
Consistent Key Mapping in Structured Overlays

Andreas Haeberlen Jeff Hoye Alan Mislove Peter Druschel

Rice University, Houston, TX, USA
{ahae,jeffh,amislove,druschel}@cs.rice.edu

Abstract

Most structured peer-to-peer overlays rely on consistent
hashing to determine the node that is responsible for a
given key. For consistent hashing to work properly, it is
necessary that the nodes have a consistent view of their
neighborhood in the identifier space. However, if routing
anomalies occur in the underlying network, this view can
become inconsistent, causing unstable overlay behavior
and, worse, allowing more than one node to assume re-
sponsibility for ranges of keys.

We present a set of techniques for preventing in-
consistencies under routing anomalies, and we propose
to adopt strategies from mobile ad-hoc networking for
maintaining connectivity in the presence of path fail-
ures. We evaluate our design in the context of Pastry
and present results from a deployment in the PlanetLab
testbed.

1 Introduction

Peer-to-peer (p2p) overlays are usually built on the as-
sumption that the underlying network provides full con-
nectivity. Unfortunately, experience has shown that this
assumption is too optimistic. Real networks suffer from
a variety of routing problems, such as loops, miscon-
figurations, route ‘fluttering’, and infrastructure failures
[11, 14, 17]. Almost all of these anomalies are tempo-
rary, but when they do occur, some unlucky nodes may
lose connectivity to part of the network. Many anoma-
lies are not even symmetric; thus, messages from node A
may still reach node B when, from B’s point of view, A
has already become unreachable.

In general, the presence of path failures has little effect
on overlay networks, since they can use alternate routes
– systems like RON [1] directly exploit this to improve
routing performance. However, path failures may affect
the nodes’ perception of overlay membership. For ex-
ample, if a path between two overlay members A and B
becomes unavailable, B may be led to believe that A has
left the overlay, and vice versa.

In structured overlays like Pastry [15] and Chord [18],
where information about nearby nodes is used to im-
plement consistent hashing, such inconsistent views can

have serious effects, since they may cause two nodes to
assume responsibility for the same part of the key space.
As a consequence, applications built on top of the over-
lay may violate mutual exclusion, suffer data loss, or
experience diverging state. For example, an overlay-
based file system might use consistent hashing to asso-
ciate each file with a single node to serialize updates. In
this case, inconsistencies can cause multiple nodes to ac-
cept updates for the same file. Thus, some updates may
be applied incompletely, in the wrong order, or not at all.

The techniques used in most overlays to resolve in-
consistencies are not designed for an environment with
path failures; in fact, some explicitly make the assump-
tion that path failures do not occur [2]. However, using
results from a recent study of connectivity in the Planet-
Lab testbed, we found that path failures are a common
phenomenon in the Internet today. During a period of 10
days in September 2004, all of the 192 nodes we exam-
ined experienced at least one path failure. While 35% of
the failures lasted less than one hour, 9% of the failures
persisted for more than a day. This result, which is con-
sistent with other studies [3, 9, 11], clearly demonstrates
that overlay protocols must be designed and evaluated in
an environment in which path failures occur.

In this paper, we present a set of techniques to prevent
such inconsistencies by ensuring that at any time, at most
one node is responsible for any given key. Our failure
model explicitly includes asymmetric connectivity and
network partitions. We adopt techniques from routing in
mobile ad-hoc networks, specifically from the DSR [8]
protocol, to maintain connectivity in the presence of path
failures. As an additional benefit, our solution naturally
allows nodes behind NATs and firewalls to participate in
the system.

We have already integrated some of our techniques
with the FreePastry [6] implementation of Pastry, and we
demonstrate their effectivity by reporting preliminary re-
sults from a PlanetLab deployment.

The rest of this paper is structured as follows: Sec-
tion 2 discusses related work, and Section 3 presents
results from our study of routing anomalies in Planet-
Lab. In Section 4, we describe the design of our resilient
transport layer and argue for its correctness. Section 5
presents our conclusions.

2 Related Work

RON [1] is an overlay that is explicitly designed to op-
timize network performance in the presence of path fail-
ures. In a RON overlay, traffic can be re-routed around a
failure via a multi-hop virtual link. However, since RON
provides essentially a best-effort service, it does not have
a strong consistency requirement like Pastry and thus can
use a much simpler membership protocol.

UIP [5] uses virtual links to form connections between
nodes in arbitrary topologies, which may include NATs
and firewalls. However, UIP provides only basic connec-
tivity and no higher-level primitives such as consistent
hashing, so consistency is not an issue.

Bamboo [12] is a variant of Pastry that has extensions
for better performance under high churn. The Bamboo
paper was the first quantitative study of routing inconsis-
tencies in Pastry, although the authors considered only
the impact of churn and not that of path failures. In net-
works such as PlanetLab, where path failures are com-
mon, Bamboo still offers high stability; however, it can-
not guarantee consistency.

Castro et al. [2] describe a set of extensions to MSPas-
try which, among other things, explicitly address the is-
sue of routing consistency under churn. However, the
authors a) use direct probing to detect failures, and b) as-
sume that non-faulty nodes are never considered faulty.
Path failures violate this assumption and may lead to
routing inconsistencies.

In addition to the classical study conducted by Paxson
[11], there are several other studies which support our
claim that path failures are a common problem. Labovitz
et al. studied routing table logs at Internet backbones and
found that 10% of all considered routes were available
less than 95% of the time [9]. Chandra et al. found that
5% of all detected failures lasted more than 10,000 sec-
onds; some failures persisted for over a day before they
were repaired [3].

3 Routing Anomalies

In order to demonstrate the extent to which routing
anomalies have become a problem, we examined data
collected from the PlanetLab Internet testbed collected
over 10 days in September of 2004. PlanetLab consists
of 435 nodes spread over 201 sites, including nodes in
both of the Americas, Europe, the Middle East, Asia,
and Australia. The data we examined consisted of node-
to-node pings collected every 15 minutes of the course
of the run, generously made available by Jeremy Strib-
ling [19].

In order to investigate the impact of routing anoma-
lies, we limited our evaluation to nodes which were on-
line and were reachable by at least one other node. This

Figure 1. Transient (left) and permanent
(right) path failures in PlanetLab during
10 days in September 2004

left us with 192 distinct nodes. Figure 1 shows the results
of site-to-site pings for the 192 considered nodes. In the
left graph, the pixel at the location (x,y) represents the
number of times a node x was able to successfully ping
node y. White pixels indicate no failures, while darker
pixels indicate increasing frequency of ping failures. The
right graph just shows pairs who were never successful in
pinging. The data we used for both graphs was collected
between September 1 and September 10, 2004.

These results clearly show that routing anomalies are
a persistent problem in the general Internet. All of the
192 nodes we examined experienced at least one routing
anomaly during the experiment; many of them experi-
enced several. The average duration of an anomaly is
8.8 hours, but the distribution is heavy-tailed; a full 35%
of the outages were present for less than one hour, while
9% persisted for more than a day. Figure 2 shows a cu-
mulative distribution.

A good number of the anomalies occurred between
seemingly random nodes. However, there are some
nodes with a high number of permanent failures. In our
experiment, this is explained by the presence of some
Internet-2 nodes, which do not have a direct IP-to-IP con-
nection to the classical Internet; nodes behind NATs and
firewalls would have similar characteristics. While our
analysis mainly focuses on transient path failures, our so-
lution also works for networks with a moderate number
of permanent failures.

4 A Resilient Transport Layer

In this section, we present the design of a maintenance
protocol that is resilient against path failures. For con-
creteness, we describe our protocol in the context of
FreePastry [6], although we are confident that it can be
applied to other overlays as well. We first describe the
distributed algorithm that is used in Pastry to implement
consistent hashing, and we define requirements for mak-
ing this algorithm resilient against path failures. Then we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

P
er

ce
nt

 o
f A

no
m

al
ie

s

Time (h)

Figure 2. CDF of routing anomaly durations
for 192 PlanetLab nodes for September 1 to
September 10, 2004.

present a number of techniques used in our new mainte-
nance protocol and argue that in combination, these tech-
niques make the occurrence of inconsistencies extremely
unlikely.

4.1 Consistent Hashing

Like many other overlays [18], Pastry uses consistent
hashing to map keys from a large key space of range
0..2k to a set of nodes. Each node Ni is assigned a unique
nodeId ki from the key space and is responsible for all
keys to which ki is the numerically closest nodeId.

To determine the range Ri of keys for which it is re-
sponsible, it is sufficient for a node Ni to know its direct
neighbors Ni−1 and Ni+1 in the key space. The range Ri
can then be computed as

Ri =

[

ki−1 + ki

2
mod 2k

,
ki + ki+1

2
mod 2k

)

This range is dynamically updated as nodes join or leave
the overlay.

4.2 Routing in Pastry

Pastry provides a routing primitive which delivers mes-
sages to the node that is currently responsible for a given
key. For this purpose, each Pastry node Ni maintains
two data structures: A leaf set of up to l neighbors on
both sides, and a routing table with links to more distant
nodes. The former is used to determine the range Ri and
must therefore be kept consistent, while the latter is used
as an optimization. Since inconsistencies in the routing
table merely increase the routing overhead, the following
discussion focuses on the leaf sets only.

When a new node joins a Pastry overlay, it discov-
ers its leaf set by routing a message to its own nodeId
and then announces its presence to its neighbors. From
that point on, it periodically checks the leaf set for faulty

nodes and replaces them with other neighbors. In the
unlikely event that all nodes on one side of the leaf set
fail simultaneously, the node can recover by executing a
more expensive repair operation [10].

4.3 Requirements

As long as Pastry’s leaf sets accurately reflect the current
overlay membership, messages are always accepted by
the correct node. However, node failures and path fail-
ures may cause the leaf sets to become inconsistent. In
this case, our goal is to maintain the following invariant,
which we call routing consistency, with high probabil-
ity1:

For each time t and key k, there is at most one node
which will accept messages for k.

This invariant is guaranteed by the overlay in the case of
no path failure, and numerous applications rely on it in
order to perform serialization of operations, mutual ex-
clusion, and so forth. Routing consistency is enforced by
the leaf set stabilization protocol, which has the follow-
ing functions:

1. When a new node joins, it must make sure that the
current members stop accepting message for their
part of the key space before the new node starts ac-
cepting messages.

2. When a node fails or leaves, it must make sure that
the neighbors take over its portion of key space only
after they have established that the node no longer
accepts messages.

3. After joins or departures, it must ensure that the leaf
sets eventually reflect a consistent view of overlay
membership again.

The current protocol used in FreePastry performs
these functions reliably only if the underlying network
is fully connected; path failures can cause it to oscillate
or deliver messages incorrectly. In the following, we de-
scribe a set of techniques that relax this constraint. Our
new protocol assumes only that leaf sets are always con-
nected, i.e. that for each pair of leaf set members A and
B, there exists a path of leaf set nodes A, N1, ... Nk, B
such that each is directly connected to the next, and A
is therefore able to send messages to B along this path.
Since the size of the leaf set is usually chosen between 8
and 24, we believe this is a reasonable assumption.

1It is easy to show, using an adversarial argument, that no protocol
can maintain the invariant in all failure scenarios.

4.4 Virtual links

If a path A → B fails, messages sent from A to B may
silently disappear in the network. This not only increases
message loss in the overlay, but may lead B to believe
that A has failed. If A → B is being used as an ordinary
overlay link, this is not critical; B will simply replace A in
its routing table by another node. However, if A is in B’s
leaf set, B may decide to take over responsibility for A’s
region of the key space, thus creating an inconsistency.

To prevent this, we allow leaf set members to maintain
connectivity by using other nodes as intermediaries. We
view all leaf set connections as virtual links, rather than
physical links. For example, if there is another node C in
A’s leaf set who can still reach B, A can replace its direct
link A → B with a virtual link A → C → B. This is a
well-known technique that is widely used in mobile ad-
hoc networks, where path failures are common. Note that
in the common case, where no path failure has occurred,
the virtual link is identical to the actual physical link and
thus requires no extra overhead.

We use source routing to forward packets over vir-
tual links. Messages sent via source routes are not sub-
ject to normal routing - they are either transmitted along
the specified path or dropped if an error occurs. This
is important to prevent routing loops, as source routing
may not follow invariants on overlay routing (e.g. al-
ways routing to a node closer to the message destina-
tion). Since virtual links act exactly as physical links,
these invariants are maintained. Also, source routes are
used only within the same leaf set; hence their maximum
length is bounded by the leaf set size.

4.5 Route discovery

Every node periodically advertises its best virtual links
to all other leaf set members, who use them to derive
virtual links for themselves. For example, if A advertises
a link A → B to C, and C’s best link to A is currently
C → D → A, then C concludes that B may be reached via
C → D → A → B. Nodes maintain a set of fresh links for
each destination, but during normal operation, only the
shortest virtual link is used.

If the shortest virtual link to a destination X is not a
physical link, the node occasionally sends a probe packet
directly to X , using exponential back-off. If the probe is
answered, the physical link to X is re-enabled, and all
other virtual links are updated accordingly. This ensures
that after a transient path failure, the system eventually
returns to using physical links.

When a virtual link fails, the sender starts using an-
other fresh link, if one is available. If not, the sender can
broadcast a route request to all of its leaf set members,
who attempt to forward it to the destination. The desti-
nation responds with a route reply. This mechanism is

inspired by the DSR routing protocol [8].
Unlike many other ad-hoc routing protocols, DSR

does not require connectivity to be symmetric. This is
not only necessary for handling asymmetric path fail-
ures, it also allows us to incorporate nodes behind NATs
and firewalls into the overlay, whose connectivity is
asymmetric as well.

4.6 Liveness checks

Direct neighbors in the key space – and optionally all
nodes within the same leaf set – constantly monitor each
other’s liveness. For this purpose, they make sure that
they receive at least one message from each other within
a time period TP. When there is no overlay traffic to send,
they may send a Ping message instead. Each Ping
must be answered immediately by a Pong, which also
must include the source route used in the corresponding
Ping as payload.

Nodes characterize each other’s perceived liveness in
four stages S1 . . .S4. When a node A receives a message
from another node B, it changes B’s perceived state to S1.
However, if no further messages from B arrive for a time
period T1 < TP, A changes B’s perceived state to S2 and
sends a Ping message to B over the best known virtual
link.

Should B not respond after T2, A starts sending addi-
tional Ping messages over all known virtual links to B.
If a Pong arrives now, A changes B’s virtual link to the
source route listed in the Pong and resets B’s state to S1.
If, however, B still does not respond after T3, A changes
its state to S3 and broadcasts a route request for B to dis-
cover a new virtual link.

However, if TP expires before any route is found, A
has established that none of the other leaf set members
can reach B any more, so under our assumption that leaf
sets are always connected, B cannot be alive. Hence, A
declares B dead by setting its state to S4. In this state, A
neither advertises the route to B nor accepts any adver-
tisements regarding B from other nodes except B itself.
Once TP expires a second time, A knows that all other
leaf set members must have declared B dead as well, and
it is free to delete B from its leaf set.

The parameter TP directly influences the bandwidth
required for maintenance. Higher values result in lower
bandwidth, but also increase the latency between a node
failure and the time when its portion of key space is taken
over by the other nodes.

4.7 Gossiping

As described earlier, nodes periodically advertise source
routes for all of their leaf set members to their entire leaf
set. This gossiping process ensures that leaf sets con-
verge; even if an inconsistency between leaf sets arises,

every member eventually learns about all the other mem-
bers. Since failed nodes have to pass through state S4,
oscillations cannot occur.

Since the liveness of a node is determined individu-
ally by each of its leaf set members, there is no need to
propagate information about node failures. This not only
prevents ‘disagreement’ between nodes, which is diffi-
cult to resolve; it also makes the protocol much easier to
secure in an environment with malicious nodes.

4.8 Key Ownership

To prevent overlaps between the responsible region of
a newly joined node and those of its neighbors, we in-
troduce the concept of key ownership. Each node has
a range of keys which it owns, and it is not allowed to
accept message for keys outside of this range. When the
first node N1 in the network starts up, it automatically has
ownership over the range [k1,k1). As nodes join, they re-
quest range transfers from existing nodes. For example,
when the next node N2 boots up, it will ask N1 to transfer
ownership of the range

[

k1 + k2

2
mod 2k

,
k1 + k2 +2k

2
mod 2k

)

Note that once a node transfers a ownership over a range
of keys, it is no longer able to accept message for those
keys. Additionally, each node must obtain ownership
transfers from both of its neighbors before accepting any
messages.

If we assume for the moment that no nodes ever leave
the overlay (i.e. all nodes stay forever), it is clear that
routing consistency is maintained. Since the key space
is repeatedly partitioned up, nodes never conflict in their
owned ranges.

However, as churn is common and routing anomalies
are possible, we must show that reclaiming transferred
key space does not break routing consistency. In order
to do so, we impose the rule that a node may reclaim
its neighbor’s owned keys only if the node is declared
dead (as discussed in Section 4.6). If a neighbor is de-
clared dead, then, by the assumption that leaf sets are
connected, we know that no leaf set member is able to
reach the neighbor, and we can therefore assert that the
neighbor is dead. In this case, the remaining node may
reclaim its portion of the neighbor’s key space.

4.9 Justification

Earlier, we made the assumption that leaf sets were al-
ways connected, i.e. that in a given node N’s leaf set
[L−l,L−l+1, . . . ,N, . . . ,Ll−1,Ll] there always exists a path
from N to each Li, and vice versa. In this section, we
provide a quick justification of why this is a reasonable
assumption.

As mentioned earlier, we assume that each path Li →
L j in a given leaf set fails independently with probability
p. For simplicity, we consider virtual links with at most
two hops. Then A cannot reach B if the direct path A→ B
fails and for every leaf set member Li, either the path
A → Li or the path Li → B fails. If the leaf set contains l
nodes on each side, this occurs with probability

P1 = p ·
(

1− (1− p)2)m

where m is the number of nodes in the shared leaf set of
A and B, which ranges from l − 1, when A and B are far
apart, to 2(l − 1), when they are adjacent. We consider
A and B disconnected if either of them cannot reach the
other one. This probability is

P2 = 1− (1−P1)
2

As stated above, a routing consistency is broken only if A
is disconnected from either his left or his right neighbor.
This happens with probability

P3 = 1− (1−P2)
2

If we assume small leaf sets (l = 8) and a massive failure
of p = 0.1, then P3 ≈ 6.072 ·10−12 , so even in a network
with N = 10000 nodes, the probability of finding a single
disconnected node is less than 6.1 · 10−8. If we allow
virtual links with more than two hops by increasing the
hop limit in route requests, the resulting probability is
even lower. For comparison, in a protocol that requires
a physical link between each node and his right and left
neighbors, the probability of an inconsistency is

P′
3 = 1− (1− p)4

For the parameters mentioned earlier, P′
3 ≈ 0.3439, so

about one-third of the nodes would be disconnected.

4.10 Experience

We have implemented the above techniques into FreeP-
astry [6], and have deployed the implementation on a
ring of 320 PlanetLab nodes. While the previous ver-
sions of FreePastry suffered from numerous routing in-
consistencies when deployed on this set of machines, the
new version has been been successfully run for multiple
days without any detected routing inconsistencies. Out
of the 44,480 detected routes, we found that multiple-
hop routes were required in 1,307, or 2.9%, of the cases.
The vast majority of these (1,293) were two-hop routes,
while three-hop routes were used 13 times and one four-
hop route was required.

Additionally, we found the bandwidth overhead of our
techniques to be very small - on average, nodes used
less than 1 KB/s of bandwidth. Even during the booting

phase, where all machines were brought online within
30 minutes and most routes were discovered, the peak
bandwidth at any node was under 10 KB/s. This im-
plementation of our protocol is available as part of the
FreePastry 1.4.1 release [6].

4.11 Partitions

So far, we have shown that routing consistency is main-
tained by our techniques given the assumption that leaf
sets are always connected. In this section, we discuss
failure scenarios that break this assumption.

As shown in Section 4.9, it is highly unlikely that a
leaf set becomes partitioned from churn or node failures
alone. However, a partition in the underlying network
can cause a large group of nodes to become unreachable,
with the likely result that each group of nodes forms an
independent ring. In this case, there is a tradeoff between
availability and consistency [7]. At one end of this trade-
off is the primary-partition model [13], in which con-
sistency is maintained by discontinuing services in all
partitions except one designated partition. At the other
end are the optimistic consistency models used in dis-
tributed file systems such as Coda [16], which optimize
for availability by allowing updates in all partitions and
later resolve any conflicts that might have occurred.

Optimistic consistency is difficult to implement at the
overlay level because conflict resolution techniques are
highly application-specific. However, there are several
ways to provide support for the primary-partition model.
For example, nodes can monitor the node density in their
local leaf sets. If a node observes a sharp drop (e.g. more
than 50% of the leaves disappearing during a single time-
out period), it is likely that the node is in a minority par-
tition, and it can respond by resigning from the overlay.
After that, the node can periodically attempt to rejoin,
using exponential backoff on the retry intervals.

5 Conclusions and Future Work

In this paper, we have argued that overlay maintenance
protocols must be designed for an environment in which
path failures are common. Using experimental data from
the PlanetLab testbed, we have demonstrated that long-
lived path failures occur frequently in the Internet today,
and we have shown that this can lead to routing inconsis-
tencies in overlays, with catastrophic effects on applica-
tions. Finally, we have presented the design of a main-
tenance protocol for the Pastry overlay that increases its
resilience against path failures by several orders of mag-
nitude.

References
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-

ris. Resilient overlay networks. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP), Oct
2001.

[2] M. Castro, M. Costa, and A. Rowstron. Performance and de-
pendability of structured peer-to-peer overlays. In Proceedings
of the International Conference on Dependable Systems and
Networks, June 2004.

[3] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN service availability. In 3rd USENIX Symposium on Inter-
net Technologies and Systems (USITS), Mar 2001.

[4] N. Feamster, D. Andersen, H. Balakrishnan, and F. Kaashoek.
Measuring the effects of internet path faults on reactive routing.
In ACM SIGMETRICS 2003, Jun 2003.

[5] B. Ford. Unmanaged internet protocol: Taming the edge net-
work management crisis. In Proceedings of the 2nd Workshop
on Hot Topics in Networks, Nov 2003.

[6] The FreePastry web site. http://freepastry.rice.edu/.
[7] R. Friedman and K. Birman. Trading consistency for avail-

ability in distributed systems. Technical Report TR95-1579,
Cornell University, Apr 1996.

[8] D. B. Johnson, D. A. Maltz, and J. Broch. The dynamic source
routing protocol for multihop wireless ad hoc networks. In Ad
Hoc Networking, edited by Charles E. Perkins, Chapter 5, pages
139–172. Addison-Wesley, 2001.

[9] C. Labovitz, G. R. Malan, and F. Jahanian. Internet routing
instability. In Proceedings of ACM SIGCOMM, Sep 1997.

[10] R. Mahajan, M. Castro, and A. Rowstron. Controlling the cost
of reliability in peer-to-peer overlays. In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03),
Berkeley, CA, Feb 2003.

[11] V. Paxson. End-to-end routing behavior in the internet. In Pro-
ceedings of ACM SIGCOMM ’96, Aug 1996.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a DHT. In Proceedings of the USENIX Annual Tech-
nical Conference, June 2004.

[13] A. M. Ricciardi and K. P. Birman. Using process groups
to implement failure detection in asynchronous environments.
In Proceedings of the 10th ACM Symposium on Principles
of Distributed Computing (PODC), pages 341–353, Montreal,
Canada, 1991.

[14] M. Roughan, T. Griffin, Z. M. Mao, A. Greenberg, and B. Free-
man. IP forwarding anomalies and improving their detection
using multiple data sources. In Proceedings of the ACM SIG-
COMM workshop on Network troubleshooting, pages 289–294,
2004.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–350,
Heidelberg, Germany, Nov 2001.

[16] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere. Coda: A highly available file system
for a distributed workstation environment. IEEE Transactions
on Computers, 4(39):447–459, Apr 1990.

[17] Z. Shu and Y. Kadobayashi. Troubleshooting on intra-domain
routing instability. In Proceedings of the ACM SIGCOMM
workshop on network troubleshooting, pages 289–294, 2004.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for in-
ternet applications. In Proceedings of ACM SIGCOMM, pages
149–160, San Diego, CA, August 2001.

[19] J. Stribling. All pairs ping results for PlanetLab.
http://www.pdos.lcs.mit.edu/ strib/pl app/.

