
Building Confederated Web-based Services with Priv.io

Liang Zhang
College of Computer and Information Science

Northeastern University
Boston, MA

liang@ccs.neu.edu

Alan Mislove
College of Computer and Information Science

Northeastern University
Boston, MA

amislove@ccs.neu.edu

ABSTRACT
With the increasing popularity of Web-based services, users
today have access to a broad range of free sites, including
social networking, microblogging, and content sharing sites.
In order to offer a service for free, service providers typically
monetize user content, selling results to third parties such
as advertisers. As a result, users have little control over
their data or privacy. A number of alternative approaches to
architecting today’s Web-based services have been proposed,
but they suffer from limitations such as relying the creation
and installation of additional client-side software, providing
insufficient reliability, or imposing an excessive monetary
cost on users.

In this paper, we present Priv.io, a new approach to build-
ing Web-based services that offers users greater control and
privacy over their data. We leverage the fact that today,
users can purchase storage, bandwidth, and messaging from
cloud providers at fine granularity: In Priv.io, each user
provides the resources necessary to support their use of the
service using cloud providers such as Amazon Web Services.
Users still access the service using a Web browser, all compu-
tation is done within users’ browsers, and Priv.io provides
rich and secure support for third-party applications. An
implementation demonstrates that Priv.io works today with
unmodified versions of common Web browsers on both desk-
top and mobile devices, is both practical and feasible, and
is cheap enough for the vast majority users.

Categories and Subject Descriptors
C.2.4 [Performance of Systems]: Distributed Systems—
Distributed applications; H.3.5 [Information Storage and
Retrieval]: Online Information Services—Web-based ser-

vices

Keywords
Web; privacy; online social networks; confederated services;
Web browsers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COSN’13, October 7–8, 2013, Boston, Massachusetts, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2084-9/13/10 ...$15.00.
http://dx.doi.org/10.1145/2512938.2512943.

1. INTRODUCTION
Users today have access to a broad range of free Web-

based services (e.g., online social networks such as Facebook,
microblogging services such as Twitter, content sharing sites
such as Flickr). All of these services operate under a similar
model: Users entrust the service provider with their per-
sonal information and content (e.g., their comments, pho-
tos, political and religious views, sexual orientation, occupa-
tions, identities of friends). In return, the service provider
makes their service available for free by monetizing the user-
provided information and selling the results to third parties
(e.g., advertisers). Even though users are often provided
with privacy controls on these sites, these controls gener-
ally only affect flow of information to other users or third-
party applications; users today have no option of making
their data private from the service provider. This model also
makes it difficult for users to retrieve all of their data from
the provider (e.g., if the provider closes the service [31,32])
or remove their data entirely.

Researchers have investigated a number of approaches
that provide users with greater control and privacy in such
services, ranging from encrypting data uploaded to the
provider [22,38,46] to dividing data between provider-hosted
and user-hosted servers [10, 43] to implementing a fully de-
centralized system [11, 15, 18]. Unfortunately, none of these
approaches have enjoyed widespread adoption, as they suffer
from one or more of three general limitations:

• Accessibility Most proposals require users to install
dedicated client software, such as desktop applications
or browser plugins. As users typically access services
from a variety of devices, these solutions require sig-
nificant effort of the user (who has to install the soft-
ware) and the developer (who has to build and main-
tain clients for various devices).

• Reliability Systems that rely on hosting content on
end-user machines [11, 15, 18], home routers [30], or
smartphones [45] maintain availability via replication.
Unfortunately, such systems are known for suffering
from fundamental reliability tradeoffs in dynamic en-
vironments [7].

• Cost Systems that require users to rent their own
server from a cloud provider [43] or pay for subscrip-
tion of the service [5] are likely to be too expensive for
most users.

In this paper, we present Priv.io, an alternate approach to
implementing Web-based services that provides users with

control over their data, ensures privacy, and avoids the lim-
itations of practicality, reliability, and cost. In Priv.io, each
user provides resources necessary to support their use of the
service by purchasing computing resources (storage, band-
width, and messaging) from cloud providers such as Ama-
zon Web Services or Windows Azure. Unfortunately, hav-
ing users purchase computation from cloud providers is not
practical in Priv.io: at the finest granularity, users still must
purchase an entire virtual machine for an hour, and having
an always-on server is too expensive for most users. Instead,
Priv.io is built entirely in JavaScript, and all computation1

is done within the users’ Web browsers while they visit the
Priv.io Web site. Priv.io works with unmodified versions
of common Web browsers such as Safari, Chrome, Firefox,
and Internet Explorer, as well as browsers on mobile OSes
including Android and iOS.

The result is a confederated2 service, where each user re-
tains control over his or her own data. We demonstrate that
services similar to Facebook, Twitter, and Flickr can be im-
plemented in a confederated manner with very low monetary
costs for most users. Thus, Priv.io provides users with an al-
ternative to today’s model of paying for Web-based services
by giving up their privacy.

Priv.io provides strong guarantees of user privacy. Priv.io
uses attribute-based encryption [9, 10] to encrypt all con-
tent stored on the cloud provider; this encryption is imple-
mented in JavaScript within the user’s browser. Thus, only
the users’ browsers ever see plaintext content. Priv.io also
provides rich support for third-party applications (e.g., Far-
mville [53]) by providing an API that is implemented within
the users’ browsers. Priv.io uses browser-based sandboxing
to ensure that third-party applications can only access the
data that users allow and cannot leak any user information
to the application provider or other third-parties.

We evaluate Priv.io using a number of techniques. First,
we estimate the monetary cost of using Priv.io with traces
from real-world content sharing sites; we demonstrate that
99% of users would pay no more than $0.95 per month
if services similar to Facebook, Twitter, or Flickr were
built using Priv.io. Second, we implement a prototype of
Priv.io—available at https://priv.io—as well as two ap-
plications: a Facebook-like news feed application and an
instant-messaging application. Third, we use microbench-
marks to show that downloading and uploading content is
of similar speed to existing services, and that leveraging the
users’ browsers for computation is both efficient and practi-
cal. Fourth, we measure the user-perceived performance of
Priv.io and demonstrate that Priv.io is practical on desktop
browsers today and is likely to be sufficiently fast on mobile
devices in the near future.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a measurement study aimed at estimating the
cost of Priv.io to users of a variety of today’s Web-based ser-
vices. Section 3 describes the design of Priv.io and Section 4
details how Priv.io supports third-party applications in a se-

1Of course, computation is also necessary on the cloud
provider’s side to implement the storage and messaging ab-
stractions. For the purposes of this paper, computation
refers to Priv.io and third-party application logic.
2We choose the adjective confederated rather than federated,
as members in a confederation retain autonomy and are gen-
erally free to leave (e.g., the Articles of Confederation be-
tween the original 13 U.S. colonies).

cure manner. Section 5 presents a discussion of some issues
that arise when deploying Priv.io. Section 6 presents an
evaluation of Priv.io, and Section 7 describes related work.
Section 8 concludes.

2. OVERVIEW
Recall that our approach is to implement a Web-based

service in a confederated manner, by having users provide
the resources necessary to support their use of the service
via cloud providers such as Amazon Web Services. While
cloud providers typically offer bandwidth, storage, and mes-
saging at relatively fine granularity, computation is still sold
at a relatively coarse granularity (typically an entire virtual
machine for an hour). As a result, even running the small-
est of Amazon’s EC2 servers (t1.micro) would cost a user
$14.40 per month [3], not including EBS storage and I/O
costs. Moreover, running an entire virtual server is overkill
for most users; most of the time, this server would sit idle.

The result is that cloud services can be practically used
today to provide storage, bandwidth, and messaging, but
not computation. Our insight in Priv.io is to use the user’s

Web browser to provide the computation needed while they
use Priv.io. Doing so provides a number of benefits: Using
a user’s Web browser for computation reduces costs (since
users do not need to purchase computation), reduces secu-
rity concerns (since content is encrypted in the browser, no
third-party sees unencrypted content), and is practical (since
most cloud providers allow storage and messaging services
to be accessed via HTTP). However, only using browser-
based computation also presents a few challenges: it results
in a system where users are not always online (if a user
does not have an browser window open to Priv.io, compu-
tation cannot be done on their behalf) and only provides a
restricted model of computation (browser JavaScript is sand-
boxed, and cannot access the local disk or have unfettered
access to the networking stack).

2.1 Cost study
Before we describe how we address these challenges, we

briefly estimate the cost to users if services such as Facebook
were implemented in a confederated manner. In other words,
if each user contracted with a cloud provider to pay for their
use of services such as Facebook, what would the per-user
costs be? We examine this question in the context of social
networking sites, microblogging sites, and content sharing
sites.

Unfortunately, estimating the per-user cost is not entirely
straightforward, as data availability is scarce and the costs
of optimizations and overhead are hard to estimate. As a
result, our goal is not to deduce the exact costs, but rather,
to provide a reasonable estimate.

Social networking: Facebook To estimate the cost of
storing and serving Facebook content, we use a collection
of 651,539 Facebook profiles3 from a large regional net-
work [20]. The data includes all wall posts, status updates,
photos, and videos uploaded by these users. We assume that
photos are 64 KB [8], and that videos have a bitrate of 1.403
Mbps [35].

Unfortunately, our data set does not include how often
content is viewed; the most detailed statistics on the viewing
3At the time of collection (2009), Facebook profiles were by
default visible to all members of the same regional network.

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

$0 $1 $2 $3 $4 $5C
o

m
p

le
m

en
ta

ry
 C

D
F

Monthly Storage Costs

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

1 10 100 1000 10000C
o

m
p

le
m

en
ta

ry
 C

D
F

Total Storage (MB)

(a)

$0 $5 $10 $15 $20

Monthly Bandwidth Costs

0.01 0.1 1 10 100 1000

Total Bandwidth (GB)

(b)

$0 $2 $4 $6 $8 $10

Monthly Request Costs

1 10 100 1000 10000

Total Requests (thousands)

(c)

$0 $10 $20 $30 $40

Monthly Total Costs

Facebook
Twitter

Flickr

(d)

Figure 1: Complementary cumulative distributions of total monthly (a) storage, (b) bandwidth, (c) requests per user (top)
and resulting costs (bottom) for Facebook, Twitter, and Flickr users (note the logarithmic scale on the y-axis). Also shown
is the distribution of (d) total monthly costs. 99% of users would have to pay no more than $0.95 per month in all three
scenarios.

patterns of Facebook content come from the description of
Haystack [8], Facebook’s photo serving system. We use the
photo view distribution (Figure 7 in [8]) to parametrize our
calculations.4 We assume that videos are viewed with the
same popularity distribution as photos, but at 1/20th the
rate.

Microblogging: Twitter To estimate the cost of storing
and serving Twitter content, we use a data set containing
an almost complete set of all tweets issued up to September
2009 [12]. This data set contains 1,755,925,520 tweets issued
by 54,981,152 users. We observe that the average size of a
tweet (including all metadata fields) is 2551 bytes. Unfortu-
nately, we do not have tweets view counts, but we estimate
this by using the number of Twitter followers (subscribers)
each issuing user has (i.e., every follower views every tweet).

Content sharing: Flickr To estimate the cost of stor-
ing and serving Flickr content, we use a data set from early
2008 consisting of 2,570,535 Flickr users sharing 260,317,120
photos [29]. This data set contains all of the users in the
large, weakly connected component on Flickr. We know
how many photos were uploaded by each user, but we do not
know the number of times each photo was viewed. Instead,
we derive the view distribution from studies by Yahoo! re-
searchers [50]. We assume that, on average, photos require
4 MB of storage, and 2 MB of bandwidth per view (photos
are typically encoded on disk in multiple sizes [8]).

Analysis We estimate the monthly per-user storage, band-
width, and request costs for each of these three sets of users
on Amazon’s S3 service.5 Figure 1 presents the comple-

4We note that Facebook receives 120 million new photos and
100 billion photo views per day [8]. Given that photos re-
ceive 29% of their lifetime views on their first day [8] and, at
the time, Facebook users had an average of 130 friends [19],
we estimate that newly uploaded photos receive 1.85 views
per friend of the uploader on their first day.
5At the time of publication, Amazon charges
$0.095/GB/month for storage, $0.12/GB for outgoing
bandwidth (with the first GB free each month), and $0.004
per 10,000 GET requests [4].

mentary cumulative distributions of the total storage, band-
width, and requests per user per month (top) and resulting
costs (bottom). Figure 1(d) presents the overall cost per
user per month.

We make a number of observations. First, the different
systems show different cost characteristics: the cost of host-
ing Facebook content is dominated by bandwidth (due to
the high average user degree, requiring distributing the same
content to many friends), the cost of hosting Flickr content
is dominated by storage (due to the high resolution of Flickr
photos), and the cost of hosting Twitter content is domi-
nated by requests (due to the small but frequent content).
Second, we observe that for the vast majority of users, the
total costs are quite tiny: for 99% of users, the monthly total
costs are no more than $0.95 (Facebook), $0.88 (Flickr), and
$0.23 (Twitter). Third, our calculations assume a näıve de-
sign; optimizations such as content aggregation and caching
are likely to provide lower costs in practice.

3. DESIGN
We now detail the design of Priv.io, comprised of two com-

ponents: Priv.io core and applications. Priv.io core provides
libraries for accessing user information, manipulating the
user’s data, and communicating with other users; most user-
facing functionality is built as applications on top of Priv.io
core. When user visits https://priv.io, the Web server re-
turns Priv.io core’s JavaScript. This page allows a user to
register, log in, control Priv.io settings, and install applica-
tions. It also serves as a container for hosting sandboxed
applications, and provides libraries for these applications to
use. Below, we describe the design of Priv.io core, followed
by how applications are implemented (Section 4).

We begin by discussing the assumptions we make (Sec-
tion 3.1), followed by the Priv.io building blocks (Sec-
tions 3.2 and 3.3). We then describe how these are used
to implement basic Priv.io functionality (Section 3.4).

3.1 Assumptions
The Priv.io core design includes three components: the

Priv.io Web server, users’ Web browsers, and users’ cloud
providers. We briefly overview the assumptions we make

Provider Storage Messaging REST API Object Versioning DNS Support Authentication
Amazon 2� 2� 2� 2� 2� 2�

Azure 2� 2� 2� 2� 2� 2�

Google 2� 2� 2� 2� 2� 2�

HP Cloud 2� 2 2� 2 2 2�

Rackspace 2� 2 2� 2� 2� 2�

Dropbox 2� 2 2� 2� 2 2

Table 1: Summary of required features in Priv.io, and their current support by major providers. Amazon, Azure, and Google
support all required services today.

about each of these. We assume that some entity runs the
Priv.io Web server (for now, our research group runs the
server, but it could easily be run by a non-profit organiza-
tion). As we will see later, the Priv.io Web server receives
relatively few requests, and it is feasible to run such a server
with few resources (for higher reliability, the site could be
served using techniques like geo-replication or content dis-
tribution networks). We assume that users are running the
latest version of a common Web browser with JavaScript
and HTML5 support. We assume the security of DNS (i.e.,
that an attacker cannot modify Priv.io DNS entries).

We assume that the cloud provider provides certain ser-
vices, listed below:

• Storage/Messaging We assume the provider offers
both data storage and messaging (distributed queue)
services.

• REST API We assume that operations can be per-
formed via a REST API [42], enabling access to the
API via JavaScript from the user’s browser.

• Versioning We assume that the provider supports
storing multiple versions of objects.

• DNS support We assume that users can ac-
cess their storage containers via DNS names (e.g.,
bob.s3.amazonaws.com maps to Bob’s storage).

• Authentication We assume that the provider allows
permissions to be specified on stored objects.

Table 1 details which of today’s providers support these fea-
tures; we observe that three providers exist that can support
Priv.io today. We assume that the users’ cloud providers are
honest-but-curious, meaning the providers faithfully imple-
ment the service that the users have contracted for (e.g.,
storing objects, retrieving the latest version of objects, de-
livering messages) but may attempt to decrypt data or mes-
sages. Finally, we assume that users’ cloud providers are
available, meaning the providers do not close their service
without warning (users are of course free to migrate their
data to new cloud providers at any time).

3.2 Attribute-based encryption
Similar to other content-sharing systems such as Per-

sona [10], Priv.io uses attribute-based encryption (ABE) [9].
In general, ABE dramatically simplifies key management
when sharing content with multiple parties. To use ABE,
users first generate an ABE public key and an ABE master
key (the former is made publicly available and the latter is
kept private). Users can then generate ABE private keys for
each of their friends, where each ABE private key is gener-
ated with one or more attributes such as friend, family, or
yearBorn=1963.

Users can encrypt content items using expressions over
attributes, and only friends whose ABE private key satisfies
the given expression are able to decrypt. For example, one
such expression might be

family ∨ (yearBorn < 1980)

ABE is collusion-resistant [9], meaning users cannot collude
to decrypt content that they could not decrypt separately.
For a more detailed description of ABE, we refer the reader
to the paper by Bethencourt et al. [9].

3.3 Priv.io building blocks
We now describe the building blocks used in Priv.io; a

reference for the notation used is provided in Table 2. As is
typical in Web-based services sites, users in Priv.io choose
a username and password. Each user u has an ABE master
key mu and an ABE public key Pu. Each user also has a
special ABE private key pselfu with the attribute self; this
allows other users to encrypt messages for u using the self

attribute, similar to more traditional public key encryption.
The Priv.io Web server serves two functions. First, it

distributes the Priv.io JavaScript, CSS, and images to the
users when they visit https://priv.io. Second, it maintains
the priv.io DNS domain, which serves as a directory for
users’ cloud providers.

The Priv.io JavaScript provides libraries for using the
REST APIs of the cloud providers’ storage and messag-
ing services via XML HTTP Requests (XHRs). In order
to use these APIs, though, the JavaScript must respect the
default same-origin policy enforced by browsers (i.e., by de-
fault, the Priv.io JavaScript cannot make an XHR to al-

ice.priv.io unless the HTML document was originally loaded
from alice.priv.io). Priv.io addresses this problem in one of
three ways: (a) providers such as Amazon’s S3 and Windows
Azure allow users to specify a Cross-Origin Resource Shar-
ing (CORS) [17] policy, allowing such access, (b) systems
like Amazon’s Simple Queuing Service provide a permissive
crossdomain.xml file, allowing a small embedded Flash ob-
ject to make cross-domain requests, or (c) other providers
like DropBox allow a stub HTML file to be placed on the
target domain, which is used to load the JavaScript in a
separate iframe.

Notation Meaning
Pu u’s ABE public key
mu u’s ABE master key
pvu u’s ABE private key given to friend v

pselfu u’s special ABE private key with policy self

Cuser
u u’s credentials for accessing his cloud services

Cfriend
u u’s credentials, given to his friends, allowing

limited access to his cloud services

Table 2: Notation used in the description of Priv.io.

All Priv.io encryption and decryption is implemented in
JavaScript; more details are provided in Section 6.

3.4 Priv.io operations
Registration When signing up with Priv.io, a user u visits
https://priv.io and provides their desired username, pass-
word, email address, cloud provider, and two sets of provider
access credentials (e.g., AWS access/secret keys). The first
set of credentials (Cuser

u) are to be used by the user him-
self, while the second set (Cfriend

u) are to be used by the
user’s friends. Of the user-provided data, only the user’s

username, email address, and cloud provider are uploaded
to the Priv.io server (the email address allows the user to
later change their cloud provider).

Meanwhile, the Priv.io JavaScript generates an ABE mas-
ter key mu and ABE public key Pu, as well as an ABE pri-
vate key pselfu with the attribute self. Then, using credentials
Cuser

u , the JavaScript creates two storage containers on the
cloud provider: a publicly-readable container, and a private
container that can only be read with one of the user’s two
credentials. Finally, the JavaScript creates the user’s mes-
sage queue, configured so that Cfriend

u is only able to write
to the queue.

Upon receiving the user’s registration request, the Priv.io
server marks the username as assigned and sets up the
user’s DNS entries. Each user has three DNS entries:
[username].priv.io maps to the user’s public container, pri-

vate.[username].priv.io maps to the user’s private container,
and queue.[username].priv.io maps to the user’s message
queue.

The Priv.io JavaScript then creates two files in the
publicly-readable container: public_key containing Pu, and
credentials containing

[mu, p
self

u , C
user

u , C
friend

u]

encrypted using the user’s selected password.

Login After a user is registered, login is straightfor-
ward. The user visits https://priv.io and enters their user-
name and password. The Priv.io JavaScript fetches [user-

name].priv.io/credentials, and decrypts the file with the
user’s password. If the password was correct, the login can
proceed, as the JavaScript now has all of the credentials
and keys needed to operate on the user’s behalf. It is worth
noting that the only interaction with the Priv.io server is
fetching the Priv.io root page; all others are with the user’s
cloud provider. A diagram is provided in Figure 2.

Friending Priv.io is built to allow users to interact with
friends, and friends need not share the same storage
provider. Users can discover friends either through exist-
ing friends (e.g., users can browse the list of their friends’
friends), or via out-of-band means (e.g., users can exchange
Priv.io usernames).

To become friends, users need to securely exchange ABE
keys (pvu) and credentials for their cloud providers (Cfriend

u).
To do so, let us assume that Alice and Bob wish to be-
come friends in Priv.io. Alice first fetches Bob’s ABE public
key from bob.priv.io/public_key. Then, Alice generates an
ABE private key pBob

Alice for Bob, with the attributes Alice
assigns to Bob (e.g., colleague). Alice then stores

[pBob

Alice, C
friend

Alice]

alice.priv.io bob.priv.io

Priv.io

priv.io

1
2

3

4 5

Figure 2: Diagram of login process for user Alice in
Priv.io. Alice ➊ visits https://priv.io, obtaining the Priv.io
JavaScript. Upon entering her username and password, her
browser ➋ contacts her cloud provider S3, ➌ verifies her
password , and communicates with ➍ her cloud provider as
well as ➎ the cloud providers of her friends. Note that the
only communication with the main Priv.io server is fetching
the original JavaScript.

encrypted under Bob’s ABE public key with attribute self at
the location alice.priv.io/friends/bob. Bob performs similar
actions for Alice.

Bob then fetches alice.priv.io/friends/bob, and decrypts
it using pselfBob. Bob is then able to write to Alice’s queue and
read from Alice’s private container (using Cfriend

Alice), as well as
decrypt Alice’s shared objects (using pBob

Alice). Alice fetches
bob.priv.io/friends/alice and has similar privileges. Each of
the two stores a copy of the newly-acquired credentials and
keys in their own private storage encrypted under the pol-
icy self, allowing each to obtain them on subsequent logins.
Finally, both remove the encrypted files from their public
container.

If Alice and Bob are two hops away (i.e., one of Alice’s
friends is also a friend of Bob), Priv.io automatically uses one
of the intermediate friends to relay the request. Priv.io sends
a message to the intermediate friend, who forwards it on to
Bob; Bob is then automatically notified of Alice’s incoming
friend request. Otherwise, Alice must tell Bob using out-
of-band means that she has issued the request. Since the
vast majority of friendships in online social networks are
established between users who are friends-of-friends [28], we
expect most friend requests to be able to be relayed.

Default attributes To simplify sharing, Priv.io generates
private keys for friends with two default attributes, in addi-
tion to any user-provided attributes. The first attribute is
@username, which allows users to share content with only a
single user (e.g., if Alice wished to share content only with
Bob, she could specify the policy @bob). The second at-
tribute is @@, which is given to all friends. This attribute
allows users to share content with all of their friends.

Modifying friend permissions Users in Priv.io may want
to change the permissions given to friends, either to add
attributes, remove attributes, or remove the friend entirely.
Adding attributes simply requires generating a new ABE
private key for the friend, and giving the friend the new key.
Removing a friend is the same as removing all attributes
from the friend.

Removing attributes from a friend requires re-keying. To
simplify this process, Priv.io assigns an integral value to each

ABE attribute, where the value is initialized to 0 and is in-
cremented each time a user has that attribute removed. For
example, consider user Alice with friends Bob and Charlie
assigned the following attributes

Bob : @@=9, @bob, work=2, soccer=1

Charlie : @@=9, @charlie, work=2, it_dep=3

Now, if Alice wishes to remove the work attribute from
Charlie, Priv.io increments the work value to 3, and reis-
sues an ABE private key to Bob with the attributes

Bob : @@=9, @bob, work=3, soccer=1

(note that Priv.io does not need to re-issue a key to Charlie).
Any new content Alice shares with the work attribute is
encoded with the policy work≥3 ensuring that only friends
with re-issued keys have access.6

Communication Priv.io uses the messaging service of
users’ cloud providers to enable communication with friends.
After logging in, the Priv.io JavaScript connects to the user’s
queue and processes any messages. While online, the Priv.io
JavaScript remains connected the queue and continues to
process any additional messages. The only Priv.io control
messages that are sent are updating ABE private keys and
friendship requests; all other messages are application-level
messages and are delivered to the corresponding application
(discussed in the following section). Friends do not need
to be online for the user to send messages to them; cloud
providers typically buffer messages for multiple weeks.

Caching encryption policies ABE operations are signif-
icantly more expensive than symmetric encryption opera-
tions. To mitigate the impact of expensive ABE operations,
Priv.io is configured to use ABE to only encrypt and decrypt
AES keys. Actual content objects are then encrypted under
AES keys. Furthermore, Priv.io caches the AES keys used
for each unique encryption policy; doing so allows Priv.io
to only invoke expensive ABE operations when establishing
friends, modifying friends, or using a new encryption policy.

4. THIRD-PARTY APPLICATIONS
Almost all user-facing functionality in Priv.io is imple-

mented as applications on top of the Priv.io core libraries.
Similar to existing sites like Facebook, applications may be
implemented by third parties, and need not be trusted. Ap-
plications are implemented using HTML and JavaScript,
and are displayed to the user as part of the Priv.io Web
page. Thus, the challenge in Priv.io is to provide rich sup-
port for third-party applications, while simultaneously pro-
viding strict guarantees of security and privacy for users. In
particular, we wish to ensure that applications cannot leak
user information back to the application provider or any
other entity.

4.1 Application API
Priv.io presents an API for applications to be written

against. Since Priv.io is implemented entirely within a user’s
browser, the API is implemented within the browser as well.
Priv.io is designed to support social networking-like appli-
cations (Facebook, Twitter, and Flickr), but could also be

6Any previously-shared content will still be accessible to
Charlie, as it was encoded with work≥2. If this is not de-
sired, content can be re-encrypted with an updated policy.

Method Description
requestPermissions(c) Requests access for the application to

methods c

getUsername() Returns the user’s username
getFriends() Returns usernames of the user’s friends
getFriends(u) Returns usernames of friend u’s friends
getAttributes() Returns the set of attributes assigned

to the user’s friends
store(k, v, p) Stores data v under key k, encrypted

with policy p
retrieve(u, k) Returns the value previously stored

under key k in u’s storage; may return
multiple versions

send(u, m) Sends message m to friend u’s instance
of this application

receive() Receives any pending messages
delete(m) Marks a previously received message as

successfully processed

Table 3: Subset of the Priv.io application API, covering
API permissions, user information, storage, and communi-
cation. All methods are protected by permissions (users
must permit applications to make API calls).

used to build other applications (e.g., Web-based document
editing, shared calendars, etc.). Applications in Priv.io are
logically separate and cannot exchange data or messages.

Similar to the approach taken by services such as Face-
book, applications must request and receive permission from

the user to make various API calls. When requested, Priv.io
presents a dialog to the user, identifying the application and
the access that it desires. Priv.io records the user’s response,
and then uses the specified policy to allow or deny API calls
by the application.

A subset of the Priv.io application API is presented in
Table 3, and is discussed below:

User information Similar to the Facebook API, applica-
tions can request profile information about the current user
or any of the user’s friends.

Storage Applications are allowed to store and retrieve data
from the user’s private storage container. Each application
is given a storage folder, and is only able to access its own
content (applications cannot read other applications’ data).
When storing data, applications specify an ABE policy for
encrypting the data (e.g., self for only the user, or family

for all friends with the attribute family). Applications can
also request to read data in friends’ containers written by
another instance of the same application, but can only do
so if the user is able to decrypt the data.

Communication Applications are allowed to send and re-
ceive messages to and from the same application run by
friends. This is implemented by sending messages to the
specified friend’s message queue, and reading from the user’s
own queue. The Priv.io code multiplexes and demultiplexes
messages, and buffers any incoming messages for an appli-
cation until it is run.

4.2 Managing applications
Developers register Priv.io applications with the Priv.io

Web server similar to user registration; each application is
given a unique name (e.g., newsfeed). The Priv.io Web
server makes the application available to users from a sub-
domain that is hosted by the Priv.io Web server (e.g., the

Newsfeed app is available at http://newsfeed.app.priv.io/).
The Priv.io Web server is responsible for serving all appli-
cation HTML, JavaScript, CSS, and images.

Users install an application by providing Priv.io with the
app name (e.g., newsfeed); Priv.io records all apps that a
user has installed in the user’s private storage, along with
their permissions, and reloads the list upon each login. Users
can later remove an application by asking Priv.io to delete it.
Priv.io then removes the application from the user’s list, and
deletes any application-stored data and queued messages.

4.3 Security and privacy
Running third-party applications in Priv.io brings up two

security concerns: First, can we restrict applications to only
using the Priv.io API? In other words, can we prevent ap-
plications from accessing Priv.io JavaScript objects, or con-
ducting attacks like cross-site scripting [33,34], frame hijack-
ing [6], or frame busting [40]? Second, can we prevent ap-
plications from leaking user data obtained from the Priv.io
API, either via XHRs or by loading DOM (document object
model) objects?

In order to address the these concerns, Priv.io sandboxes

all third-party application code using iframes, loading each
application in a separate iframe. Applications access the
Priv.io API using the postMessage [23] feature in HTML5
to send API requests to the main Priv.io frame (the applica-
tion’s parent frame). If the API request is allowed (based on
user preferences), the response is delivered back to the ap-
plication via postMessage on the application’s iframe.7 This
mechanism prevents applications from directly accessing any
Priv.io JavaScript objects.

However, iframes by default are allowed to load arbitrary
content, meaning an application could leak user informa-
tion obtained from the Priv.io API by loading DOM objects.
For example, an application wishing to leak the information
that user Alice is friends with Bob could request to load
http://malicious-domain.com/alice-bob.png. To constrain
applications from leaking data, each application’s iframe is
loaded with a Content Security Policy8 (CSP). In brief, CSP
allows a server to specify what client-side actions the pages
it serves can take. Priv.io instructs the browser to disallow
the application’s iframe from making any network requests
other than to [appname].app.priv.io (which is hosted by the
main Priv.io server). As a result, the application is con-
strained to only using the Priv.io API.

4.4 Limitations
Due to the architecture of Priv.io, there are a few appli-

cations that exist on sites today that cannot be replicated.
For example, any operation that requires a global view of the
user data (e.g., global search) is not possible, as there is no
entity in Priv.io that can view all data. Other examples in-
clude applications that allow users to interact with random
users who they are not friends with (e.g., ChatRoulette).

However, many services that might appear to require
global information can usually be at least partially repli-
cated. For example, a “friend suggestion” feature could po-

7Applications cannot impersonate other applications (mak-
ing messages sent via postMessage appear as if they are from
another origin), since the postMessage mechanism is secured
by the browser [6].
8CSP is a new security mechanism provided in HTML5, and
is supported by the latest versions of many browsers.

feeds/82dda1

7a4bbd

82dda1

9037e3

private.alice.priv.io:/newsfeed/

feedlist

alice/37bb2a

 bob/91de7d

alice/695a32

comments/37bb2a

Here are some photos

from my vacation:

http://...

comments/695a32

Thanks, Bob!

private.bob.priv.io:/newsfeed/

comments/91de7d

Looks like fun!

Figure 3: Diagram of how Newsfeed uses storage in Priv.io.
Each user stores their own content, and the user who creates
each thread stores a feed file linking together all comments.

tentially be implemented as an application that collects the
structure of the user’s local network (friends and friends-
of-friends) and suggests others the user likely knows [41].
We leave a more in-depth exploration of such techniques to
future work.

4.5 Demonstration applications
To demonstrate that existing Web-based services’ func-

tionality can be reproduced in Priv.io, we outline two appli-
cations that we have implemented.

Newsfeed Priv.io provides functionality similar to Face-
book’s News Feed via the Newsfeed application. In the ap-
plication, users start a thread by posting a comment, up-
loading a photo, or sharing a link. Each thread is shared
with a specific ABE policy, controlling which of the user’s
friends are able to see the thread. Friends who are able
to see the thread are able to comment on the thread, and
the comments are made visible to all friends for whom the
thread is visible. Similar to the News Feed, the threads are
sorted by creation date.

Newsfeed stores three types of objects using the storage
API. Each individual comment is stored by the user who cre-
ated it. The user who created the thread also stores a feed

object, which simply contains references to all comments in
the thread (including the user’s original comment). Finally,
each user has a single feedlist object that contains references
to all feeds created by the user. Newsfeed uses the commu-
nication API when a user comments on a friend’s feed. A
message is sent to the user who owns the feed containing a
reference to the comment; when the user owning the feed re-
ceives the message, Newsfeed adds the reference to the feed

object, allowing other friends to then see the comment.
When users launch the Newsfeed application, it scans all

of the friends’ feedlists, integrating all of the visible feeds
into a single news feed. A diagram showing Newsfeed’s use
of the storage API is presented in Figure 3.

Chat Priv.io allows users to “chat” by providing the instant
messaging application Chat. The application is written en-
tirely using the communications API. Users invite others
to chat via a invitation message, and each chat message is
broadcast to all other participants of the chat. As a re-
sult, Chat provides similar functionality to applications on
existing sites, and could easily be extended to (optionally)
archive conversations, allow file transfers, and so forth.

5. DISCUSSION
We now discuss a few deployment issues with Priv.io.

Consistency and reliability In Priv.io, users only write
to their own storage location, preventing a number of consis-
tency problems. However, users may be logged in to Priv.io
from multiple locations at once, exposing Priv.io to potential
consistency issues due to multiple writers. To address this
problem, Priv.io leverages the object versioning (described
in Section 3) supported by the cloud provider. Specifically,
when Priv.io writes an updated version of an object to the
user’s storage location, it first checks to see if there is a
newer version of the object present than the one that its
pending write is based on. If such an object exists, Priv.io
first downloads the updated object, and merges the two. Fi-
nally, Priv.io writes the new version of the object back, and
deletes both of the previous versions. As a result, Priv.io
itself and all applications must be able to perform merges
on storage objects that may have diverged.

Priv.io allows each user to select the desired level of avail-
ability and durability for their content through the choice of
their cloud provider. For example, on Amazon’s S3 service,
users can choose between eleven 9s of durability or four 9s
of durability for content, at different price points.

Reliable message delivery Because Priv.io is imple-
mented within a browser, the user could decide to close the
window at any time, thereby killing all Priv.io JavaScript.
This property makes implementing reliable message deliv-
ery for applications particularly challenging, as a message
may be delivered to an application, but the Priv.io window
could be closed before the application finishes processing the
message. To avoid such a scenario, Priv.io requires applica-
tions to explicitly call delete(m) on each message m after
they have finished processing it. Only at that point is the
message deleted from the cloud provider’s message queue.9

Thus, Priv.io provides at-least-once delivery semantics for
messages, and applications must be written to tolerate re-
ceiving the same message multiple times.

Security To prevent man-in-the-middle attacks on Priv.io
users, all interaction with the Priv.io Web server is over
HTTPS. In the future, we aim to provide support for
DNSSEC to ensure the integrity of Priv.io DNS entries as
well (e.g., to prevent cache poisoning attacks).

Each user’s encrypted credentials file is stored in a pub-
licly visible location (e.g., alice.priv.io/credentials). As a
result, we are particularly concerned about brute-force pass-
word cracking attacks. To reduce the ability for an attacker
to decrypt a user’s credentials file, we first choose a ran-
dom initialization vector when encrypting the credentials
and salt the password, preventing attackers from using rain-
bow tables [36]. Second, we use the PBKDF2 password
strengthener [25], which greatly raises the cost of a brute-
force attack. Third, we require strong passwords for users
in the form of pass phrases [37], which often possess more
entropy than basic passwords.

An additional concern is whether an attacker can perform
a man-in-the-middle attack during friend establishment, or
intercept the exchanged friend credentials. We first note

9Message queues like Amazon’s SQS and Microsoft’s Azure
Queue Service support similar semantics; if a recipient dies
before marking a message as processed, the message is even-
tually delivered again.

that all friend exchange information is encrypted with the
destination’s ABE public key, making it unreadable by the
attacker. Second, since each user is the only entity that is
able to write to their public storage area, malicious users
are unable to forge friend requests with credentials of their
choosing.

Privacy As privacy is of paramount concern in Priv.io, we
now briefly analyze what an attacker can determine about
other users. We first note that the attacker can only read
the user’s public storage location; he cannot access the user’s
queue or private storage location. There are three types of
objects stored in the public storage area: the credentials file,
the public_key file, and the temporary friend request files
discussed in Section 3.4 (recall that these files are available
while a friend request is outstanding). Thus, malicious at-
tackers are able to determine if user u is currently trying to
become friends with user v. However, we note that attackers
must guess the identity of v correctly (attackers cannot“list”
all request files), and the window of opportunity is likely to
be short.

Incremental deployment Signing up for Priv.io is more
complicated than signing up for existing services like Face-
book: with Priv.io, users must first sign up with a cloud
provider, and then register for Priv.io using those creden-
tials. Luckily, signing up with cloud providers is often rel-
atively simple; for example, signing up for Amazon Web
Services requires only filling out two Web forms (personal
information and billing information), and much is carried
over if the user already has an Amazon account. Regard-
less, we will continue to look for opportunities to lower the
burden for signing up with Priv.io.

For social networking-like services, the network effect10

has resulted in entrenched service providers (e.g., Facebook);
being the only one of your friends to be on a new social net-
work is unlikely to provide significant benefits. Thus, it may
be difficult to initially attract significant numbers of users to
Priv.io without an established user base. However, we note
that Priv.io is not limited to social networking applications,
as current popular Web-based applications like Google Docs
could easily be implemented in Priv.io and afforded the same
privacy benefits. This approach may serve as a mechanism
for attracting users, who later may also use the social net-
working features.

Finer-granularity computation The design of Priv.io is
partially driven by the high cost of purchasing computation
from cloud providers. However, as new cloud providers enter
the market (e.g., resellers of existing cloud providers) or the
price of computation drops, purchasing computation may
become feasible. If so, this would open new opportunities
for Priv.io, but may also come with a different set of pri-
vacy properties. For example, if users could purchase com-
putation at a low-enough cost, Priv.io could easily interact
with existing legacy systems that cannot be supported with
in-browser computation (e.g., applications such as Google
Mail—requiring SMTP—could be replicated in a confeder-
ated manner). However, doing so would allow the cloud
provider to potentially view raw content (as incoming emails

10The network effect describes the value of a network as the
number of participants grows. In brief, it captures the no-
tion that with each new user, the number of potential links
increases, thereby increasing the value for all participants.

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

T
im

e
(s

)

Data Size (KB)

Safari
Firefox

Chrome
Android(Cr)
Android(FF)

iPhone

(a) AES encryption

 1 10 100 1000

Data Size (KB)

(b) AES decryption

 1 2 3 4 5

Number of Attributes

(c) ABE key generation (gen_key)

Figure 4: Priv.io encryption and decryption performance when run in different browsers. Shown is (a) AES encryption and
(b) AES decryption for objects of different sizes. Also shown is (c) ABE key generation for keys with an increasing number
of attributes (ABE encryptions under policies of increasing lengths shows very similar behavior).

would be observed in plaintext by the user’s server). Re-
gardless, we plan to explore ways of integrating purchased
computation into Priv.io as future work.

6. EVALUATION
We now present an evaluation Priv.io, covering both mi-

crobenchmarks and measurements of Priv.io performance
under different workloads.

We have implemented a prototype of Priv.io that sup-
ports almost all of the features described thus far. Priv.io
currently supports using Amazon Web Services as a cloud
provider, with support for SQS and S3. Support for Win-
dows Azure and Google Cloud Platform is in progress.
Priv.io supports third-party applications; both of the ap-
plications described in Section 4.5 are implemented and in-
stalled by default for each user.

Since all of Priv.io is implemented in JavaScript, it is
open-source and available to the research community at
https://priv.io. The implementation is compatible with the
latest versions of common desktop Web browsers, as well as
browers on Android and iOS.

The Priv.io core code represents 5,931 lines of JavaScript,
excluding encryption and user interface libraries. We use
the Stanford JavaScript Crypto Library for all AES opera-
tions. We used Emscripten [52] to compile the Ciphertext
Policy ABE library [16] (as well as other dependencies) into
JavaScript. The resulting encryption library totals 621 KB.
All of these libraries are static and can easily be cached by
Web browsers.

6.1 Microbenchmarks
Storage size Priv.io objects require storage on the user’s
cloud provider and encounter overhead, due both to encryp-
tion metadata (initialization vectors, etc.) and the base64
encoding used. The fixed overhead of using AES encryption
is 145 bytes, and the fixed overhead of using ABE encryp-

Browser setup time (s) decrypt time (s)
Safari 0.91 0.99
Firefox 0.63 0.36
Chrome 1.22 1.38
Android(Cr) 12.92 14.54
Android(FF) 14.63 13.08
iPhone 14.40 15.92

Table 4: Average time taken to generate an ABE master
and public key (setup) and decrypt an ABE message (de-

crypt) in various browsers.

tion is 345 bytes plus approximately 370 bytes per policy
attribute. The base64 encoding introduces an additional
33% overhead. The ABE public keys are 1184 bytes, the en-
crypted credentials file averages 1457 bytes, and each friend
request file averages 2400 bytes.

Content loading latency Loading objects in Priv.io en-
joys the benefits of the user’s cloud provider; we found the
latency to be comparable to loading content from traditional
Web sites. Using the us-east-1 Amazon Web Services S3
storage service and loading to a client located in Boston, we
found the latency of loading 64 KB objects via Priv.io to be
154 ms.

Encryption and decryptionWe now examine the encryp-
tion and decryption performance in Priv.io. We first focus
on AES encryption. Using the latest version11 of common
browsers, we encrypt and decrypt objects of varying sizes
using the AES library. We repeat each test 10 times, and
report the average in Figures 4(a) and 4(b). We observe
that AES encryption and decryption time correlate linearly
with object size, and are fast: for 100 KB objects, both are
under 43 ms for all desktops and under 327 ms for all mobile
devices.

We now examine the performance of ABE. There are four
ABE operations that we need to consider: setup (gener-
ate public and master keys), gen_key (generate a private
key), encrypt, and decrypt. Of these, the compute time
of gen_key and encrypt depend strongly on the number of
attributes; the compute time of the other two is relatively
constant.

We first report the performance of setup and decrypt in
Table 4. We observe that the performance ranges from under
1.4 seconds on desktop browsers to about 15 seconds on mo-
bile devices. We next examine the performance of gen_key

and encrypt, shown in Figure 4(c) (the two operations show
almost identical performance, so we only present the results
for gen_key for brevity). We observe a strong linear rela-
tionship with the number of attributes used, ranging from
about one second for a single attribute on desktop browsers
to 45 seconds for five attributes on mobile devices. We again
note that the expensive nature of ABE operations is unlikely
to impact users on a regular basis, as they are only neces-
sary when adding/modifying friends, or encrypting content

11Safari 6.0.4, FireFox 21.0.1 and Chrome 27.0.1453, all on
OS X 10.8.3; Android Chrome 27.0.1453 and Firefox 21 on
a HTC One X (AT&T); Mobile Safari 6.0 on an iPhone 5
running iOS 6.1.4. Mobile devices are connected via WiFi.

Browser Priv.io (s) Newsfeed (s) Chat (s)
Safari 0.33 0.19 0.07
Firefox 0.34 0.20 0.12
Chrome 0.25 0.09 0.04
Android(Cr) 1.89 0.36 N/A
Android(FF) 2.81 0.98 0.83
iPhone 0.67 0.77 N/A

Table 5: Average time (in seconds) taken to load the basic
Priv.io code after login, as well as the Newsfeed and Chat
applications, in various browsers. Android Chrome and Mo-
bile Safari do not support Flash, which is used to make cross
domain request for Amazon SQS.

under a never-used-before policy (i.e., most sessions require
no ABE operations).

6.2 User-perceived performance
We now examine the user-perceived performance of

Priv.io. In evaluating Web services, the primary metric of
interest is typically latency; we therefore focus on latency
here. We are primarily concerned with three issues: First,
what is the loading time of the basic Priv.io code when a
user logs in, absent any applications? Second, what is the
loading time of applications, both with and without subse-
quently loaded content? Third, what is the latency of send-
ing application-level messages?

Priv.io loading time We first measure the time taken for
users to log in and load the basic Priv.io code, absent any
applications. To measure this, we disable all applications
and measure the time taken from when a user clicks “Log
in” until the Priv.io code is fully loaded. We run this experi-
ment on all of the browsers listed above, clearing the browser
cache after each experiment, and repeating the experiment
10 times. The average loading time is shown in Table 5,
under the “Priv.io” column. We observe that the loading
time is quite fast, between 250 and 340 ms on desktops and
between 0.6 and 2.8 seconds on mobile devices.

Application loading time Next, we explore the loading
time of applications. We record the time taken to load the
Newsfeed and Chat applications once the Priv.io code is
loaded; in each instance, the applications are empty and
contain no user data (we explore the loading latency when
user data is present below). The results are presented in
Table 5, under the application columns. We observe that
the loading time is consistent across different applications,
and ranges from 90 to 200 ms on desktops to between 360
and 980 ms on mobile devices.

Next, we explore the loading time of applications when
user data is present. To measure this, we use the Newsfeed
application, and create users with varying amounts of News-
feed content from varying numbers of friends. Specifically,
we load up to 15 Newsfeed items (i.e., one “page” of News-
feed items), with each friend providing three items (i.e., we
create one user who loads three items from one friend, an-
other user who loads three items each from two friends, and
so on). The average loading time is presented in Figure 5.
We observe that the loading time increases linearly with the
number of content items loaded, and that the desktop brew-
ers are substantially quicker in loading content, as expected.
However, we observe that the loading time is reasonable in

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14

L
o

ad
in

g
 T

im
e

(s
)

Number of Newsfeed Items

Safari
FireFox
Chrome

Android(Cr)
Android(FF)

iPhone

Figure 5: Average Newsfeed loading time with varying
amounts of content, when content is loaded from multiple
friends. We observe that the loading time increases linearly
with the amount of content, as expected.

all cases: below 515 ms for desktops and below 5.1 seconds
for all mobile devices.

Message latency Finally, we examine the latency of send-
ing application-level messages. To do so, we use the Chat
application, measuring the time for a user to send a mes-
sage to a friend, and for the friend to reply. Both sender
and receiver logged in on the same machine and browsers
(note that the message itself must be delivered via the cloud
provider’s servers). We repeat this experiment in different
browsers, and for each browser, we send 10 round trip mes-
sages and calculate the average. We find that the round trip
time varies from an average of 637 ms on Chrome to 1.3 sec-
onds on Safari12, indicating that cloud providers’ messaging
can easily be used for human-timescale communication.

Overall, our results indicate that Priv.io is practical on
the desktop Web browsers of today, with most user-facing
loading times on the order of a second. However, mobile
devices present challenges for Priv.io, as their lower com-
putational resources result in higher latencies. Our results
show that Priv.io does work on these devices, and as they
become more powerful, accessing Priv.io from them will be-
come more practical.

6.3 Small-scale deployment
We have deployed Priv.io on a small scale within our de-

partment. Unfortunately, it is difficult to measure the pri-
mary benefits of Priv.io to our users: improvements in pri-
vacy and control over data. As of this writing, 28 graduate
students and professors have joined Priv.io and are using
the Newsfeed and Chat applications. There were a total of
88 friendships recorded, for an average of 3.82 friends per
user. Our users have accessed the service using a variety of
operating systems, browsers, and desktop/mobile devices (a
total of 23 different User-Agents). In total, our users have
posted 221 items to Priv.io, most of which are comments in
the Newsfeed application.

7. RELATED WORK

Enhancing Web browsers Over the past decade, Web
browsers have become significantly more advanced. Re-
searchers have explored using process-based models to iso-

12This latency could be further reduced if Amazon’s SQS sup-
ported Cross-Origin Resource Sharing, which would elimi-
nate the need for a Flash-based work-around.

late misbehaving Web pages [39], have examined moving
beyond the same-origin policy of privilege separation [1],
built systems that allow third-party code to execute while
providing security and privacy guarantees [14, 24], and im-
plemented iframe-based sandboxing [23]. We leverage many
of these advances and techniques in the design of Priv.io.

Modifying existing Web services In parallel, many
groups have explored ways to provide greater user privacy
by re-architecting existing Web services. Developers have
built subscription-based services such as app.net [5], which
promise to not show ads in exchange for a yearly fee; unfor-
tunately these simply replace one centralized provider with
another. Systems have also been built that guarantee sand-
boxing of third-party applications [49], but these do not ad-
dress hiding information from the service provider. Finally,
researchers have developed approaches that enable sharing
of provider-hosted content among different providers and
with the user’s local machine [21]; however, these do not
address the issue of privacy from the centralized provider.

Others have explored retaining existing centralized
providers, but hiding certain information from the provider.
For example, researchers have explored encrypting uploaded
content [22, 38], encrypting social relationships [47], and
keeping data on user-managed devices [51]. It is unclear
whether existing providers are amenable to these solutions
(as they directly impact the providers’ revenue stream), and
deploying them independently risks users being banned by
the provider.

Building new Web services Researchers have also ex-
plored new approaches that operate via the Web. For exam-
ple, Persona [10] (which inspired our design, and in partic-
ular, our approach for encrypting content) stores encrypted
user data on user-contracted storage services. Similar ap-
proaches include Vis-à-Vis [43] (storing data on group-based
EC2 machines), Confidant [27] (storing data on friends’
machines) and others [30] (storing data on users’ home
routers). Unfortunately, all of these solutions require client-
side changes in order to work, and assume that they have
a less-restricted model of computation than is available to
JavaScript within the browser. In contrast, Priv.io uses
many aspects of these systems’ design, but does so without
requiring any client-side changes and supports potentially
untrusted third-party applications.

Others have explored separating Web-based services from
user data. For example, W5 [26] proposed an architecture
that separates Web service developers from providers that
execute service code and host user data in a secure manner.
While the vision of Priv.io and W5 are similar, to the best
of our knowledge, W5 has not been deployed nor has any
providers become available. BStore [13], provides a generic
file system-like interface for Web applications, allowing users
flexibility in the location of their data. Priv.io stores data on
cloud providers using a number of techniques that were pro-
posed in BStore. However, BStore is focused on providing
file storage, while Priv.io also deals with challenges of shar-
ing data with others, supporting third-party applications,
and demonstrating that existing services can be replicated
in a confederated manner.

Non-Web approaches Finally, researchers have presented
systems that implement services in a decentralized fashion.
These include PeerSoN [11], Diaspora* [18], Safebook [15],

Contrail [45], and others [2]. While similar to Priv.io in
goals, all of these approaches require client software to be
downloaded, and also generally face challenges in ensuring
availability [7]. Others have designed protocols [48] that
allow users to host their data on dedicated, secure servers of
their choosing. A more detailed overview of the tradeoffs of
decentralized architectures is provided in [44].

8. CONCLUSION
We presented Priv.io, a new approach to building Web-

based services using a confederated architecture. In Priv.io,
each user is responsible for providing the resources necessary
to support their use of the service; this is accomplished by
contracting with cloud providers (for storage, bandwidth,
and messaging) and by using the user’s Web browser (for
computation). As a result, in Priv.io, users retain control of
their own data, users are not required to reveal their infor-
mation to any centralized entity, and users enjoy a highly
reliable and available service. We demonstrated that imple-
menting many popular services with Priv.io is both practi-
cal and affordable: Most users would pay less than $0.95
per month, and Priv.io works today on the latest versions of
common Web browsers as well as (more slowly) on Android
and iOS mobile devices.

Acknowledgements
We thank the anonymous reviewers and our shepherd, Ben
Zhao, for their helpful comments. We also thank the Priv.io
users and beta testers for their hard work and patience. This
research was supported by NSF grants IIS-0964465, CNS-
1054233, CNS-1319019, and an Amazon Web Services in
Education Grant.

9. REFERENCES
[1] D. Akhawe, P. Sazena, and D. Song. Privilege

Separation in HTML5 Applications. USENIX ATC,
Boston, MA, 2012.

[2] J. Anderson, C. Diaz, J. Bonneau, and F. Stajano.
Privacy-Enabling Social Networking Over Untrusted
Networks. WOSN, Barcelona, Spain, 2009.

[3] Amazon EC2 Pricing.
http://aws.amazon.com/ec2/pricing.

[4] Amazon S3 Pricing.
http://aws.amazon.com/s3/pricing.

[5] app.net. http://join.app.net.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing
Frame Communication in Browsers. USENIX Security,
San Jose, CA, 2008.

[7] C. Blake and R. Rodrigues. High Availability, Scalable
Storage, Dynamic Peer Networks: Pick Two. HotOS,
Lihue, HI, 2003.

[8] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P.
Vajgel. Finding a needle in Haystack: Facebook’s
photo storage. OSDI, Vancouver, Canada, 2010.

[9] J. Bethencourt, A. Sahai, and B. Waters.
Ciphertext-Policy Attribute-Based Encryption. IEEE
S&P, Oakland, CA, 2007.

[10] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: an online social network with
user-defined privacy. SIGCOMM, Barcelona, Spain,
2009.

[11] S. Buchegger, D. Schiöberg, L. H. Vu, and A. Datta.
PeerSoN: P2P Social Networking—Early Experiences
and Insights. SNS, Nuremberg, Germany, 2009.

[12] M. Cha, H. Haddadi, F. Benevenuto, and K. P.
Gummadi. Measuring User Influence in Twitter: The
Million Follower Fallacy. ICWSM, Washington, D.C.,
2010.

[13] R. Chandra, P. Gupta, and N. Zeldovich. Separating
Web Applications from User Data Storage with
BStore. WebApps, Boston, MA, 2010.

[14] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen.
Virtual Browser: a Virtualized Browser to Sandbox
Third-party JavaScripts with Enhanced Security.
CCS, Chicago, IL, 2010.

[15] L. A. Cutillo and R. Molva. Safebook: A
Privacy-Preserving Online Social Network Leveraging
on Real-Life Trust. IEEE Communications, 43(12),
2009.

[16] Ciphertext Policy Attribute-Based Encryption.
http://acsc.cs.utexas.edu/cpabe.

[17] Cross-Origin Resource Sharing.
http://www.w3.org/TR/cors/.

[18] Diaspora∗. http://www.joindiaspora.com/.

[19] Facebook Statistics. http://on.fb.me/UtWB0.

[20] H. Gao, J. Hu, C. Wilson, Z. Li, Y. Chen, and B. Y.
Zhao. Detecting and Characterizing Social Spam
Campaigns. IMC, Melbourne, Victoria, Australia,
2010.

[21] R. Geambasu, C. Cheung, A. Moshchuk, S. D.
Gribble, and a. H. M. Levy. Organizing and Sharing
Distributed Personal Web-Service Data. WWW,
Beijing, China, 2008.

[22] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in
Online Social Networks. WOSN, Seattle, WA, 2008.

[23] HTML5 Specification. http://bit.ly/3h8KZG.

[24] L. Ingram and M. Walfish. TreeHouse: JavaScript
sandboxes to help Web developers help themselves.
USENIX ATC, Boston, MA, 2012.

[25] B. Kaliski. PKCS #5: Password-Based Cryptography
Specification Version 2.0. RFC 2898, IETF, 2000.

[26] M. Krohn, A. Yip, M. Brodsky, R. Morris, and M.
Walfish. A World Wide Web Without Walls. HotNets,
Atlanta, GA, 2007.

[27] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and
L. P. Cox. Confidant: Protecting OSN Data without
Locking It Up. Middleware, Lisbon, Portugal, 2011.

[28] A. Mislove, H. S. Koppula, K. P. Gummadi, P.
Druschel, and B. Bhattacharjee. Growth of the Flickr
Social Network. WOSN, Seattle, WA, 2008.

[29] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. IMC, San Diego, CA, 2007.

[30] M. Marcon, B. Viswanath, M. Cha, and K. P.
Gummadi. Sharing Social Networking Content from
Home: A Measurement-driven Feasibility Study.
NOSSDAV, Vancouver, Canada, 2011.

[31] R. Miller. Ma.gnolia Data is Gone for Good.
http://bit.ly/tbFup.

[32] C. B. Myers. Google to finally shut down Google
Buzz, along with Google Labs. The Next Web, 2011.
http://tnw.co/pptfQp.

[33] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. NDSS,
San Diego, CA, 2007.

[34] Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. NDSS, San Diego, CA, 2009.

[35] G. Ou. Facebook slashes the quality of “HD” videos.
http://bit.ly/bvx86h.

[36] P. Oechslin. Making a Faster Cryptanalytic
Time-Memory Trade-Off. CRYPTO, Santa Barbara,
CA, 2003.

[37] S. N. Porter. A password extension for improved
human factors. Comp. & Sec., 1(1), 1982.

[38] priv.ly. http://priv.ly.

[39] C. Reis, A. Barth, and C. Pizano. Browser security:
Lessons from Google Chrome. CACM, 52(8), 2009.

[40] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking
vulnerabilities at popular sites. W2SP, Oakland, CA,
2010.

[41] M. Roth, A. Ben-David, D. Deutscher, G. Flysher, I.
Horn, A. Leichtberg, N. Leiser, Y. Matias, and R.
Merom. Suggesting Friends Using the Implicit Social
Graph. KDD, Washington, D.C., 2010.

[42] Representational State Transfer. http://en.wikipedia.

org/wiki/Representational_state_transfer.

[43] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D.
Liu, and A. Varshavsky. Vis-à-Vis: Privacy-Preserving
Online Social Networking via Virtual Individual
Servers. COMSNETS, Bangalore, India, 2011.

[44] A. Shakimov, A. Varshavsky, L. P. Cox, and R.
Cáceres. Privacy, Cost, and Availability Tradeoffs in
Decentralized OSNs. WOSN, Barcelona, Spain, 2009.

[45] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao,
V. Ramasubramanian, D. Terry, and T. Wobber.
Contrail: Enabling Decentralized Social Networks on
Smartphones. Middleware, Lisbon, Portugal, 2011.

[46] A. Tootoonchian, K. K. Gollu, S. Saroiu, Y. Ganjali,
and A. Wolman. Lockr: Social Access Control for Web
2.0. WOSN, Seattle, WA, 2008.

[47] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A.
Wolman. Lockr: Better Privacy for Social Networks.
CoNEXT, Rome, Italy, 2009.

[48] tent.io. http://tent.io.

[49] B. Viswanath, E. Kıcıman, and S. Sariou. Keeping
Information Safe from Social Networking Apps.
WOSN, Helsinki, Finland, 2012.

[50] R. van Zwol. Flickr: Who is Looking? WI, Silicon
Valley, CA, 2007.

[51] C. Wilson, T. Steinbauer, G. Wang, A. Sala, H.
Zheng, and B. Y. Zhao. Privacy, Availability and
Economics in the Polaris Mobile Social Network.
HotMobile, Phoenix, AZ, 2011.

[52] A. Zakai. Emscripten: an LLVM-to-JavaScript
compiler. SPLASH, Portland, OR, 2011.

[53] Zynga. http://zynga.com.

