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ABSTRACT
Online social networking sites like Orkut, YouTube, and
Flickr are among the most popular sites on the Internet.
Users of these sites form a social network, which provides
a powerful means of sharing, organizing, and finding con-
tent and contacts. The popularity of these sites provides
an opportunity to study the characteristics of online social
network graphs at large scale. Understanding these graphs
is important, both to improve current systems and to design
new applications of online social networks.

This paper presents a large-scale measurement study and
analysis of the structure of multiple online social networks.
We examine data gathered from four popular online social
networks: Flickr, YouTube, LiveJournal, and Orkut. We
crawled the publicly accessible user links on each site, ob-
taining a large portion of each social network’s graph. Our
data set contains over 11.3 million users and 328 million
links. We believe that this is the first study to examine
multiple online social networks at scale.

Our results confirm the power-law, small-world, and scale-
free properties of online social networks. We observe that the
indegree of user nodes tends to match the outdegree; that
the networks contain a densely connected core of high-degree
nodes; and that this core links small groups of strongly clus-
tered, low-degree nodes at the fringes of the network. Fi-
nally, we discuss the implications of these structural prop-
erties for the design of social network based systems.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous; H.3.5 [Information Storage and Retrieval]:
Online Information Services—Web-based services

General Terms
Measurement
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1. INTRODUCTION
The Internet has spawned different types of information
sharing systems, including the Web. Recently, online so-
cial networks have gained significant popularity and are now
among the most popular sites on the Web [40]. For example,
MySpace (over 190 million users1), Orkut (over 62 million),
LinkedIn (over 11 million), and LiveJournal (over 5.5 mil-
lion) are popular sites built on social networks.

Unlike the Web, which is largely organized around con-
tent, online social networks are organized around users. Par-
ticipating users join a network, publish their profile and any
content, and create links to any other users with whom they
associate. The resulting social network provides a basis for
maintaining social relationships, for finding users with sim-
ilar interests, and for locating content and knowledge that
has been contributed or endorsed by other users.

An in-depth understanding of the graph structure of on-
line social networks is necessary to evaluate current systems,
to design future online social network based systems, and
to understand the impact of online social networks on the
Internet. For example, understanding the structure of on-
line social networks might lead to algorithms that can de-
tect trusted or influential users, much like the study of the
Web graph led to the discovery of algorithms for finding au-
thoritative sources in the Web [21]. Moreover, recent work
has proposed the use of social networks to mitigate email
spam [17], to improve Internet search [35], and to defend
against Sybil attacks [55]. However, these systems have not
yet been evaluated on real social networks at scale, and lit-
tle is known to date on how to synthesize realistic social
network graphs.

In this paper, we present a large-scale (11.3 million users,
328 million links) measurement study and analysis of the
structure of four popular online social networks: Flickr,
YouTube, LiveJournal, and Orkut. Data gathered from mul-
tiple sites enables us to identify common structural proper-
ties of online social networks. We believe that ours is the
first study to examine multiple online social networks at
scale. We obtained our data by crawling publicly accessible
information on these sites, and we make the data available

1Number of distinct identities as reported by the respective
sites in July 2007.



to the research community. In contrast, previous studies
have generally relied on propreitary data obtained from the
operators of a single large network [4].

In addition to validating the power-law, small-world and
scale-free properties previously observed in offline social net-
works, we provide insights into online social network struc-
tures. We observe a high degree of reciprocity in directed
user links, leading to a strong correlation between user inde-
gree and outdegree. This differs from content graphs like the
graph formed by Web hyperlinks, where the popular pages
(authorities) and the pages with many references (hubs) are
distinct. We find that online social networks contain a large,
strongly connected core of high-degree nodes, surrounded by
many small clusters of low-degree nodes. This suggests that
high-degree nodes in the core are critical for the connectivity
and the flow of information in these networks.

The focus of our work is the social network users within
the sites we study. More specifically, we study the properties
of the large weakly connected component2 (WCC) in the
user graphs of four popular sites. We do not attempt to
study the entire user community (which would include users
who do not use the social networking features), information
flow, workload, or evolution of online social networking sites.
While these topics are important, they are beyond the scope
of this paper.

The rest of this paper is organized as follows: We provide
additional background on social networks in Section 2 and
detail related work in Section 3. We describe our methodol-
ogy for crawling these networks, and its limitations, in Sec-
tion 4. We examine structural properties of the networks in
Section 5, and discuss the implications in Section 6. Finally,
we conclude in Section 7.

2. BACKGROUND AND MOTIVATION
We begin with a brief overview of online social networks. We
then describe a simple experiment we conducted to estimate
how often the links between users are used to locate content
in a social networking site like Flickr. Finally, we discuss the
importance of understanding the structure of online social
networks.

Online social networks have existed since the beginning of
the Internet. For instance, the graph formed by email users
who exchange messages with each other forms an online so-
cial network. However, it has been difficult to study this
network at large scale due to its distributed nature.

Popular online social networking sites like Flickr, You-
Tube, Orkut, and LiveJournal rely on an explicit user graph
to organize, locate, and share content as well as contacts.
In many of these sites, links between users are public and
can be crawled automatically to capture and study a large
fraction of the connected user graph. These sites present an
opportunity to measure and study online social networks at
a large scale.

2.1 Online social networking sites
Online social networking sites are usually run by individual
corporations (e.g. Google and Yahoo!), and are accessible
via the Web.

2A weakly connected component in a directed graph is a set
of nodes where each node in the set has a path to every other
node in the set if all links are viewed as undirected.

Users. To participate fully in an online social network, users
must register with a site, possibly under a pseudonym.3

Some sites allow browsing of public data without explicit
sign-up. Users may volunteer information about themselves
(e.g., their birthday, place of residence, or interests), which
is added to the user’s profile.

Links. The social network is composed of user accounts and
links between users. Some sites (e.g. Flickr, LiveJournal)
allow users to link to any other user, without consent from
the link target. Other sites (e.g. Orkut, LinkedIn) require
consent from both the creator and target before a link is
created connecting these users.

Users form links for one of several reasons. The nodes
connected by a link can be real-world acquaintances, online
acquaintances, or business contacts; they can share an in-
terest; or they can be interested in each other’s contributed
content. Some users even see the acquisition of many links
as a goal in itself [14]. User links in social networks can serve
the purpose of both hyperlinks and bookmarks in the Web.

A user’s links, along with her profile, are visible to those
who visit the user’s account. Thus, users are able to explore
the social network by following user-to-user links, brows-
ing the profile information and any contributed content of
visited users as they go. Certain sites, such as LinkedIn,
only allow a user to browse other user accounts within her
neighborhood (i.e. a user can only view other users that are
within two hops in the social network); other sites, includ-
ing the ones we study, allow users to view any other user
account in the system.

Groups. Most sites enable users to create and join special
interest groups. Users can post messages to groups and up-
load shared content to the group. Certain groups are mod-
erated; admission to such a group and postings to a group
are controlled by a user designated as the group’s modera-
tor. Other groups are unrestricted, allowing any member to
join and post messages or content.

2.1.1 Is the social network used in locating content?
Of the four popular social networking sites we study in this
paper, only Orkut is a “pure” social networking site, in the
sense that the primary purpose of the site is finding and con-
necting to new users. Others are intended primarily for pub-
lishing, organizing, and locating content; Flickr, YouTube,
and LiveJournal are used for sharing photographs, videos,
and blogs, respectively.

To investigate the role played by the social network in or-
ganizing and locating content, we conducted a simple mea-
surement of how users browse the Flickr system. We ana-
lyzed the HTTP requests going to the flickr.com domain
from a 55-day HTTP trace taken at the border routers of
the Technical University of Munich between August 17th,
2006 and October 11th, 2006. We found 22,215 photo views
from at least 1,056 distinct users. For each of these views,
we examined the browser’s click stream to determine what
action led the user to a given photo.

We found that 17,897 of the views (80.6%) resulted ei-
ther from following links in the Flickr user graph or were

3In the rest of this paper, we use the term “user” to de-
note a single unique identity in a social network. A person
may create multiple identities, and may even create links be-
tween these identities. We consider each of these identities
as separate users.



additional views within a visited user’s collection. In other
words, in 80.6% of the views, the user network was involved
in browsing content. We count these views as being influ-
enced by the social network. Focusing on the remaining
views, 1,418 (6.3%) views were the result of using the Flickr
photo search facilities. The remaining 2,900 (13.1%) views
were the result of a link from an external source, such as
links from an external site or links received via email. Nei-
ther of the latter sets of views involved the social network.

Our experiment suggests that the social network in Flickr
plays an important role in locating content. Four out of five
photos were located by traversing the social network links.

2.2 Why study social networks?
Online social networks are already at the heart of some very
popular Web sites. As the technology matures, more ap-
plications are likely to emerge. It is also likely that social
networking will play an important role in future personal
and commercial online interaction, as well as the location
and organization of information and knowledge. Examples
include browser plug-ins to discover information viewed by
friends [39, 50], and social network based, cooperative Web
search tools [35]. Even major Web search companies are de-
ploying services that leverage social networks, like Yahoo!’s
MyWeb 2.0 [54] and Google Co-op [19].

Below, we outline a few of the ways is which an under-
standing of the structure of online social networks can ben-
efit the design of new systems and help us understand the
impact of online social networks on the future Internet. Ad-
ditionally, we speculate how our data might be of interest to
researchers in other disciplines.

2.2.1 Shared interest and trust
Adjacent users in a social network tend to trust each other.
A number of research systems have been proposed to ex-
ploit this trust. SybilGuard [55] uses a social network to
detect Sybil attacks in distributed systems, leveraging the
fact that Sybil users will not be able to create many trust
links to non-Sybil users. Re [17] exploits the trust between
email users to aid spam classification by whitelisting mes-
sages from friends and friends-of-friends. We believe that a
deeper understanding of the underlying topology is an es-
sential first step in the design and analysis of robust trust
and reputation metrics for these systems.

Adjacent users in a social network also tend to have com-
mon interests. Users browse neighboring regions of their
social network because they are likely to find content that is
of interest to them. Systems such as Yahoo! My Web [54],
Google Co-op [19], and PeerSpective [35] use social networks
to rank Internet search results relative to the interests of
a user’s neighborhood in the social network. These sys-
tems observe content viewed and search results clicked on
by members of a social network in order to better rank the
results of the user’s future searches.

Understanding the structure of online social networks, as
well as the processes that shape them, is important for these
applications. It would be useful to have efficient algorithms
to infer the actual degree of shared interest between two
users, or the reliability of a user (as perceived by other
users). With respect to security, it is important to under-
stand the robustness of such networks to deliberate attempts
of manipulation. These topics are beyond the scope of this
paper; however, a fundamental understanding of online so-

cial network structure is likely to be a necessary first step in
these directions.

2.2.2 Impact on future Internet
The social networks we study in this paper exist in the
databases of online social networking sites. However, other
online social networks are implemented as overlay networks.
For instance, the graph formed by people who exchange
email, or the graph formed by Skype [49] users who include
each other in their contact lists can be viewed as another
social network on top of the Internet. If future distributed
online social networks are popular and bandwidth-intensive,
they can have a significant impact on Internet traffic, just as
current peer-to-peer content distribution networks do. Un-
derstanding the structure of online social networks is not
only critical to understanding the robustness and security of
distributed online social networks, but also to understanding
their impact on the future Internet.

2.2.3 Impact on other disciplines
Additionally, our work has relevance beyond computer sci-
ence. To social scientists, online social networks offer an un-
precedented opportunity to study social networks at a large
scale. Sociologists can examine our data to test existing the-
ories about offline social networks, as well as to look for new
forms of behavior in online social networks.

Studying the structure of online social networks may help
improve the understanding of online campaigning and viral
marketing. Political campaigns have realized the importance
of blogs in elections [47]. Similarly, marketing experts are
experimenting with paid viral marketing [44] to better pro-
mote products and companies. Regardless of one’s stance on
these phenomena, a better understanding of the structure of
social networks is likely to improve our understanding of the
opportunities, limitations, and threats associated with these
ideas.

3. RELATED WORK
In this section we describe studies of social networks, in-
formation networks, as well as work on complex network
theory.

3.1 Social networks
Sociologists have studied many of the properties of social
networks. Milgram [34] shows that the average path length
between two Americans is 6 hops, and Pool and Kochen [46]
provide an analysis of the small-world effect. The influential
paper by Granovetter [20] argues that a social network can
be partitioned into ‘strong’ and ‘weak’ ties, and that the
strong ties are tightly clustered. For an overview of social
network analysis techniques, we refer the reader to the book
by Wasserman and Faust [51].

As online social networks are gaining popularity, sociol-
ogists and computer scientists are beginning to investigate
their properties. Adamic et al. [3] study an early online
social network at Stanford University, and find that the net-
work exhibits small-world behavior, as well as significant
local clustering. Liben-Nowell et al. [32] find a strong cor-
relation between friendship and geographic location in so-
cial networks by using data from LiveJournal. Kumar et
al. [26] examine two online social networks and find that
both possess a large strongly connected component. Girvan
and Newman observe that users in online social networks



tend to form tightly knit groups [18]. Backstrom et al. [8]
examine snapshots of group membership in LiveJournal, and
present models for the growth of user groups over time. We
were able to verify these properties on a much larger scale.

In recent work, Ahn et al. [4] analyze complete data from a
large South Korean social networking site (Cyworld), along
with data from small sample crawls of MySpace and Orkut.
The authors obtained data directly from CyWorld opera-
tors, and the volume of available data allows the authors
to conduct an in-depth study of that site using some of the
same metrics that we use in this paper. The comparison
with different networks, on the other hand, is limited by the
small crawled data samples of MySpace and Orkut. Our
study is largely complementary: the data available to us for
any one site is less detailed, but we are able to compare large
crawled data sets from multiple sites.

3.2 Information networks
A long thread of research examines the structure of com-
plex networks like the Web and the Internet. A prominent
study of the Web link structure [12] shows that the Web has
a “bow-tie” shape, consisting of a single large strongly con-
nected component4 (SCC), and other groups of nodes that
can either reach the SCC or can be reached from the SCC.
We show that online social networks have a similar large
component, but that its relative size is much larger than
that of the Web’s SCC. Faloutsos et al. [16] show that the
degree distribution of the Internet follows a power-law, and
Siganos et al. demonstrate that the high-level structure of
the Internet resembles a “jellyfish” [48].

Kleinberg [24] demonstrates that high-degree pages in the
Web can be identified by their function as either hubs (con-
taining useful references on a subject) or authorities (con-
taining relevant information on a subject). Kleinberg also
presents an algorithm [21] for inferring which pages function
as hubs and which as authorities. The well-known PageRank
algorithm [43] uses the Web structure to determine pages
that contain authoritative information.

3.3 Complex network theory
There has been much theoretical work on the properties of
various classes of complex graphs.

Random networks have been extensively studied, starting
with the seminal paper by Erdös and Réyni [15]. These
graphs are usually constructed by randomly adding links
to a static set of nodes. Researchers have shown that ran-
dom graphs tend to have very short paths between any two
nodes [25]. More recent work on random graphs has pro-
vided mechanisms to construct graphs with specified degree
distributions [36] and has characterized the size of the large
connected component [37].

Power-law networks are networks where the probability
that a node has degree k is proportional to k−γ , for large k

and γ > 1. The parameter γ is called the power-law coef-
ficient. Researchers have shown that many real-world net-
works are power-law networks, including Internet topolo-
gies [16], the Web [9, 27], social networks [3], neural net-
works [11], and power grids [45].

Scale-free networks are a class of power-law networks where
the high-degree nodes tend to be connected to other high-

4A strongly connected component in a graph is a set of nodes
where each node in the set has a path to every other node
in the set.

degree nodes. Scale-free graphs are discussed in detail by Li
et al. [31], and they propose a metric to measure the scale-
freeness of graphs. Expectedly, the social networks we study
display power-law distributions; by Li’s measure, these net-
works show scale-free properties as well.

Small-world networks have a small diameter and exhibit
high clustering. Studies have shown that the Web [5,12], sci-
entific collaboration on research papers [41], film actors [6],
and general social networks [3] have small-world properties.
Kleinberg [23] proposes a model to explain the small-world
phenomenon in offline social networks, and also examines
navigability in these networks [22]. The online social net-
works examined in this paper have small-world properties
much like their offline counterparts.

4. MEASUREMENT METHODOLOGY
We now describe the data presented in this paper and the
methodology we used to collect it. We were not able to ob-
tain data directly from the respective site operators. Most
sites are hesitant to provide even anonymized data, and sign-
ing non-disclosure agreements to obtain data from multiple
competing sites may not be feasible or desirable. Instead,
we chose to crawl the user graphs by accessing the public
web interface provided by the sites. This methodology gives
us access to large data sets from multiple sites.

Since the focus of this paper is to investigate the struc-
ture of online social networks, we focus on the large weakly
connected component (WCC) of the corresponding graphs
in the rest of this paper. As we show later in this section,
the large WCC is structurally the most “interesting” part
of the network. The nodes not included in the WCC tend
to be either part of very small, isolated clusters or are not
connected to other users at all.

4.1 Challenges in crawling large graphs
Crawling large, complex graphs presents unique challenges.
In this section, we describe our general approach before dis-
cussing the details of how we crawled each network.

4.1.1 Crawling the entire connected component
The primary challenge in crawling large graphs is covering
the entire connected component. At each step, one can gen-
erally only obtain the set of links into or out of a specified
node. In the case of online social networks, crawling the
graph efficiently is important since the graphs are large and
highly dynamic. Common algorithms for crawling graphs
include breadth-first search (BFS) and depth-first search.

Often, crawling an entire connected component is not fea-
sible, and one must resort to using samples of the graph.
Crawling only a subset of a graph by ending a BFS early
(called the snowball method) is known to produce a biased
sample of nodes [29]. In particular, partial BFS crawls are
likely to overestimate node degree and underestimate the
level of symmetry [10]. In social network graphs, collecting
samples via the snowball method has been shown to un-
derestimate the power-law coefficient, but to more closely
match other metrics, including the overall clustering coeffi-
cient [29].

Some previous studies of social networks have used small
graph samples. Example studies have used samples of 0.3%
of Orkut users [4], less than 1% of LiveJournal communi-
ties [8], and 0.08% of MySpace users [4]. In this paper, we
obtain and study much larger samples of the user graphs.



Flickr LiveJournal Orkut YouTube
Number of users 1,846,198 5,284,457 3,072,441 1,157,827
Estimated fraction of user population crawled 26.9% 95.4% 11.3% unknown
Dates of crawl Jan 9, 2007 Dec 9 - 11, 2006 Oct 3 - Nov 11, 2006 Jan 15, 2007
Number of friend links 22,613,981 77,402,652 223,534,301 4,945,382
Average number of friends per user 12.24 16.97 106.1 4.29
Fraction of links symmetric 62.0% 73.5% 100.0% 79.1%
Number of user groups 103,648 7,489,073 8,730,859 30,087
Average number of groups memberships per user 4.62 21.25 106.44 0.25

Table 1: High-level statistics of our social networking site crawls.

4.1.2 Using only forward links
Crawling directed graphs, as opposed to undirected graphs,
presents additional challenges. In particular, many graphs
can only be crawled by following links in the forward direc-
tion (i.e., one cannot easily determine the set of nodes which
point into a given node). Using only forward links does not
necessarily crawl an entire WCC; instead, it explores the
connected component reachable from the set of seed users.
This limitation is typical for studies that crawl online net-
works, including measurement studies of the Web [12].

START

ONLY USING

FORWARD LINKS

USING

BOTH FORWARD

AND REVERSE LINKS

Figure 1: Users reached by crawling different link
types. If only forward links are used, we can reach
only the inner cloud (shaded cloud); using both
forward and reverse links crawls the entire WCC
(dashed cloud).

Figure 1 shows an example of a directed graph crawl. The
users reached by following only forward links are shown in
the shaded cloud, and those reached using both forward and
reverse links are shown in the dashed cloud. Using both for-
ward and reverse links allows us to crawl the entire WCC,
while using only forward links results in a subset of the
WCC.

4.2 Crawling social networks
We now discuss our methodology for crawling each of the
networks we crawled, its limitations, and high-level statistics
of the resulting data sets. Using automated scripts on a clus-
ter of 58 machines, we crawled the social network graphs of
Flickr, LiveJournal, Orkut, and YouTube. High-level statis-
tics of the resulting data sets are presented in Table 1.

We chose these four sites because they are among the most
popular social networking sites and they allow us to view
the links out of any user in the network. In each step of our
crawls, we retrieved the list of friends for a user we had not
yet visited and added the retrieved users to the list of users
to visit. We continued until we exhausted the list. This
corresponds to a BFS of the social network graphs.

4.2.1 Flickr
Flickr (www.flickr.com) is a photo-sharing site based on
a social network. The Flickr data presented in this paper
is from a crawl of the large WCC conducted on January
9th, 2007, and contains over 1.8 million users and 22 million
links. Flickr exports an API for third-party developers, and
we used this API to conduct the crawl. We also obtained
group membership information via Flickr’s API.5

Flickr only allows us to query for forward links. Therefore
we were unable to crawl the entire large WCC. To estimate
the fraction of users who are part of the WCC but missing in
our crawl, we performed the following experiment. We used
the fact that the vast majority of Flickr user identifiers take
the form of [randomly selected 8 digit number]@N00. We
generated 100,000 random user identifiers of this form (from
a possible pool of 90 million) and found that 6,902 (6.90%)
of these were assigned usernames. These 6,902 nodes form
a random sample of Flickr users.

Among these 6,902 users, 1,859 users (26.9%) had been
discovered during our crawl. Focusing on the 5,043 users
not previously discovered by our crawl, we conducted a BFS
starting at each user to determine whether or not they could
reach our set of previously crawled users. We found that only
250 (5.0%) of the missed users could reach our crawled set
and were definitively in the WCC. While we cannot conclu-
sively say that the remaining 4,793 (95.0%) missed users are
not attached to the WCC (there could be some other user
who points to them and to the WCC), the fact that 89.7%
of these have no forward links suggests that many are not
connected at all.

Finally, to explore how the remaining missing nodes are
connected, we crawled the social network using these missing
users as seeds, and compared the results with our initial
crawl. We found only 11,468 new nodes that were not in
the connected component of 1.8 million nodes discovered
in the original crawl. Of these new nodes, 5,142 (44.8%)
were singleton nodes with no forward links, 3,370 (29.3%)
had one link, 620 (5.4%) had two or three links, and 2,336
(20.3%) had four or more links. Thus, the nodes missing
from our crawls tend to have low degree and are connected
only to small clusters that are not reachable from the large
connected component we crawled.

Thus, we believe that our crawl of the large WCC, al-
though not complete, covers a large fraction of the users
who are part of the WCC. Further, our experience with the
randomly generated Flickr user identifiers indicates that (at
least for Flickr), the nodes not in the largest WCC do not
form large subgraphs.

5Flickr allows users to form private groups, which do not
appear in the user’s profile list. We were unable to determine
any information about the membership of such groups.



4.2.2 LiveJournal
LiveJournal (www.livejournal.com) is a popular blogging
site whose users form a social network. The LiveJournal
data set considered in this paper is the largest we examine:
it contains over 5.2 million users and 72 million links. Due
to its size, the LiveJournal crawl took several days, from
December 9-11, 2006. LiveJournal offers an API that al-
lows us to query for both forward and reverse links. We
followed both link types to crawl the entire large WCC. We
also obtained group membership information via LiveJour-
nal’s API.6

To estimate the fraction of the LiveJournal network cov-
ered by our crawl, we used a feature of LiveJournal7 that
returns random users to select a list of 5,000 random Live-
Journal users. We then checked how many of these random
users our crawl had already covered. We found that we had
already crawled 4,773 (95.4%) of these users, showing that
our LiveJournal crawl covers the vast majority of the Live-
Journal population. Finally, we started another crawl from
the previously unknown 227 users to determine how many
additional users could be discovered. This technique found
only 73 additional users. These results suggest that our
LiveJournal crawl covers almost the entire LiveJournal user
population, and that the users not included in our crawl are
part of small, isolated clusters.

Using the entire WCC from LiveJournal, we calculated
the fraction of the WCC that is not reachable by using
only forward links (as we did for the Flickr and YouTube
crawls). We found that of the 5,284,457 nodes in the dis-
covered weakly connected component, only 404,134 (7.64%)
would have been missed had we followed only forward links.
Finally, we examined the 404,134 users who would have been
missed to see how well these users were connected. We found
that 201,694 (49.9%) of these users had a single forward link,
86,561 (21.1%) had two or three links, and 78,463 (19.4%)
of the users had four or more forward links. Since, as we will
show later, Flickr and YouTube share many characteristics
with LiveJournal, this result suggests that the users that are
missing in our Flickr and YouTube crawls tend to be small
in number and have relatively small outdegree.

4.2.3 Orkut
The next site we examined is Orkut (www.orkut.com), a so-
cial networking site run by Google. Orkut is a “pure” social
network, as the sole purpose of the site is social networking,
and no content is being shared. In Orkut, links are undi-
rected and link creation requires consent from the target.
Since, at the time of the crawl, new users had to be invited
by an existing user to join the system, the Orkut graph forms
a single SCC by definition.

The Orkut data considered in the paper was collected dur-
ing a crawl performed between October 3rd and November
11th, 2006. Because Orkut does not export an API, we had
to resort to HTML screen-scraping to conduct our crawl,
which requires more bandwidth. We obtained group infor-
mation in a similar manner. Furthermore, Orkut limits the
rate at which a single IP address can download information
and requires a logged-in account to browse the network. As
a result, it took more than a month to crawl a subset of

6We inferred groups in LiveJournal by crawling the interests
specified by users.
7http://www.livejournal.com/random.bml

3,072,441 users, at which point we stopped. This subset cor-
responds to 11.3% of Orkut’s user population of about 27
million users at the time of the crawl. The Orkut data con-
sidered in this paper, therefore, is limited to this connected
component and disregards all links from this component to
other, uncrawled users.

Because our Orkut data set contains only a sample of the
entire Orkut network, there are two potential concerns with
the representativeness of the data. The first question is how
the 11.3% subset of the network we gathered would compare
to a different 11.3% subset gathered in the same way. In
other words, are the properties of our sample representative
of other samples of similar size? The second question is how
the properties of our sample compare to the properties of
the network as a whole.

To explore the first of these concerns, we conducted five
separate, small crawls of Orkut starting from random lo-
cations. Our random starting locations were chosen using
Maximum-Degree random sampling [7] configured with a
path length of 100,000 hops. Each of the five crawls was
configured to cover 80,000 nodes in the same manner as our
single, large crawl. We then examined how similar the prop-
erties of the resulting samples were to each other.

We found that the properties of the five smaller crawls
were similar, even though these crawls covered only 0.26%
of the network. For example, we found that the clustering
coefficient of these crawls had an average of 0.284 with a
standard deviation of 0.040. Similarly, we found that the
scale-free metric had an average of 0.550 with a standard
deviation of 0.083 (both of these metrics are discussed in
more detail in the following section). Thus, we believe that
the properties of our 11.3% sample of the network are likely
to be similar to other crawls of similar size that are done in
the same manner.

However, we caution the reader to be mindful of the sec-
ond concern when extrapolating the results from our crawl
to the entire Orkut network. Partial BFS crawls are known
to over-sample high-degree nodes, and under-sample low-
degree nodes [29]. This has been shown to overestimate the
average node degree and to underestimate the level of sym-
metry [10]. Thus, our results may not be representative of
the Orkut network as a whole.

4.2.4 YouTube
YouTube (www.youtube.com) is a popular video-sharing site
that includes a social network. The YouTube data we present
was obtained on January 15th, 2007 and consists of over
1.1 million users and 4.9 million links. Similar to Flickr,
YouTube exports an API, and we used this feature to con-
duct our crawls.

YouTube allows links to be queried only in the forward
direction, similar to Flickr. Unfortunately, YouTube’s user
identifiers do not follow a standard format,8 and we were
therefore unable to create a random sample of YouTube
users. Also, YouTube does not export group information
via the API. Instead, we obtained group membership infor-
mation by screen-scraping the HTML pages attached to user
profiles.

Because we were unable to crawl reverse links or estimate
the size of the user population in YouTube, we advise the
reader to be cautious in extrapolating the YouTube results

8YouTube’s user identifiers are user-specified strings.



to the entire YouTube population, as we do not know the
number of users who do not participate in the social network.

4.2.5 Summary
Our results indicate that

• The Flickr and YouTube data sets may not contain
some of the nodes in the large WCC, but this fraction
is likely to be very small.

• The LiveJournal data set covers almost the complete
population of LiveJournal, and contains the entire large
WCC.

• The Orkut data set represents a modest portion of the
network, and is subject to the sampling bias resulting
from a partial BFS crawl.

Moreover, the results also indicate that the vast majority
of missed nodes in Flickr, LiveJournal, and YouTube have
low degree and are likely to be part of small, isolated clus-
ters.

Based on the number of users published by the sites at
the time of the crawl, we estimate the fraction of nodes
our crawls cover as 1.8 million out of 6.8 million (26.9%)
for Flickr, 5.2 million of 5.5 million (95.4%) for LiveJour-
nal, and 3.0 million out of 27 million (11.3%) for Orkut.
Unfortunately, we do not know the number of accounts in
YouTube. Thus, we were unable to estimate the fraction of
the population that our 1.1 million crawled YouTube users
represent.

All of the data sets considered in this paper are available
to the research community. The data has been anonymized
in order to ensure the privacy of the social network users.
A detailed description of the data format and downloading
instructions are available at
http://socialnetworks.mpi-sws.mpg.de

4.3 High-level statistics
Table 1 presents the high-level statistics of the data we gath-
ered. The crawled network sizes vary by almost a factor of
five (1.1 million users in YouTube vs. 5.2 million in Live-
Journal), and the number of links varies by almost two or-
ders of magnitude (4.9 million in YouTube versus 223 mil-
lion in Orkut). Similarly, other metrics such as the average
number of friend links per node and user participation in
shared interest groups also vary by two to three orders of
magnitude. Our analysis later will show that despite these
differences, these graphs share a surprisingly large number
of key structural properties.

4.4 Web graph analysis
The Web is one of the most well-studied online networks,
and our study shares much of its methodology with previ-
ous studies of the Web. It is natural to compare the struc-
ture of online social networks to the structure of the Web.
However, we are well aware that the user graph in social net-
works is fundamentally different from the Web graph; our
comparisons serve more to provide a point of reference for
our results than to point out (expected) differences.

In order to compare the structure of online social net-
works with that of the Web, we cite previous studies of the
Web structure where possible. We also performed some of
our own analysis, using the data collected by the Stanford
WebBase Project [1] during their crawl of December 2003.

We selected 8.6 million pages and 132 million hyperlinks
collected from over 3,900 Web sites contained in the crawl.

5. ANALYSIS OF NETWORK STRUCTURE
In this section, we characterize the structural properties of
the four networks we measured. We compare the networks
to each other, and we compare their properties with those
previously observed for the Web.

5.1 Link symmetry
The fact that links are directed can be useful for locat-
ing content in information networks. For example, in the
Web graph, search algorithms such as PageRank [43] con-
sider a directed link from a source to a destination as an
endorsement of the destination by the source, but not vice-
versa. For instance, numerous Web pages point to sites like
cnn.com or nytimes.com, but very few pages receive pointers
back from these sites. Search engines leverage this to iden-
tify reputed sources of information, since pages with high
indegree tend to be authorities [21].

With the exception of Orkut, links in the social networks
we studied are directed and users may therefore link to any
other user they wish. The target of the link may reciprocate
by placing a link pointing back at the source. Our anal-
ysis of the level of symmetry in social networks, shown in
Table 1, reveals that all three social networks with directed
links (Flickr, LiveJournal, and YouTube) have a significant
degree of symmetry. Their high level of symmetry is consis-
tent with that of offline social networks [20]. Furthermore,
social networking sites inform users of new incoming links,
which may also contribute to the high level of symmetry.

Independent of the causes, the symmetric nature of social
links affects the network structure. For example, symmetry
increases the overall connectivity of the network and reduces
its diameter. Symmetry can also make it harder to identify
reputable sources of information just by analyzing the net-
work structure, because reputed sources tend to dilute their
importance when pointing back to arbitrary users who link
to them.

5.2 Power-law node degrees
We begin to examine the graph structure by considering the
node degree distribution. As discussed in Section 3, the de-
gree distributions of many complex networks, including of-
fline social networks, have been shown to conform to power-
laws. Thus, it may not be surprising that social networks
also exhibit power-law degree distributions. However, as our
analysis shows, the degree distributions in social networks
differ from that of other power-law networks in several ways.

Figure 2 shows the outdegree and indegree complementary
cumulative distribution function (CCDF) for each measured
social network. All of the networks show behavior consistent
with a power-law network; the majority of the nodes have
small degree, and a few nodes have significantly higher de-
gree. To test how well the degree distributions are modeled
by a power-law, we calculated the best power-law fit using
the maximum likelihood method [13]. Table 2 shows the
estimated power-law coefficient along with the Kolmogorov-
Smirnov goodness-of-fit metric [13]. While the best power-
law coefficients approximate the distributions very well for
Flickr, LiveJournal, and YouTube, the Orkut data deviates
significantly.

Two factors contribute to this deviation. First, our Orkut
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Figure 2: Log-log plot of outdegree (top) and indegree (bottom) complementary cumulative distribution
functions (CCDF). All social networks show properties consistent with power-law networks.

Outdegree Indegree
Network α D α D

Web [12] 2.67 - 2.09 -
Flickr 1.74 0.0575 1.78 0.0278
LiveJournal 1.59 0.0783 1.65 0.1037
Orkut 1.50 0.6319 1.50 0.6203
YouTube 1.63 0.1314 1.99 0.0094

Table 2: Power-law coefficient estimates (α) and
corresponding Kolmogorov-Smirnov goodness-of-fit
metrics (D). The Flickr, LiveJournal, and YouTube
networks are well approximated by a power-law.

crawl reached only 11.3% of the network — partial BFS
crawls tend to undersample nodes with lower degree, which
can explain the flat head of the distribution [29]. Second,
both LiveJournal and Orkut artificially cap a user’s num-
ber of outgoing links,9 which leads to a distortion in the
distribution for high degrees.

Additionally, we tested the stability of the power-law co-
efficient estimates by running the maximum likelihood esti-
mator over varyingly sized subsamples of our data [53]. We
found that the estimates of the power-law coefficient were
remarkably stable; the estimates varied by less than 6% from
those provided in Table 2 when we considered as few as 1,000
data points.

Table 2 also shows a difference between the structure of
social networks and that of previously observed networks.
In the Web, for example, the indegree and outdegree power-
law exponents have been shown to differ significantly, while
the power-law exponents for the indegree and outdegree dis-
tributions in each of our social networks are very similar.
This implies that in online social networks, the distribution
of outgoing links is similar to that of incoming links, while in
the Web, the incoming links are significantly more concen-
trated on a few high-degree nodes than the outgoing links.

Focusing on this difference, Figure 3 shows the distribu-
tion of incoming and outgoing links over nodes in the Web

9Orkut caps the outdegree at 1,000, and LiveJournal at 750.
Both of these caps were instituted after the networks were
established, and some users therefore exceed the caps. Also,
Flickr has since instituted a cap of 3,000 non-reciprocal links;
however, the data shown here was collected before this cap
was established.
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Figure 3: Plot of the distribution of links across
nodes. Social networks show similar distributions
for outgoing and incoming links, whereas the Web
links shows different distributions.

and Flickr graphs.10 The difference is readily apparent: 5%
of the Web nodes account for 75% of all incoming links, but
for only 25% of all outgoing links. In all social networks
we considered, the distributions of incoming and outgoing
links across the nodes are very similar. We now examine
this phenomenon in more detail.

5.3 Correlation of indegree and outdegree
Studies of the indegree and outdegree distributions in the
Web graph helped researchers find better ways to find rel-
evant information in the Web. In the Web, the population
of pages that are active (i.e., have high outdegree) is not
the same as the population of pages that are popular (i.e.,
have high indegree) [21]. For example, many Web pages of
individual users actively point to a few popular pages like
wikipedia.org or cnn.com. Web search techniques are very
effective at separating a very small set of popular pages from
a much larger set of active pages.

In social networks, the nodes with very high outdegree
also tend to have very high indegree. In our study, for each
network, the top 1% of nodes ranked by indegree has a more
than 65% overlap with the top 1% of nodes ranked by out-
degree. The corresponding overlap in the Web is less than
20%. Hence, active users (i.e., those who create many links)

10The Flickr topology is representative of all four networks;
we omitted the others in the plot for readability.
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in social networks also tend to be popular (i.e., they are
the target of many links). Figure 4 shows the extent of the
overlap between the top x% of nodes ranked by indegree and
outdegree.
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Figure 5: CDF of outdegree to indegree ratio. Social
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Next, we compared the indegree and outdegree of individ-
ual nodes in the social networks. Figure 5 plots the cumula-
tive distributions of the outdegree-to-indegree ratio for the
four social networks and the Web. The social networks show
a remarkable correspondence between indegree and outde-
gree; for all networks, over 50% of nodes have an indegree
within 20% of their outdegree. The distribution for the Web
is markedly different; most nodes have considerably higher
outdegree than indegree, while a small fraction of nodes have
significantly higher indegree than outdegree.

The high correlation between indegree and outdegree in
social networks can be explained by the high number of
symmetric links. The high symmetry may be due to the
tendency of users to reciprocate links from other users who
point to them. This process would result in active users (who
place many outgoing links) automatically receiving many in-
coming links, and lead to the distributions we have observed.

5.4 Path lengths and diameter
Next, we look at the properties of shortest paths between
users. Table 3 shows the average path lengths, diameters,
and radii11 for the four social networks. In absolute terms,
the path lengths and diameters for all four social networks

11The eccentricity of a node v is the maximal shortest path
distance between v and any other node. The radius of a

Network Avg. Path Len. Radius Diameter
Web [12] 16.12 475 905
Flickr 5.67 13 27
LiveJournal 5.88 12 20
Orkut 4.25 6 9
YouTube 5.10 13 21

Table 3: Average path length, radius, and diameter
of the studied networks. The path length between
random nodes is very short in social networks.

are remarkably short. Interestingly, despite being compara-
ble in size to the Web graph we considered, the social net-
works have significantly shorter average path lengths and
diameters. This property may again result from the high
degree of reciprocity within the social networks. Inciden-
tally, Broder et al. [12] noted that if the Web were treated
as an undirected graph, the average path length would drop
from 16.12 to 7.

5.5 Link degree correlations
To further explore the difference in network structure be-
tween online social networks and previously observed net-
works, we examine which users tend to connect to each
other. In particular, we focus on the joint degree distribu-
tion (JDD), or how often nodes of different degrees connect
to each other. This property is also referred to as the 2K-
distribution [33] or the mixing patterns [42].

5.5.1 Joint degree distribution
The JDD provides many insights into the structural proper-
ties of networks. For example, networks where high-degree
nodes tend to connect to other high-degree nodes are more
likely to be subject to epidemics, as a single infected high-
degree node will quickly infect other high-degree nodes. On
the other hand, networks where high-degree nodes tend to
connect to low-degree nodes show the opposite behavior; a
single infected high-degree node will not spread an epidemic
very far.

The JDD is approximated by the degree correlation func-
tion knn, which is a mapping between outdegree and the
average indegree of all nodes connected to nodes of that out-
degree. Clearly, an increasing knn indicates a tendency of
higher-degree nodes to connect to other high-degree nodes;
a decreasing knn represents the opposite trend. Figure 6
shows a plot of knn for the four networks we studied.

The trend for high-degree nodes to connect to other high-
degree nodes can be observed in all networks except YouTube
(the unexpected bump at the head of the Orkut curve is
likely due to the undersampling of users). This suggests that
the high-degree nodes in social networks tend to connect to
other high-degree nodes, forming a “core” of the network.
Anecdotally, we believe that the different behavior seen in
YouTube is due its more “celebrity”-driven nature; there are
a few extremely popular users on YouTube to whom many
unpopular users connect.

graph is then the minimum eccentricity across all vertices,
and the diameter is the maximum eccentricity across all
vertices. Due to the computational complexity associated
with determining the actual radius and diameter, the num-
bers presented here are from determining the eccentricity of
10,000 random nodes in each network. Therefore, the diam-
eter should be viewed as a lower bound, and the radius as
an upper bound.



 10

 100

 1000

 10000

 10000 100 1

k n
n

Degree
(a) Flickr (0.49)

 10000 100 1

Degree
(b) LiveJournal (0.34)

 10000 100 1

Degree
(c) Orkut (0.36)

 10000 100 1

Degree
(d) YouTube (0.19)

Figure 6: Log-log plot of the outdegree versus the average indegree of friends. The scale-free metrics, included
in the legend, suggest the presence of a well-connected core.

To quantitatively explore this phenomenon, we next ex-
amine two metrics based on the joint degree distribution:
the scale-free metric s and the assortativity r.

5.5.2 Scale-free behavior
The scale-free metric s [31] is a value calculated directly
from the joint degree distribution of a graph. The scale-free
metric ranges between 0 and 1, and measures the extent to
which the graph has a hub-like core. A high scale-free metric
means that high-degree nodes tend to connect to other high-
degree nodes, while a low scale-free metric means that high-
degree nodes tend to connect to low-degree nodes.

The scale-free metric of the networks are shown in the
legend of Figure 6. All of the networks with the exception
of YouTube show a significant s, indicating that high-degree
nodes tend to connect to other high-degree nodes, and low-
degree nodes tend to connect to low-degree nodes.

5.5.3 Assortativity
The scale-free metric is related to the assortativity coeffi-
cient r, which is a measure of the likelihood for nodes to con-
nect to other nodes with similar degrees. The assortativity
coefficient ranges between -1 and 1; a high assortativity coef-
ficient means that nodes tend to connect to nodes of similar
degree, while a negative coefficient means that nodes likely
connect to nodes with very different degree from their own
Recent work has suggested that the scale-free metric is more
suitable for comparing the structure of different graphs [30],
as it takes into account the possible configurations of net-
works with properties including connectedness and no self-
loops. However, for completeness, we calculated the assorta-
tivity coefficients for each of the networks, and found 0.202
for Flickr, 0.179 for LiveJournal, 0.072 for Orkut, and -0.033
for YouTube.

The assortativity shows yet another difference between
the social networks and other previously observed power-
law networks. For example, the Web and the Internet have
both been shown to have negative assortativity coefficients
of -0.067 and -0.189, respectively [42]. On the other hand,
many scientific coauthorship networks, a different type of
social network, have been shown to have positive r [42].

Taken together, the significant scale-free metric and the
positive assortativity coefficient suggests that there exists
a tightly-connected “core” of the high-degree nodes which
connect to each other, with the lower-degree nodes on the
fringes of the network. In the next few sections, we explore
the properties of these two components of the graph in de-
tail.

5.6 Densely connected core
We loosely define a core of a network as any (minimal) set of
nodes that satisfies two properties: First, the core must be
necessary for the connectivity of the network (i.e., removing
the core breaks the remainder of the nodes into many small,
disconnected clusters). Second, the core must be strongly
connected with a relatively small diameter. Thus, a “core”
is a small group of well-connected group of nodes that is
necessary to keep the remainder of the network connected.

To more closely explore the core of the network, we use an
approximation previously used in Web graph analysis [12].
Specifically, we remove increasing numbers of the highest
degree nodes and analyze the connectivity of the remaining
graph.12 We calculate the size of the largest remaining SCC,
which is the largest set of users who can mutually reach each
other.

As we remove the highest degree nodes, the largest SCC
begins to split into smaller-sized SCCs. Figure 7 shows the
composition of the splits as we remove between 0.01% and
10% of the highest-degree nodes in Flickr. The correspond-
ing graphs for the other social networks look similar, and
we omit them for lack of space. Once we remove 10% of the
highest indegree nodes,13 the largest SCC partitions into
millions of very small SCCs consisting of only a handful of
nodes.
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To understand how much the network core contributes to-
wards the small path lengths, we analyzed the path lengths

12The large size of the graphs we study makes a cut set anal-
ysis computationally infeasible.

13We obtained the same results using both indegree and out-
degree.



of subgraphs containing only the highest-degree nodes. Fig-
ure 8 shows how path lengths increase as we generate larger
subgraphs of the core by progressively including nodes or-
dered inversely by their degree. The average path length
increases sub-logarithmically with the size of the core. In
Flickr, for example, the overall average path length is 5.67,
of which 3.5 hops involve the 10% of nodes in the core with
the highest degrees. This suggests that the high-degree core
nodes in these networks are all within roughly four hops of
each other, while the rest of the nodes, which constitute the
majority of the network, are at most a few hops away from
the core nodes.
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Thus, the graphs we study have a densely connected core
comprising of between 1% and 10% of the highest degree
nodes, such that removing this core completely disconnects
the graph.

The structure of social networks, with its high dependence
on few highly connected nodes, may have implications for
information flow, for trust relationships, and for the vulner-
ability of these networks to deliberate manipulation. The
small diameter and path lengths of social networks are likely
to impact the design of techniques for finding paths in such
networks, for instance, to check how closely related a given
pair of nodes is in the network. Such techniques have ap-
plications, for instance, in social networks used to verify the
trustworthiness or relevance of received information [17].

5.7 Tightly clustered fringe
Next, we consider the graph properties at the scale of local
neighborhoods outside of the core. We first examine clus-
tering, which quantifies how densely the neighborhood of a
node is connected.

The clustering coefficient of a node with N neighbors is
defined as the number of directed links that exist between
the node’s N neighbors, divided by the number of possible
directed links that could exist between the node’s neighbors
(N(N − 1)). The clustering coefficient of a graph is the
average clustering coefficient of all its nodes, and we denote
it as C.

Table 4 shows the clustering coefficients for all four social
networks. For comparison, we show the ratio of the observed
clustering coefficient to that of Erdös-Réyni (ER) random
graphs [15] and random power-law graphs constructed with
preferential attachment [9], with the same number of nodes
and links. ER graphs have no link bias towards local nodes.
Hence, they provide a point of reference for the degree of
local clustering in the social networks. Graphs constructed

Ratio to Random Graphs
Network C Erdös-Rényi Power-Law
Web [2] 0.081 7.71 -
Flickr 0.313 47,200 25.2
LiveJournal 0.330 119,000 17.8
Orkut 0.171 7,240 5.27
YouTube 0.136 36,900 69.4

Table 4: The observed clustering coefficient, and ra-
tio to random Erdös-Réyni graphs as well as random
power-law graphs.

using preferential attachment also have no locality bias, as
preferential attachment is a global process, and they provide
a point of reference to the clustering in a graph with a similar
degree distribution.

The clustering coefficients of social networks are between
three and five orders of magnitude larger than their corre-
sponding random graphs, and about one order of magnitude
larger than random power-law graphs. This unusually high
clustering coefficient suggests the presence of strong local
clustering, and has a natural explanation in social networks:
people tend to be introduced to other people via mutual
friends, increasing the probability that two friends of a sin-
gle user are also friends.
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Figure 9: Clustering coefficient of users with differ-
ent outdegrees. The users with few “friends” are
tightly clustered.

Figure 9 shows how the clustering coefficients of nodes
vary with node outdegree. The clustering coefficient is higher
for nodes of low degree, suggesting that there is significant
clustering among low-degree nodes. This clustering and the
small diameter of these networks qualifies these graphs as
small-world networks [52], and further indicates that the
graph has scale-free properties.

5.8 Groups
In many online social networks, users with shared interests
may create and join groups. Table 5 shows the high-level
statistics of user groups in the four networks we study. Par-
ticipation in user groups varies significantly across the differ-
ent networks: only 8% of YouTube users but 61% of Live-
Journal users declare group affiliations. Once again, the
group sizes follow a power-law distribution, in which the
vast majority have only a few users each.

Note that users in a group need not necessarily link to
each other in the social network graph. As it turns out,
however, user groups represent tightly clustered communi-
ties of users in the social network. This can be seen from
the average group clustering coefficients of group members,



Network Groups Usage Avg. Size Avg. C
Flickr 103,648 21% 82 0.47
LiveJournal 7,489,073 61% 15 0.81
Orkut 8,730,859 13% 37 0.52
YouTube 30,087 8% 10 0.34

Table 5: Table of the high-level properties of net-
work groups including the fraction of users which
use group features, average group size, and average
group clustering coefficient.

shown in Table 5.14 These coefficients are higher than those
of the corresponding network graph as a whole (shown in
Table 4). Further, the members of smaller user groups tend
to be more clustered than those of larger groups. Figure 10
shows this by plotting the average group clustering coeffi-
cient for groups of different sizes in the four observed net-
works. In fact, many of the small groups in these networks
are cliques.
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Figure 10: Plot of group size and average group clus-
tering coefficient. Many small groups are almost
cliques.

Finally, Figure 11 shows how user participation in groups
varies with outdegree. Low-degree nodes tend to be part of
very few communities, while high-degree nodes tend to be
members of multiple groups. This implies a correlation be-
tween the link creation activity and the group participation.
There is a sharp decline in group participation for Orkut
users with over 500 links, which is inconsistent with the be-
havior of the other networks. This result may be an artifact
of our partial crawl of the Orkut network and the resulting
biased user sample.

In general, our observations suggest a global social net-
work structure that is comprised of a large number of small,
tightly clustered local user communities held together by
nodes of high degree. This structure is likely to significantly
impact techniques, algorithms and applications of social net-
works.

5.9 Summary
We end this section with a brief summary of important struc-
tural properties of social networks which we observed in our
data.

• The degree distributions in social networks follow a
power-law, and the power-law coefficients for both in-

14We define the group clustering coefficient of a group G as
the clustering coefficient of the subgraph of the network con-
sisting of only the users who are members of G.
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Figure 11: Outdegree versus average number of
groups joined by users. Users with more links tend
to be members of many groups.

degree and outdegree are similar. Nodes with high
indegree also tend to have high outdegree.

• Social networks appear to be composed of a large num-
ber of highly connected clusters consisting of relatively
low-degree nodes. These clusters connect to each other
via a relatively small number of high-degree nodes. As
a consequence, the clustering coefficient is inversely
proportional to node degree.

• The networks each contain a large, densely connected
core. Overall, the network is held together by about
10% of the nodes with highest degree. As a result,
path lengths are short, but almost all shortest paths
of sufficient length traverse the highly connected core.

6. DISCUSSION
In this section, we discuss some implications of our findings.
Our measurements indicate that online social networks have
a high degree of reciprocity, a tight core that consists of high-
degree nodes, and a strong positive correlation in link de-
grees for connected users. What do these findings mean for
developers? Alternately, how should applications for social
networks be designed to take advantage of these properties?
Do these properties reveal straightforward attacks on the
social structure? Finally, does it make sense to “optimize”
algorithms and applications based upon our findings, since
these networks are still growing rapidly and any property
we assert now may soon change?

While our findings are likely applicable to many different
applications, we concentrate on their effect on information
dissemination, search, and trust inference.

6.1 Information dissemination and search
Social networks are already used as a means for rapidly dis-
seminating information, as witnessed by the popularity of
“hot” videos on YouTube. The existence of a small, well-
connected core implies that information seeded via a core
node will rapidly spread through the entire network. This
is both a strength and a weakness, as spam or viruses could
be disseminated this way, as well as important information.

Similarly, searches that proceed along social network links
will quickly reach the core. This suggests that simple un-
structured search algorithms could be designed if the core
users were to store some state about other users. In effect,
the users in the core represent“supernodes” in a two-level hi-
erarchy, similar to existing search protocols for unstructured
networks, such as Gnutella.



6.2 Trust
Social networking sites are the portals of entry into the In-
ternet for many millions of users, and they are being used
both for advertisement as well as for the ensuing commerce.
Many of these applications, ranging from mail to auctions,
implicitly rely on some form of trust . For example, when
a user accepts email from an unknown user, she is trusting
the other party not to send spam. When a user selects a
winning bidder in an auction, she is trusting the other party
to pay the winning amount, and the winning user is trusting
the seller to produce the auctioned item.

In a social network, the underlying user graph can po-
tentially be used as a means to infer some level of trust in
an unknown user [28], to check the validity of a public key
certificate [38], and to classify potential spam [17]. In all of
these, trust is computed as a function of the path between
the source and target user.

Our findings have interesting implications for trust infer-
ence algorithms. The tight core coupled with link reciprocity
implies that users in the core appear on a large number
of short paths. Thus, if malicious users are able to pene-
trate the core, they can skew many trust paths (or appear
highly trustworthy to a large fraction of the network). How-
ever, these two properties also lead to small path lengths
and many disjoint paths, so the trust inference algorithms
should be adjusted to account for this observation. In par-
ticular, given our data, an unknown user should be highly
trusted only if multiple short disjoint paths to the user can
be discovered.

The correlation in link degrees implies that users in the
fringe will not be highly trusted unless they form direct links
to other users. The “social” aspect of these networks is self-
reinforcing: in order to be trusted, one must make many
“friends”, and create many links that will slowly pull the
user into the core.

6.3 Temporal invariance
One possible criticism of our study is the snapshot character
of our data, which does not account for change over time. To
explore this, we repeated the entire crawl for both Flickr and
YouTube on May 7th, 2007, and recomputed the complete
statistics on the new data set. Both of the networks showed
rapid growth over this five month time period, with Flickr
growing by 38% and YouTube by 83%.

However, the salient observations in our original data are
still valid; for Flickr, most of the updated results are indis-
tinguishable from the results presented. YouTube showed a
difference due to a policy change between our original and
new crawls: YouTube switched from directed links to a two-
phase symmetric link creation process. Thus, in the new
YouTube crawl, we observe a much higher level of symme-
try and a correspondingly larger SCC. However, many of
the other metrics, such as the assortativity, clustering coef-
ficient, and average path length are similar.

This experiment gives us some assurance that our struc-
tural observations are not incidental to the stage of growth
at which we sampled the network. Our data indicates that,
even though the networks are growing rapidly, their basic
structure is not changing drastically.

7. CONCLUSIONS
We have presented an analysis of the structural properties
of online social networks using data sets collected from four

popular sites. Our data shows that social networks are struc-
turally different from previously studied networks, in partic-
ular the Web. Social networks have a much higher fraction
of symmetric links and also exhibit much higher levels of lo-
cal clustering. We have outlined how these properties may
affect algorithms and applications designed for social net-
works.

Much work still remains. We have focused exclusively
on the user graph of social networking sites; many of these
sites allow users to host content, which in turn can be linked
to other users and content. Establishing the structure and
dynamics of the content graph is an open problem, the so-
lution to which will enable us to understand how content is
introduced in these systems, how data gains popularity, how
users interact with popular versus personal data, and so on.
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