
Fallacies in evaluating decentralized systems

Andreas Haeberlen†‡ Alan Mislove†‡ Ansley Post†‡ Peter Druschel‡

Rice University† Max Planck Institute for Software Systems‡

ABSTRACT
Research on decentralized systems such as peer-to-peer overlays
and ad hoc networks has been hampered by the fact that few sys-
tems of this type are in production use, and the space of possible
applications is still poorly understood. As a consequence,new
ideas have mostly been evaluated using common synthetic work-
loads, traces from a few existing systems, testbeds like PlanetLab,
and simulators like ns-2. Some of these methods have, in fact, be-
come the “gold standard” for evaluating new systems, and areoften
a prerequisite for getting papers accepted at top conferences in the
field.

In this paper, we examine the current practice of evaluatingdecen-
tralized systems under these specific sets of conditions andpoint out
pitfalls associated with this practice. In particular, we argue that (i)
despite authors’ best intentions, results from such evaluations often
end up being inappropriately generalized; (ii) there is an incentive
not to deviate from the accepted standard of evaluation, even if
that is technically appropriate; (iii) research may gravitate towards
systems that are feasible and perform well when evaluated inthe
accepted environments; and, (iv) in the worst-case, research may
become ossified as a result. We close with a call to action for the
community to develop tools, data, and best practices that allow sys-
tems to be evaluated across a space of workloads and environments.

1. INTRODUCTION
As in other engineering disciplines, the relevance of ex-

perimental computer systems research is dependent on the
choice of appropriate experimental conditions and environ-
ments. Ideally, a new system or method should be evaluated
in the precise environment in which it is intended to be used.
However, doing this is often impractical for several possible
reasons: (i) Performing an experiment in a live system may
be unsafe; (ii) replicating the live system in its entirety may
be impractical for reasons of cost, time, intellectual property,
or privacy issues; (iii) a comprehensive evaluation may be
impractical due to the number of possible configurations of
the live system; or, (iv) the live system may not yet exist and
its precise characteristics may be unknown.

The design of decentralized systems, including ad hoc net-
works and peer-to-peer overlays, is a prominent example of
work that attempts to develop an infrastructure for a space of
applications that is still poorly understood and includes new
and yet-to-be-invented instances. The current practice isto
evaluate such systems using synthetic workloads, simulation
environments such asns-2, traces from existing systems
like Gnutella, and testbeds like PlanetLab. While this type
of evaluation is of considerable value, it tests the system only

This research was supported in part by the Max Planck Society, and
by the National Science Foundation under Cooperative Agreement
No. ANI-0225660,http://project-iris.net/.

at a few specific points in the space of possible workloads
and conditions that a deployed system might experience.

Consider just a few of the factors that influence the per-
formance of a distributed system: network topology; link
bandwidth, loss rate, and delay; node performance, reliabil-
ity, uptime, and mobility; storage capacity, performance and
reliability; and user workload. If we view each of these fac-
tors as a dimension in a space of environments, then a single
experiment evaluates a system at one point in this space. For
instance, the combination of a workload trace and the Plan-
etLab testbed fixes one point; the combination of thens-2
simulator with its models for radio propagation, mobility,
and traffic pattern fixes another point.

Today, it is common practice in the systems research com-
munity to evaluate a new system at just a few well-established
points in this space, defined by a selection of widely used
traces, testbeds, simulation and emulation environments.
The use of these artifacts has considerable appeal: they are
readily available, their frequent use lends them credibility in
the community, and they allow comparisons with other pub-
lished results. Moreover, traces and testbeds reflect, after all,
“real” systems.

We explicitly acknowledge that these methods of evalu-
ation have been, and continue to be, of tremendous value
to systems research and we do not suggest to discard them.
Rather, our goal is to raise awareness of the limitations of
such point evaluations, and to encourage the community to
raise the standards of evaluation for decentralized systems.
Specifically, we are concerned about the following pitfalls:

Generalization Despite authors’ best intentions, the commu-
nity may be tempted to extrapolate from the results of
point evaluations to the entire space of workloads and
environments. Such generalization can be misleading
and may even close off interesting avenues of research.

Gravitation The convenience and the rewards for using es-
tablished evaluation points may bias research towards
systems that perform well at those points. As a result,
other parts of the space may be neglected, even though
they could lead to the discovery of useful and practical
systems.

De facto standardization There is an incentive not to deviate
from accepted points of evaluation due to the perceived
credibility of established methods, and due to the diffi-
culty of obtaining new, credible testbeds and trace data.
As a result, systems may be evaluated at points that are
not commensurate with their intended use.

Ossification In extreme cases, a research area may become
ossified because the focus on specific standardized points
of evaluation hinders new discoveries.



Unknown robustness propertiesThe focus on individual eval-
uation points may not expose a system’s robustness to
changes in its environment. Therefore, it can be diffi-
cult to predict how a system behaves in an environment
different from the one in which it was evaluated.

These dangers are not unique to research on decentralized
systems. They can affect all experimental systems research,
and have been pointed out elsewhere [8, 20]. However, we
think that the situation is particularly precarious in decen-
tralized systems, due to the vast number of factors affect-
ing a system’s performance, the large design space, and the
comparatively small number of deployed systems, workload
traces, simulation, emulation and testbed environments.

The rest of this paper is structured as follows. We elaborate
on the dangers of the current practice and cite examples in
the following five sections. Section 7 then recommends a
path towards improving the current standard of evaluation in
experimental systems research. Section 8 concludes.

2. GENERALIZATION
Generalization is an important tool of any experimental

science. In essence, it allows the researcher to use the out-
come of one experiment to predict the outcome of other,
similar experiments. By carefully choosing an experiment
that represents the characteristics of an entire class of config-
urations, the researcher can make claims without having to
repeat the experiment for all possible configurations, which
is often difficult or even impossible.

2.1 The problem
Unfortunately, there is an inherent danger to overstretch

a generalization, i.e. to apply results to configurations that
are only vaguely similar to the one tested experimentally,
or even to apply them to configurations whose precise char-
acteristics are not yet known. As a result, the potential of
the proposed solution is either overestimated or underesti-
mated. While both types of errors are problematic, the latter
is slightly more dangerous because optimistic claims are usu-
ally discovered and corrected in later experiments, whereas
pessimistic claims can lead others to abandon the approach
altogether, and may thus remain undetected for a long time.

The generalization problem is particularly dangerous in
distributed systems research, for two reasons: First, large-
scale distributed systems are expensive and tedious to build,
so it is far more attractive to reuse and generalize existing
results than to build an entirely new system. Second, as in
any emerging area, the space of potential applications is still
poorly understood, so it is very difficult to judge whether or
not a particular experiment is representative of an entire class
of applications.

2.2 Example: File sharing traces
One instance of this problem is the inordinate popularity of

file sharing traces for evaluating peer-to-peer systems. File
sharing was the first widely used P2P application; in the late
1990s and early 2000s, millions of users were sharing mu-
sic and videos on systems such as Napster and Gnutella.
Consequently, the first measurement studies of P2P sys-
tems [3, 10, 24] used data from these applications. These
studies provided much useful data, such as uplink bandwidth,
session time, availability of member nodes, and popularity
of objects. However, this data has since been used in a large

number of other publications on a variety of different sys-
tems, and it is not clear that this extent of generalization was
warranted.

The reason is that these traces specifically describe file
sharing systems; other decentralized systems may have very
different characteristics. For example, users typically ran the
file sharing software on their home PCs. The traces therefore
contain relatively few office workstations, which are gener-
ally less resource constrained and more available than home
PCs – a natural selection bias. Also, many users were selfish
in the sense that they only downloaded content but offered
nothing for others (according to [24], the fraction of these
nodes was 25% in Gnutella). These users saw no reason to
remain in the system once their searches and downloads were
complete. As a consequence, traces of these systems show
an extreme level of churn, which by far exceeds the levels
seen in traces from other environments, such as [7]. It is
reasonable to expect far lower levels of churn in, say, a P2P
telephony system such as Skype [25], where users want to
be reachable and therefore have an incentive to stay online.

2.3 Problematic consequences
The file sharing traces have been used in many influential

publications, e.g. [3,5,22], which has put them into the lime-
light of the community’s attention. The problem is that the
traces may have biased the general perception of decentral-
ized systems. An expert on decentralized systems knows that
file sharing systems represent just one point in a large space
of applications and environments; however, somebody not
as familiar with the area might come to the conclusion that
decentralized systemsalwayshave high churn and low avail-
ability, which is not true. The fact that one particular type
of environment appears so often in published work makes it
easy for the reader to generalize where it is not appropriate.

For example, the Bamboo paper [22] lists typical churn
rates in Gnutella, Napster, Kazaa and Overnet, and then ar-
gues that DHTs should deliver good performance under churn
rates at least as high. This is problematic because there is a
price to pay for the ability to handle high amounts of churn.
For example, the paper proposes proactive recovery to avoid
positive feedback cycles under high churn; however, reactive
recovery converges more quickly and is therefore desirable
for some applications. Somebody not intimately familiar
with the topic might follow this recommendation even if
their target environment had very low churn, and thus lose
some potential performance.

In their study of Overnet, Bhagwan et al. [3] noted that
Overnet had a significant node turnover, and that node avail-
ability decreased over longer periods of time. They found
that, under these conditions, a system such as OceanStore
would require frequent and periodic file refreshes to maintain
high file availability. Again, an expert would immediately
relate this to the particular characteristics of the Overnet en-
vironment, while a casual reader, who is not familiar with
other traces such as [7], might take this to be a typical feature
of decentralized systems.

Blake and Rodrigues [5] have shown that node availability
and membership times limit the amount of data that can be
maintained by a p2p storage system. However, their analysis
is based (i) on a nine-day trace of 33,000 Gnutella nodes,
which has extremely low node availability (only 5,000 nodes
were usually available), and (ii) on the assumption that nodes
do not re-join the system with their state intact. The paper



states that under these conditions, a similar level of ser-
vice could be provided by a few dedicated, well-provisioned
hosts; in its conclusion, it raises many questions about the
DHT research trajectories at the time. It is true that it is ex-
tremely challenging to implement a p2p storage system in an
environment with a Gnutella-style node population. How-
ever, somebody not as familiar with the area might come to
the conclusion that p2p storage systems are generally infea-
sible, and might question that line of research.

3. GRAVITATION
It is natural for a mature research area to eventually focus

on a particular space of problems or potential applications.
This is desirable because it leads to a deeper understanding
of that area and creates solid foundations for future research.
It is also efficient, because resources are not wasted on other
areas that have turned out to be not as promising.

3.1 The problem
However, research on decentralized systems is not yet

ready to focus on a particular area. There are two reasons for
this: First, the set of ‘real’ traces and testbeds is still small,
so a large part of the space of possible environments remains
unexplored. Second, because the area is still young, it is not
even clear how large the space of environments is, or which
are the interesting areas. There is a danger of missing an
opportunity simply because nobody is aware of its existence.

Unfortunately, there is a tendency for research to ‘focus
on itself’. We call this phenomenongravitation. Success-
ful research projects tend to uncover new, related research
questions; also, they create an attractive force towards other
projects, until many of them end up in the same area. Finally,
their combinedgravitation may attract a lot of funding, which
could cause other parts of the design space to be abandoned
entirely.

The availability of testbeds and traces also creates a con-
siderable amount of gravitation. New testbeds are built for
the emerging area of interest, and fresh data is collected only
in that area. On the other hand, systems that would not per-
form well on the existing testbeds, or with the existing traces,
are proposed less frequently.

3.2 Example: Unix
In his famous 2000 polemic [20], Rob Pike has called

systems software research ‘insular, ossified, and irrelevant’,
among other things because it was mostly focused on Unix
for a long time. He argued that PhDs at the time were being
exposed only to Unix, whereas twenty years before, they
would have encountered a wide variety of operating systems,
all with good and bad points of their own. As a consequence,
he claimed that nobody even considered anything other than
Unix any more, which was why most new operating systems
tended to re-implement Unix in one way or another.

3.3 Could this happen to decentralized sys-
tems?

There is some evidence that decentralized systems research
may face a similar problem in the near future. The PlanetLab
testbed is already generating much new research; for exam-
ple, the CoDNS [18] cooperative DNS lookup system was
motivated in part by failures observed while running CoDeeN
on the PlanetLab testbed. Similarly, Bamboo [22] was mo-
tivated in part by the file sharing traces. Thus, research may

be biased towards systems suitable for environments like
Gnutella and PlanetLab.

So what are we missing? It is easy to find examples of
systems that have been influenced by previous work; how-
ever, it is inherently hard to say whatwould be built if the
bias did not exist. One can only speculate what systems
could be invented if there was a testbed containing many cell
towers and mobile phones in active use, or one with a thou-
sand freely programmable routers in a high-speed network.
It is evident, though, that whenever a new testbed (such as
the MIT Roofnet [1]) is created, a series of fascinating new
ideas is published, which often become the foundation of an
entirely new line of research.

4. DE FACTO STANDARDIZATION
As a community matures, a set of common evaluation

methods usually emerges, e.g. in the form of traces, simu-
lators or models that are considered to provide a sufficient
evaluation environment. This has several benefits: Results
in different publications are more easily comparable, there
is consensus in the community over what is considered an
acceptable evaluation, and the burden of proof on researchers
is lessened, since the methodology in question has already
been validated by others and can be considered established.
Thus, a certain amount of standardization is beneficial.

4.1 The problem
Unfortunately, a standard can reach a point where it ham-

pers research instead of benefitting it. As a first step, the
standard methodology becomes very popular, such that more
and more published work uses it, which in turn increases its
popularity. Thus, the standard can acquire a ‘critical mass’
of recognition that allows it, in a second step, to dominate
an entire research area. Reviewers now tend to expect the
standard in conference and journal submissions, and it be-
comes difficult, although not yet impossible, to justify the
use of alternate standards. At this point, researchers facethe
choice of whether to fight an uphill battle in order to push the
standard of their choice (which is hard), or simply to use the
established standard (which is easy). Eventually, the stan-
dard can reach the final stage and become a ‘gold standard’,
i.e. the only accepted methodology in an entire field.

If the gold standard were perfect, its existence would not be
a problem. However, real methodologies are seldom perfect;
they almost always use particular abstractions, reflect certain
biases, or make simplifying assumptions. If these assump-
tions do not hold for a project, it cannot use the gold stan-
dard, which dramatically diminishes its chances of getting
published. Moreover, if the gold standard has imperfections
or flaws, there is a danger that research may be led astray.

So far, a gold standard does not seem to have emerged in
distributed systems. However, the PlanetLab testbed is close
to acquiring a ‘critical mass’ of recognition and may develop
into a gold standard in the future. In order to demonstrate
the dangers of this possibility, we describe an example from
a related area of research.

4.2 Example: Thens-2 simulator
One example of a gold standard is the Network Simulator

(ns-2) [17], which is used to evaluate a range of network
protocols, e.g. from TCP to mobile ad-hoc networking pro-
tocols. Without a doubt,ns-2 has been a big help for this
community; however, its model of wireless networks is a



considerable abstraction, and, as has been pointed out else-
where [1,4,6,16,28], some of its properties are very different
from those of a real wireless network.

Two aspects ofns-2’s model in particular have evoked
criticism: Its mobility model, and its signal propagation
model. The default (and only) mobility model that comes
with the standard distribution ofns-2 is the random way-
point model [14], which has several problems [6, 16, 28].
First of all, it essentially models random mobility which is
very different from the movement patterns of pedestrians or
cars for which many ad-hoc routing protocols are intended.
The random waypoint model show no locality among nodes,
as movement is random; however, actual movement patterns
have been shown to exhibit significant locality [12]. Second,
as destinations are picked randomly, nodes tend to frequently
move through the middle of the simulation area,which results
in a non-uniform density. Finally, as nodes randomly pick
the speed at which they move towards their destination, the
system is biased towards lower speeds, and thus the average
node speed decreases over time. Thus, protocols simulated
in ns-2 with the random waypoint model tend to perform
better under longer simulations, as the degree of mobility de-
creases monotonically over time. This can lead to unfounded
confidence in evaluated protocols, which may perform well
in the simulator but poorly in the real world [1,4,28].

The signal propagation model inns-2 is also problem-
atic because the probability of successful delivery is based
almost exclusively on the distance between the source and
destination; however, studies have shown that distance is
not a particularly good predictor [1], as short links are some-
times just as likely to lose packets as long ones. Additionally,
the loss rates on particular links range from constant rate to
extremely bursty, where the loss rate varies from time to
time [1]. Sincens-2 only models loss rate based on signal
strength, the evaluation of protocols in this environment does
not include these effects. Thus, protocols simulated inns-2
do not need to take this effect into account, and consequently
can perform poorly in the real world. In fact, the authors of
the study that pointed out many of these effects [1] found it
necessary to create a new routing and MAC protocol [4].

4.3 Could this be happening to PlanetLab?
At the time of this writing, PlanetLab [21] is the most

widely used tool for evaluating new distributed systems. It
has grown substantially over the years, and currently consists
of 629 nodes in 297 sites, which are distributed over five
continents. Without a doubt, PlanetLab has been extremely
useful to the community, allowing experiments of a type
and scale that would have been infeasible without it. The
ever-increasing popularity of the testbed speaks for itself.

However, it would be dangerous to allow PlanetLab to
become the gold standard of the distributed systems commu-
nity. The reason is that the characteristics of PlanetLab are
not representative of the general Internet – something that
the PlanetLab designers themselves acknowledge [19]. For
example, PlanetLab is centrally administered and monitored
for problems, so failures are rare, but can be massively cor-
related when they do occur [15]. The member nodes are
highly available and rarely leave the system, which results
in very low churn. They are also typically well-provisioned
and well-connected; for example; the available bandwidth is
capped at 10 Mbps per slice, and most nodes are connected
via the global research and education network (GREN) [2].

Finally, most users of PlanetLab are cooperative, which is
why no freeloading or security attacks have been reported so
far.

These examples show why PlanetLab, while being an in-
valuable resource, may not be an appropriate testbed forall
kinds of distributed systems, and why it may be counterpro-
ductive to expect a PlanetLab evaluation as a requirement for
any strong publication in the field.

5. OSSIFICATION
We have argued earlier that there is considerable benefit

in agreeing on a standard evaluation method (as long as that
method does not become a gold standard and dominates all
others). However, once such a standard has been established,
there is a disincentive to change it, since change reduces its
credibility and the comparability of results.

5.1 The problem
While updating the standard too frequently diminishes its

value, updating the standard not frequentlyenoughis dan-
gerous. The standard must be kept up to date with recent
research findings, and it must be evolved continually to keep
in sync with the latest developments in technology. If this
is not done, the standard may becomeossifiedand cease to
reflect the state of the art. Thus, it may actually guide re-
search in the wrong direction because it creates an incentive
to improve existing systems towards a goal that is no longer
relevant.

The decentralized systems community has not yet accepted
a common standard, so there is no danger yet of such a
standard becoming ossified. However, it may be helpful to
point out experiences from other fields as a cautionary tale.

5.2 Example: Andrew and SpecCPU2000
An interesting example of an ossified standard is the An-

drew Benchmark used to evaluate file system performance.
Andrew was designed to stress a file system by first creating
a directory hierarchy, then copying files to that hierarchy,
examining them, and finally compiling them [13]. How-
ever, it did this using a fixed-size data set, which was not
updated with time, so the entire data set eventually fit into
the buffer cache of most systems. As a result, most requests
could be satisfied from the cache, so the benchmark was no
longer limited by I/O operations. Instead, Andrew became
limited by the compile phase, which is CPU bound. As Tang
and Seltzer [8] have pointed out, it is unclear what Andrew
measures today.

A similar effect can be seen in CPU benchmarks, most
of which attempt to model the types of programs users will
execute. The most commonly used benchmark is the Spec-
CPU2000 benchmark suite [26], containing a mix of pro-
grams that has not been updated in six years. In these inter-
vening years, the tasks that users value highly have changed
significantly: the growth of digital music and video, as well
as the recent voice-over-IP (VoIP) trend, have changed the
requirements for a “fast” CPU. A benchmark that is not up-
dated to reflect what it is trying to measure is another example
of an ossifying standard.

5.3 How is this relevant for distributed sys-
tems?

Once the community accepts a standard evaluation tech-
nique, it must be ensured that the technique is ‘kept alive’



and regularly updated to reflect recent developments. For ex-
ample, the community should strive to obtain traces of newly
deployed peer-to-peer systems which can be used in paral-
lel with the existing traces from Gnutella and Napster. In
particular, additional traces, e.g. [11], are slowly becoming
available; however, they still do not have the same visibility
as the original file sharing traces.

6. UNKNOWN ROBUSTNESS PROPERTIES
If, for the reasons discussed earlier, an evaluation can only

be based on a small number of experiments, it is important to
establish that the evaluation isrobust, i.e., that small changes
in the operating environment do not cause significant changes
in the system’s behavior. Without this property, it is not safe
to generalize results to a large range of environments.

6.1 The problem
Unfortunately, robustness is still difficult to establish for

decentralized systems. There are two main reasons for this:
First, large parts of the design space are still unexplored,
so it is difficult to predict the likely effect of small changes
without actually implementing them. Second, and more im-
portantly, there is no infrastructure yet with which to perform
a sensitivity analysis.

In the absence of such an infrastructure, the only way to
examine a system’s sensitivity to changes in its environment
is to perform a small series of point evaluations; for example,
a system might be evaluated with trace-driven simulations as
well as in the PlanetLab testbed. While good performance
at two different points in the problem space is clearly a good
sign, it does not strictly say much about the system’s behavior
at intermediate points, or even at points fairly close to the
ones evaluated. Thus, there sometimes are surprises when a
system is deployed in a new environment.

6.2 Example: Routing consistency
One instance of this problem affected the key-based routing

substrates that have been built in recent years [23, 27, 29].
These implement a consistent mapping from a key space to
a dynamic set of nodes with assigned identifiers, and they
provide a primitive that delivers a message and a key to the
live node whose identifier is numerically closest to that key.

While these substrates showed excellent performance in
simulation under a wide range of parameter settings, they
suffered badly when they were deployed on wide-area net-
works such as the Internet. In particular, the non-transitive
connectivity of these networks caused problems [9]. Since
the protocols implicitly assumed that any two nodes with
global IP addresses would be able to route packets to each
other, they were not robust when even just a few pairs of
nodes were unable to communicate. Messages routed to the
same key were suddenly delivered to different nodes, or not
at all [15]. While the key-based routing protocols had been
shown in simulation to be fault-tolerant and self-stabilizing,
the introduction of a new type of fault broke an implicit as-
sumption and thus led to faults that could persist indefinitely
or even grow worse over time.

7. A CALL TO ACTION
Developing guidelines for experimental evaluation that

avoid all of the pitfalls we outlined in this paper is difficult
and perhaps impossible. However, we think there is room

for improvement and it is our hope to focus the community’s
attention on how to realize improved best practices.

A key problem is the difficulty of systematically eval-
uating a prototype system against the full set of relevant,
available simulation and emulation environments, testbeds,
traces, workload models and benchmarks. One way to ad-
dress this problem could be the development of (i) a standard
interface between prototype systems and experimental plat-
forms; (ii) a set of simulation environments, network emula-
tors and testbeds that support the interface; and, (iii) a library
of workload models, trace data and benchmarks that can be
plugged into the simulators and emulators.

The standard interface would enable the evaluation of a
prototype using multiple evaluation environments, from sim-
ulator to testbed, with little effort. It would encourage the
development of new simulation and emulation environments
to advance the state-of-the-art in experimental evaluation and
avoid de facto standardization. Finally, the library could
be continually augmented by the community with the latest
available trace data, models and benchmarks, thus avoiding
gravitation and ossification.

Of course, such an environment is not a silver bullet. To
prevent the pitfalls lamented in this paper, the community will
also have to do its part in using the environment’s capabilities
in evaluating new systems, will have to contribute to the
development of new environments, and to keeping the library
up-to-date.

8. CONCLUSION
This paper points out potential problems with current eval-

uation standards for decentralized systems: because much
attention is focused on a small set of traces and testbeds, a
large part of the space of environments and workloads re-
mains unexplored, and many interesting systems may never
be considered because they cannot be made to work in these
environments. This problem is compounded by the fact that
the space of possible applications is still poorly understood,
so it is not clear at all what classes of applications are po-
tentially being ignored. We call the community to action,
in an effort to develop better evaluation environments, stan-
dards and best practices. We think that an environment that
makes it easier to evaluate prototype systems using a variety
of simulation and emulation environments, and against the
latest available set of workload traces and models, could go
a long way towards avoiding the pitfalls associated with the
current practice.

REFERENCES
[1] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn

Judd, and Robert Morris. Link-level measurements
from an 802.11b mesh network. InProceedings of the
2004 Annual Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM’04), Portland, OR,
August 2004.

[2] Suman Banerjee, Timothy G. Griffin, and Marcelo
Pias. The Interdomain Connectivity of PlanetLab
Nodes. InProceedings of the 2004 Passive and Active
Measurement Workshop (PAM’04), Antibes Juan-les-Pins,
France, April 2004.

[3] Ranjita Bhagwan, Stefan Savage, and Geoffrey M.
Voelker. Understanding availability. InProceedings of
the 3rd International Workshop on Peer-to-Peer Systems



(IPTPS’04), Berkeley, CA, February 2003.
[4] Sanjit Biswas and Robert Morris. Opportunistic

routing in multi-hop wireless networks. InProceedings
of the 2005 Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM’05),
Philadelphia, PA, August 2005.

[5] Charles Blake and Rodrigo Rodrigues. High
availability, scalable storage, dynamic peer networks:
Pick two. InProceedings of the 9th Workshop on Hot
Topics in Operating Systems (HotOS’03, pages 1–6,
Lihue, HI, May 2003.

[6] Douglas M. Blough, Giovanni Resta, and Paolo Santi.
A statistical analysis of the long-run node spatial
distribution in mobile ad hoc networks. InProceedings
of the 5th ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems
(MSWiM’02), Atlanta, GA, 2002.

[7] William J. Bolosky, John R. Douceur, David Ely, and
Marvin Theimer. Feasibility of a serverless distributed
file system deployed on an existing set of desktop PCs.
In Proceedings of the 2000 International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS’00), Santa Clara, California, United
States, 2000.

[8] Yasuhiro Endo, James Gwertzman, Margo Seltzer,
Christopher Small, Keith A. Smith, and Diane Tang.
VINO: The 1994 fall harvest. Technical Report
TR-34-94, Harvard Computer Center for Research in
Computing Technology, 1994.

[9] Michael J. Freedman, Karthik Lakshminarayanan,
Sean Rhea, and Ion Stoica. Non-transitive connectivity
and DHTs. InProceedings of the 2nd Workshop on Real,
Large, Distributed Systems (WORLDS’05), Dec 2005.

[10] Krishna Gummadi, Richard Dunn, Stefan Saroiu,
Steven D. Gribble, Henry M. Levy, and John Zahorjan.
Measurement, modeling, and analysis of a
peer-to-peer file-sharing workload. InProceedings of
the 19th ACM Symposium on Operating Systems Principles
(SOSP’03), Bolton Landing, NY, October 2003.

[11] Lei Guo, Songqing Chen, Zhen Xiao, Enhua Tan,
Xiaoning Ding, and Xiaodong Zhang. Measurements,
analysis, and modeling of BitTorrent-like systems. In
Proceedings of the 2005 Internet Measurement Conference
(IMC’05), Oct 2005.

[12] Tristan Henderson, David Kotz, and Ilya Abyzov. The
changing usage of a mature campus-wide wireless
network. InProceedings of the 10th Annual Conference on
Mobile Computing and Networking (MobiCom’04), Sep
2004.

[13] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and
performance in a distributed file system.ACM
Transactions on Computer Systems, 6(1):51–81, Feb
1988.

[14] David B. Johnson and David A. Maltz. Dynamic
source routing in ad hoc wireless networks. In
Imielinski and Korth, editors,Mobile Computing,
volume 353. Kluwer Academic Publishers, 1996.

[15] Alan Mislove, Ansley Post, Andreas Haeberlen, and
Peter Druschel. Experiences in building and operating
a reliable peer-to-peer application. InProceedings of the

1st Conference of the European Professional Society for
Systems (EuroSys’06), April 2006.

[16] William Navidi and Tracy Camp. Stationary
distributions for random waypoint models.IEEE
Transactions on Mobile Computing, 3(1), January 2004.

[17] ns-2 Network Simulator.
http://www.isi.edu/nsnam/ns/.

[18] KyoungSoo Park, Vivek S. Pai, Larry Peterson, and
Zhe Wang. CoDNS: Improving DNS performance and
reliability via cooperative lookups. InProceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI’04), San Francisco, CA, Dec
2004.

[19] Larry Peterson, Vivek Pai, Neil Spring, and Andy
Bavier. Using PlanetLab for network research: Myths,
realities, and best practices. Technical Report
PDN–05–028, PlanetLab Consortium, Jun 2005.

[20] Rob Pike. Systems software research is irrelevant. Talk
at the Columbia CS Colloquium, Feb 2000.

[21] PlanetLab.http://www.planet-lab.org/.
[22] Sean Rhea, Dennis Geels, Timothy Roscoe, and John

Kubiatowicz. Handling churn in a DHT. InProceedings
of the 2004 USENIX Annual Technical Conference
(USENIX’04), June 2004.

[23] Antony Rowstron and Peter Druschel. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. InProceedings of the
2nd International Middleware Conference (Middleware’01),
pages 329–350, Heidelberg, Germany, Nov 2001.

[24] Stefan Saroiu, Krishna Gummadi, and Stephen
Gribble. A measurement study of peer-to-peer file
sharing systems. InProceedings of Multimedia Computing
and Networking 2002 (MMCN’02), San Jose, California,
January 2002.

[25] Skype.http://www.skype.com/products/.
[26] SpecCPU2000 benchmark suite.

http://www.spec.org/cpu2000/.
[27] Ion Stoica, Robert Morris, David Liben-Nowell, David

Karger, M. Frans Kaashoek, Frank Dabek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications.IEEE Transactions on
Networking, 11, February 2003.

[28] Jungkeun Yoon, Mingyan Liu, and Brian Noble.
Random waypoint considered harmful. InProceedings
of IEEE Infocom 2003 (InfoCom’03), 2003.

[29] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C.
Rhea, Anthony D. Joseph, and John D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service
deployment.IEEE Journal on Selected Areas in
Communications, 22(1), January 2004.


