that it will fare poorly when run under the
grading script. To run the test script, simply type

bash$ make test

This will compile your code and then test your shell on a number of inputs, comparing the results
against the reference solution. If any errors are detected, the test will print out the side-by-side
diff-ed output (the left side is the reference solution, the right side is yours). For example, you
might see something like

bash$ make test

Milestone tests

6



Trying with script ’ls’ [FAIL]

Command was:

ls

Diff in expected output:

amislove@agentx:/net/course/cs3600f14/code/project1> 3600sh <

3600sh.c <

3600sh.h <

Makefile <

test <

> blah

So long and thanks for all the fish! So long and thanks for all the

This indicates that the test with input ./cs3600sh was expected to print out the lines with a < in
the middle column, but instead returned blah; both output the “So long...” text. We include a few
sample tests, but these are by no means exhaustive. We expect that you will create additional test
to ensure that your programs behave as expected.

Note: When testing with the test script, you will notice that your call to getchar() will at
some point return the EOF character. This will not happen if you’re testing from the command
line (i.e., entering commands directly into your shell). The EOF character indicates that you’ve hit
the end of your input. At this point, you should execute any command that you have read in so
far (if one exists), and then exit by printing the “So long...” message. You should note that some
of the some of the tests have a \n at the end before the EOF character, and others do not.

6 Submitting your project

6.1 Registering your team

You and your partner should first register as a team by running the /course/cs3600f14/bin/register
script. You should pick out a team name (no spaces or non-alphanumeric characters, please) and
run

/course/cs3600f14/bin/register project1 <teamname>

This will either report back success or will give you an error message. If you have trouble regis-
tering, please contact the course staff.

You must register your team by 11:59:59pm on September 15, 2014.

6.2 Milestone

In order to ensure that you are making sufficient progress, you will have an interim milestone
deadline. For the milestone, you do not need to submit any README or documentation; you only
need to submit your code. You code must successfully launch programs and support the exit

shell command (for example, all of the tests marked “Milestone Tests” should pass). It need not
support background processes or backslash-quote. For the milestone, we will not be testing it
against malicious (incorrectly formatted) input.

You should submit your milestone by running the /course/cs3600f14/bin/turnin script.
Specifically, you should create a project1 directory, and place all of your code in it. Then, run

7



/course/cs3600f14/bin/turnin project1-milestone <dir>

Where <dir> is the name of the directory with your submission. The script will print out every
file that you are submitting, make sure that it prints out all of the files you wish to submit!

You must submit your milestone by 11:59:59pm on September 22, 2014. No slip days can be used on
the milestone.

6.3 Final submission

For the final submission, you should submit you (thoroughly documented) code along with a
plain-text (no Word or PDF) README file. In this file, you should describe your high-level ap-
proach, the challenges you faced, a list of properties/features of your design that you think is
good, and an overview of how you tested your code. In your README, you should also point out
any extra features of your project that you have implemented.

You should submit your project by running the /course/cs3600f14/bin/turnin script. Specif-
ically, you should create a project1 directory, and place all of your code and README files in it.
Then, run

/course/cs3600f14/bin/turnin project1 <dir>

Where <dir> is the name of the directory with your submission. Again, the script will print out
every file that you are submitting, make sure that it prints out all of the files you wish to submit!

You must submit your project by 11:59:59pm on September 29, 2014.

7 Grading

The grading in this project will consist of

50% Program functionality

25% Correct error handling

15% Style and documentation

10% Milestone functionality

8 Advice

A few pointers that you may find useful while working on this project:

• You should check the output of your program versus other shells. On Linux/OS X/UNIX,
you can use the sh shell, which provides basic shell functionality.

• Check the Piazza forum for question and clarifications. You should post project-specific
questions there first, before emailing the course staff.

• Finally, get started early!

8


	Description
	Requirements
	Starter code
	Input format
	Features

	Running and debugging your program
	Implementation hints
	Testing
	Submitting your project
	Registering your team
	Milestone
	Final submission

	Grading
	Advice

