
Functional Programming and Theorem Proving
for Undergraduates: A Progress Report

Rex Page
Department of Computer Science

University of Oklahoma
200 Felgar St, Room 119

Norman, OK 73019
page@ou.edu

Carl Eastlund Matthias Felleisen
College of Computer Science

Northeastern University
West Village H 202
Boston, MA 02115

{ cce, matthias } @ ccs.neu.edu

Abstract
For the past five years, the University of Oklahoma has
used the ACL2 theorem prover for a year-long sequence on
software engineering. The goal of the course is to introduce
students to functional programming with “Applicative Com-
mon Lisp” (ACL) and to expose them to defect recognition
at all levels, including unit testing, randomized testing of
conjectures, and formal theorem proving in “a Computa-
tional Logic” (ACL2).

Following Page’s example, Northeastern University has
experimented with the introduction of ACL2 into the fresh-
man curriculum for the past two years. Northeastern’s goal is
to supplement an introductory course on functional program
design with a course on logic and theorem proving that
integrates the topic with programming projects.

This paper reports on our joint project’s progress. On
the technical side, the paper presents the Scheme-based
integrated development environment, its run-time environ-
ment for functional GUI programming, and its support for
different forms of testing. On the experience side, the paper
summarizes the introduction of these tools into the courses,
the reaction of industrial observers of Oklahoma’s software
engineering course, and the feedback from a first outreach
workshop.

Categories and Subject Descriptors D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.2.4
[Software Engineering]: Software/Program Verification;
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.6 [Software Engineering]: Programming Environments;
F.3.1 [Logics and Meanings of Programs]: Specifying and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FDPE’08, September 21, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-068-5/08/09. . . $5.00

Verifying and Reasoning about Programs; K.3.1 [Comput-
ers and Education]: Computer Uses in Education; K.3.2
[Computers and Education]: Computer and Information
Science Education

General Terms Design, Reliability, Security, Verification

Keywords mechanical logic, test-driven development, for-
mal methods, predicate-based testing, Dracula, DrScheme

1. Theorem Proving in Software Engineering
Five years ago, Page [18] started teaching a senior-level
course sequence on software engineering in ACL2 [4, 14,
15]. The course sequence has three goals. The primary
goal is to instruct students in the theory and practice of
the construction of reliable software systems. An external
industrial board reviews the student projects at the end of
the year to ensure quality standards. The second goal is to
expose students to functional programming in ACL2 and to
demonstrate how functional programming eliminates some
of the common headaches from the software engineering
process. The third goal is to introduce theorem proving as
a quality assurance technique (beyond testing).

The first of the two courses is mostly a theoretical
introduction to software engineering concepts, functional
programming at the list and structure level, and theorem
proving. The programming and theorem proving projects
help students build expertise and small libraries (e.g., pack-
ages for AVL trees or statistical functions) for the second
course. There, students apply the principles to a semester-
long programming project with many separate deliverables.
The project varies from year to year. As a few examples, past
projects have included a stock market analysis program, an
interactive graphical game, and a graphics processor.

While teaching this course for the first year, Page discov-
ered two problems with ACL2. First, students had difficulty
coping with the complex, text-based programming environ-
ment for ACL2; most students were used to graphical IDEs.
Second, while ACL2 supports batch-style file i/o, it does
not include any facilities for building modern interfaces.

Figure 1. Safety check violation in DRACULA

Figure 2. Interacting with ACL2 via DRACULA

Accordingly, Page’s report at FDPE 2005 [17, 18] called
for a GUI-based programming environment (IDE) for ACL2
that would include interactive, graphical i/o.

In response, Felleisen and Vaillancourt constructed such
an IDE for Page in December/January of 2005/06. They
created DRACULA, an environment for ACL2, using the
DrScheme infrastructure [11, 12], and managed to deliver a
prototype that was usable in the classroom [19]. Page and
Felleisen’s teams have continued their collaboration since
then with the support of a joint NSF grant.

Over the past couple of years, we have improved this
prototype, which now includes facilities for unit testing and
automated, predicate-based testing (dubbed DoubleCheck).
These tools have had a significant impact on the teaching of
the software engineering course and have also been used in a
freshman course at Northeastern [8]. The following sections
discuss the IDE enhancements, in theory and practice, as
well as recent accomplishments in the software engineer-
ing course. The paper concludes with a description of the
project’s outreach efforts and plans for future work.

2. DRACULA: Theorems and Programs
This section presents DRACULA, the suite of software tools
that we developed in support of the software engineering
course. Roughly speaking, DRACULA is an integrated pro-
gramming environment built on top of DrScheme, with tools
for functional graphical programming, unit testing, random
testing, and a GUI connection to a theorem prover. The first
subsection is a general introduction to DRACULA; the last
two focus on its support for testing.

2.1 DRACULA

ACL2 stands for “A Computational Logic for Applicative
Common Lisp”. It consists of two parts: a first-order, purely
functional subset of Common Lisp (“Applicative Common
Lisp”), and an equational logic for reasoning about it (“A
Computational Logic”). DRACULAis a partial embedding of
the former into DrScheme. DRACULA thus inherits most of
DrScheme’s tools and some of its teaching libraries, includ-
ing a library for creating interactive GUI games. Because
we also wished to use DRACULA for the freshman logic
course at Northeastern, we decided to make its primitives
safe.1 DRACULA leaves the computational logic to ACL2,

1 In ACL2 terminology, the guards are enabled.

Figure 3. Unit test failure

providing an interface to the theorem prover when users need
to reason formally about their program.

Figure 1 displays a snapshot of DRACULA. The IDE
consists of three parts: a console with four buttons for
controlling the IDE, plus an optional SAVE button; a defini-
tions window; and an interactions window. The definitions
window is a language-sensitive editor, which in this case
contains function definitions for fact and g. Once the student
clicks the RUN button, the definitions are evaluated and the
focus shifts to the bottom pane, i.e. the interactions window.
The interactions window roughly acts like a Lisp read-eval-
print loop.

In the screen shot, DRACULA is requested to run (g 42).
Since g then calls fact with −42, the safety check for zp—
whose domain proper is the set of natural numbers—raises
an exception. DRACULA highlights the use of zp that causes
the error and, with a failure arrow, also shows the pending
call to fact and where its result would be used (through y
and let).

For the proof of theorems, DRACULA relies on ACL2’s
logic. A student can launch the theorem prover with a
click on START ACL2 (top right). As the screen shot in
figure 2 shows, doing so brings up a “report window” (on the
right) and opens an additional command pane in DRACULA,
with buttons for sending definitions and theorems from the
definitions window to the theorem prover.

The additional console supports five pieces of IDE func-
tionality. The first admits the next definition or theorem that
hasn’t been sent to the theorem prover yet. If the prover
accepts it, DRACULA highlights it in green; otherwise it is
turned red. The second admits the entire definitions window.
The third undoes the last admit. The fourth button resets the
theorem prover to its initial state, and the last one forces the
theorem prover to shut down.

2.2 Unit Tests
Unit tests are an integral part of program design [3], and
our courses teach students to systematically create examples
and to turn them into tests [10]. Testing is also a crucial
precursor to automated formal verification of a program,
because it eliminates basic mistakes for which the use of

theorem provers is too expensive. DRACULA’s unit test
mechanism allows students to express concrete applications
of their functions that are checked on each run of the
program. Before writing the function, students construct
valid inputs and corresponding expected outputs for the
function. Afterward, DRACULA reports any failures with a
link to the “offending” example.

The example in figure 3 shows a flawed program—sqr
doubles its argument instead of squaring it—and unit tests
checking sqr on inputs 0, 1, and 2. DRACULA reports a
failure in the second case, providing the actual result 2, the
expected result 1, and the location of the test within a link
that displays and highlights it. This provides students with an
immediate, concrete counterexample from which to debug
their program.

2.3 DoubleCheck
The DoubleCheck library, inspired by QuickCheck [2, 5],
provides automated testing for program properties based
on random inputs. Students write predicate-based properties
about their program, providing a distribution of values for
each input. DoubleCheck’s name hints at dual modes of
verification. ACL2 verifies properties as theorems; DRAC-
ULA’s ACL simulation tests properties using inputs gener-
ated randomly from their distributions, reporting the chosen
values in case of failure. Thus, students may use the full
power of the theorem prover, but also have assistance finding
counterexamples when theorem proving fails and they need
to check whether their conjecture may not hold.

Programmers declare new properties using the defprop-
erty syntactic form:

(defproperty name count
((variable distribution hypothesis) . . .)
conclusion)

The property, called name, is evaluated count times when
the program is run. During a trial, DoubleCheck binds each
variable to a value chosen from the given distribution. A
variable’s hypothesis constrains its values, via implication
during theorem proving and as a filter on the random dis-

Figure 5. DoubleCheck failure

(random-int-between i j)
• generates n, i <= n <= j

(random-boolean)
• generates t or nil

(random-string)
• generates a string containing random characters

(random-list-of d)
• generates a list of elements from distribution d

(random-apply f d . . .)
• applies f to values from each distribution d

(defgenerator name (arg . . .) (w d) . . .)
• defines a distribution name that chooses among
potentially recursive sub-distributions d, each with
weight w

Figure 4. Random distributions in DoubleCheck

tribution during random testing. The conclusion expression
determines the final test.

DoubleCheck provides a library of random distributions
of values, with tools for users to combine them and to create
their own. Figure 4 lists some of the distributions. Random
distributions may be used only within defproperty, as their
behavior is both higher-order and side-effecting, and not
compatible with ACL2’s logic.

Figure 5 shows a correct implementation of sqr with
a well-formed but untrue property. The defproperty form
declares a property named sqr-int-produces-positive, to be
given 1000 trials on each run. The second line declares the
property’s inputs; in this case, a single variable x. Values for
x are chosen from a distribution of integers between −50

and 50, and must satisfy integerp. The final line declares the
property’s test: sqr must produce a positive integer.

The window on the right shows a counterexample to
the conjectured property. At the bottom-right, the random-
x key shows that x was 0; the duplicate-test key provides an
expression that can be copied to create a new unit test. The
user can add this unit test before fixing the function, building
up a regression suite so old bugs won’t creep back in.

3. Working with DRACULA

In this section, we present functional GUI programming and
a simple interactive computer game in DRACULA: Worm
(a.k.a. Snake or Nibbles). The first subsection sketches the
underlying GUI library. The second subsection describes the
construction of a reasonably large example and working with
DoubleCheck and the theorem prover to validate conjectures
about the program’s behavior.

3.1 Functional Interactive GUI Programming
Northeastern’s introductory course uses DrScheme to teach
program design principles [10]. In order to make the course
entertaining, the course software includes a library, dubbed
a teachpack, for manipulating images (which are first-class
values) and creating animations. As a matter of fact, the
very first program—our “hello world” program—shows a
rocket lifting off (at constant speed). DRACULA inherits this
teachpack.

The GUI library is an “abstract machine” with five
instructions:

1. The big-bang instruction creates a world and with it a
visible canvas:

;; (big-bang width height rate init)
;; width, height : Nat
;; rate : Rational
;; init : State

The first two arguments determine the size of the screen;
the third one specifies how often the clock ticks; and the
fourth one is the initial state of the world.

2. Every time the clock ticks, the library performs a
program-specific tick callback:

;; (on-tick-event tick)
;; tick : State→ State

The callback is registered via on-tick-event; its purpose is
to transform the state at time t into the state at t + 1.

3. Every time the user presses a key, the library performs a
program-specific key-event callback:

;; (on-key-event key-event)
;; key-event : State Symbol→ State

The callback is registered via on-key-event; it updates the
state in response to each key pressed.

4. When it is time to refresh the image on the canvas, the
library invokes the program-specific to-image callback:

;; (on-redraw to-image)
;; to-image : State→ Image

The callback is installed with a call to on-redraw; it
consumes the current state of the world and returns an
image. The library sends the image to the canvas.

5. After each tick or key-event callback, the library queries
the program-specific game-over predicate:

;; (stop-when game-over)
;; game-over : State→ Boolean

The callback is installed by stop-when; it consumes the
state of the world and reports whether the animation is
done. Once game-over returns true, the library renders
the final state on the canvas and stops the world.

From a semantic perspective, this form of i/o control is
closely related to Clean’s model of input and output [1]. It is
also somewhat reminiscent of the Yale school of functional
reactive programming [6, 9, 13].

In addition, the library provides basic primitives to ma-
nipulate images, which programmers can insert into the
editor or which the program can create on the fly. Lastly,
the library provides a pseudo-random number function.

The machine perspective is useful for proving theorems
about such GUI programs. The typical approach is to show
that the state transforming callbacks preserve some invariant
and that the initial state also satisfies this property. We can
then conclude that all game states have the property.

3.2 Worms, Theorems, and Properties
The Worm game is representative of the projects assigned to
freshmen in their first programming course at Northeastern

Figure 6. Interactive games in DRACULA

University; the courses at Oklahoma use larger projects than
this but the principles remain the same.

Here is a concise description of the problem:

The player controls the direction of a constantly-
moving worm on a grid. The grid has walls and
contains a piece of food. If the worm eats the food,
the player gains points, the worm grows in length, and
a new piece of food appears. If the worm runs into a
wall or its own tail, the game ends.

Producing the game requires only four (compound) data
structures: Cartesian points, lists, game state, and images.
The game has only three rules (move, grow, or die), and the
player controls only the worm’s direction. See figure 6 for a
screen shot of a functioning Worm game.

Instead of proving the correctness of such a game, in-
structors usually focus on basic invariants that hold across
the entire game. For the worm game, we choose to prove that
at any point in the game, the food and the tail of the worm
are inside the visible portion of the grid. Other candidate
invariants would state that the worm consists of adjacent
points and that the worm’s tail does not cross itself.

The specific correctness predicate for the game state is
shown in figure 7 in terms of two helper functions point-
in-boxp and point-list-in-boxp for testing whether points lie
in a bounding box. Verifying the game means proving the
initial state satisfies the (partial) correctness predicate, then
proving that each transition function preserves the predicate
when called before game-over (i.e., on a game in which the
worm has not yet run into a wall or itself).

When the theorem prover fails, we can attempt to assist it
with lemmas or hints, or we can look for conflicts between
the program and the conjecture. DoubleCheck facilitates the
latter; we convert the final two defthm forms to defproperty
to generate counterexamples; see figure 8.

;; in-bounds-gamep : Game → Boolean
;; Reports whether the food and worm tail of a game
;; are in bounds.
(defun in-bounds-gamep (g)

(and (point-in-boxp
(game-food g)
0 0 (− ∗grid-width∗ 1) (− ∗grid-height∗ 1))

(point-list-in-boxp
(game-worm-tail g)
0 0 (− ∗grid-width∗ 1) (− ∗grid-height∗ 1))))

;; Verify the game’s initial state.
(defthm initial-game/in-bounds-gamep

(in-bounds-gamep ∗initial-game∗))

;; Verify the game’s time transition.
(defthm game-tick/in-bounds-gamep

(implies (and (gamep g)
(not (game-over g))
(in-bounds-gamep g))

(in-bounds-gamep (game-tick g))))

;; Verify the game’s user interaction.
(defthm game-key/in-bounds-gamep

(implies (and (gamep g)
(not (game-over g))
(in-bounds-gamep g)
(symbolp key))

(in-bounds-gamep (game-key g k))))

Figure 7. Main theorems for Worm game.

The random-uniform-list generator duplicates the built-
in generator random-list-of, but is presented here to show
a recursive use of defgenerator. One out of four times, the
generator produces nil; three in four times, it extends a recur-
sively chosen tail list with an element chosen independently
from elem-dist.

The random-worm and random-game generators use
random-apply to pass randomly chosen inputs to build-
worm and make-game, respectively. The defgenerator
forms have only a single clause with a weight of 1. The
build-worm function consumes the direction of a worm’s
motion, the position of its head, and the directions (up,
down, left, or right) between adjacent worm segments.
Note that build-worm converts the directions to a list of
adjacent points. This is more straightforward than making
a distribution of adjacent points directly, as the directions
may be chosen independently. The make-game function
consumes a random seed (in the sense of the functional
pseudorandom library used by the game), a location for the
food, and a worm.

Finally, the game-tick-in-bounds and game-key-in-bounds
properties restate the hypotheses and conclusions of the
original theorems, providing random inputs from the gen-
erators defined above. Note that the hypothesis predicate for

;; random-uniform-list :
;; (Random X) → (Random (Listof X))
;; Generates a list of elements taken from elem-dist.
(defgenerator random-uniform-list (elem-dist)

(1 nil)
(3 (random-apply cons

elem-dist
(random-uniform-list elem-dist))))

;; random-worm : → (Random Worm)
;; Generates a random worm.
(defgenerator random-worm ()

(1 (random-apply build-worm
(random-dir)
(random-point-in-bounds)
(random-uniform-list (random-dir)))))

;; random-game : → (Random Game)
;; Generates a random game state.
(defgenerator random-game ()

(1 (random-apply make-game
(random-int-between 1000000000

2000000000)
(random-point-in-bounds)
(random-worm))))

;; Test the game’s time transition.
(defproperty game-tick-in-bounds 100

((g (random-game) (and (gamep g)
(not (game-over g))
(in-bounds-gamep g))))

(in-bounds-gamep (game-tick g)))

;; Test the game’s user interaction.
(defproperty game-key-in-bounds 100

((g (random-game) (and (gamep g)
(not (game-over g))
(in-bounds-gamep g)))

(k (random-dir) (symbolp k)))
(in-bounds-gamep (game-key g k)))

Figure 8. DoubleCheck properties for the Worm game

random games tests game-over, constraining the distribution
by filtering out games where the worm’s head overlaps its
tail. On the other hand, the predicate for random keys tests
only symbolp, allowing more values than our distribution, as
we test only the four cardinal directions (corresponding to
the arrow keys).

4. Pedagogical Experiences
The two-course sequence in software engineering at the
University of Oklahoma has completed its fifth year of
incorporating functional programming and elements of me-
chanical logic as a significant part in two of three major
themes typical of course offerings in software engineering:
design, quality, and process. Functional programming has

the greater impact in the design theme, mechanical logic
plays a strong role with the quality theme.

Major steps forward include moving from a dual pro-
gramming language environment to an integrated environ-
ment (DRACULA), and most recently the addition of Dou-
bleCheck. The addition of an automated, predicate-based
testing component was the primary difference between the
courses this year and those of previous years.

In the first course, students work individually and in
teams to complete five to seven projects ranging from a
hundred to a thousand lines of code, with supporting process
documentation and validation records. The second course
requires a project of a few thousand lines with a dozen
separate deliverables. The first course is about two-thirds
individual work and one-third teamwork, and those ratios
reverse roles in the second course.

Over the years, a collection of about two dozen carefully
designed and reusable projects have gradually emerged.
Careful design of projects is necessary to make sure they
are feasible for novices in functional programming and me-
chanical logic, in the same way that projects for novice pro-
grammers must be carefully designed for feasibility. Project
topics include general purpose utilities for list processing
and applications of such utilities in cryptography, graphics,
parsing, statistical analysis, text analysis and formatting,
transcendental functions, routing algorithms, audio signal
processing, and image processing.

Course prerequisites include symbolic logic, and most
students acquire that prerequisite in the form of a course
that applies logic directly to the verification of properties
of digital circuits and software [16]. For most students, the
course serves as their first serious experience with functional
programming. Almost all students now succeed in this
aspect of the course. About a third say in an anonymous,
end-of-course survey that they would be inclined to use
functional programming in future projects, given the option.

Most students are able to express informal conjectures
about software properties as formulas in logic and to test for
them using DoubleCheck’s predicate-based random testing.
Put differently, DoubleCheck helps students with one of the
trickiest task of using logic in programming, namely, the
transition from ideas to formal statements. Unfortunately,
the distance between DoubleCheck and the theorem prover
is still too large.

The percentage of students who acquire an understanding
and ability to use the ACL2 theorem prover effectively varies
from ten to twenty percent, depending on the year. Proving
theorems—mechanically or manually—calls for a higher
degree of mathematical sophistication than many students
have. Students with good mathematical backgrounds usually
do well, and those without learn to appreciate its value.
Almost all students leave the courses with a revised view of
software correctness. This point is where the applications of

predicate-testing and logic—as emphasized in the course—
apparently have their greatest, long-term effects.

Since 2004 the course evaluation questionnaire that stu-
dents have filled out at the end of the course has included
five supplementary questions asking them to assess their
understanding of ACL2 programming and their ability to
use the ACL2 theorem proving technology, and also their
inclination to use ACL2 or another system with a built-in
mechanical logic in future work. The results are remarkably
consistent, varying by a few percentage points up or down
each year. Well over two thirds of students rate their ACL2
programming abilities highly. Over a third believe they can
use the mechanical logic technology effectively (a higher
figure than the instructor’s estimate based on homework
and exam results), and about the same percentage would
welcome the opportunity to use ACL2-like technology in
future work.

Near the end of the second course, student teams make
a half-hour presentation of their software project. Eight
to twelve members of the departmental advisory board
(prominent members of the industrial software development
community, mostly engineering managers, but also senior
programmers and senior managers) attend the presentations
and comment, both orally and in writing, during a ques-
tion/answer session at the end of each presentation.

Presentation guidelines direct the teams to target an audi-
ence of engineering managers unfamiliar with the specific
project, but familiar with company goals and procedures.
Coverage must include software architecture, implementa-
tion problems and solutions, defect prevention, comparison
of planned and actual schedules, remaining implementation
problems, potential enhancements, and a demonstration of
their software product in operation.

Reactions of advisory board members to both the course
work and the presentations have been uniformly favorable
over the years. The board members appreciate the emphasis
on defect prevention as an important aspect of software
quality and see the value in stating and validating software
properties in terms of formal, testable and mechanically ver-
ifiable statements. Somewhat surprisingly, they also see the
value in exposing students to the functional programming
paradigm as an alternative to conventional programming, in
spite of the fact that, in the past five years, only three of
the approximately thirty different board members have been
involved in projects making significant use of functional
programming.

Last year, one board member, Stephen Mercer, Lead
Developer in R&D for LabVIEW at National Instruments,
was especially impressed with a bit-plane graphics property
that a team verified using the ACL2 theorem prover:

I saw ACL2 for the first time when observing Dr.
Page’s senior capstone course. I was blown away by
the power of it. ACL2 provides a meta-language for
programming. Students have been taught for years to

write comments about the pre-conditions and post-
conditions of their functions. ACL2 gives us a way
to write those comments in a way that is meaningful
to the compiler and then have the compiler verify
that they are true. This is the biggest development in
programming that I’ve heard of in a decade.
But could students use this reasoning system? Proving
program correctness, even just setting up the problem,
was non-trivial in my experience. When watching the
capstone presentations, I saw that students could use
the system, and quite easily if they took the time to
do it. Rigorously proving every single aspect of a
function was asking a bit much, but simple proofs to
show zero out-of-range errors for arrays or guarantee
a floor to a recursion function were common. Proving
just those small bits represents a huge step forward
in quality. And one group showed the true power of
this concept by writing a 3D rendering engine and
then proving that their engine had no bit plane errors:
ask two objects to draw and you’d never end up with
the background object drawing in front of the other
object. Proved. Not “yeah, we think so” or “we desk
checked it thoroughly” or even “we’ve never seen a
problem in years of empiric testing.” This was a hard
math proof of correctness. I was excited.
Since I work in language design, I was eager to find
out if the ACL2 research could apply to the language
I work on (LabVIEW). I got back to the office and
found that we already had research ongoing in that
area. LabVIEW is a dataflow programming language,
which makes it “topologically” similar to functional
languages. We already have a working transformer to
generate ACL2 code from LabVIEW code for a large
subset of our language. Someday we hope to expose
in our graphical language the same power that ACL2
is exposing in text languages.

Comments on the presentations can be viewed online.2

5. Outreach
In May of this year, thirteen computer science instructors
attended the Teaching Software Correctness Workshop and
were able to experience some of the software engineering
course materials themselves, including both lectures and
projects. The workshop ran three days, eight hours per
day. About a third of the time was spent in lectures and
discussions and two thirds in project work. The course staff
consisted of the first two authors, plus two students who
were familiar with the software engineering course and had
explored the use of DRACULA outside normal course work,
using tools from the courses.

The workshop goal was to spread the use of mathematical
logic, especially mechanical logic, in undergraduate com-

2 http://www.cs.ou.edu/∼rlpage/SEcollab/prescom/

puter science course work. The lectures focused primarily on
material from the OU software engineering courses, to give
participants a feeling for the educational impact on students.
Projects had the same format and intent. Discussions made
it possible for participants to share their own use of logic in
the classroom and comment on how mechanical logic might
be integrated into their educational environment.

During project work periods, the workshop staff contin-
uously interacted with workshop participants. During these
work periods, we observed that:

• Instructors run into the same problems as students in try-
ing to work through projects. Future outreach workshops
must start with low expectations and carefully introduce
all basic notions. We may also extend the workshops
from three to five days.

• It is easier to deal with formal statements of software
properties (formulas in logic) than it is to convert infor-
mal statements to formal ones.

• A carefully constructed experience in stating and proving
theorems expressing software properties is a gentler way
to intitiate novices than predicate-based testing.
In other words, students and instructors must first learn to
translate informal claims into formal, universally quanti-
fied expressions. Given formal conjectures, let the theo-
rem prover take over. When it fails, programmers should
use DoubleCheck to inspect the relationship between the
program and their conjecture.

• An understanding of the interplay between formal logic
and informal notions of software properties gained from
experience on the formal side improves the ability of
novices to convert their informal notions into cogent tests
and formal statements of software properties.

• Carefully constructed project work does lead to a rea-
sonable facility with the use of mechanized logic for
predicate-based testing and mathematical proof of soft-
ware properties.

Workshop participants suggested additional ways to im-
prove the DRACULA facility for predicate-based testing.
Most importantly, the future syntax of DoubleCheck’s pred-
icates must be more closely aligned with ACL2’s syntax for
theorems than in the current version. We are now at work in
making changes to respond to the participant’s suggestions.

Another positive outcome of the workshop is the forma-
tion of a working group that will host periodic meetings to
share progress on the infusion of mechanical logic and other
formal methods into the computer science curriculum.3

The workshop website4 contains all lecture and discus-
sion notes, twelve small to medium sized projects with both
exemplary solutions and solutions created by participants

3 http://www.resource-aware.org/twiki/bin/view/

ProgrammingLanguages/MEPLS
4 http://www.cs.ou.edu/∼rlpage/SEcollab/tsc/

during the workshop, two larger projects with participant so-
lutions, and responses by participants to a daily, workshop-
assessment questionnaire. Solutions are protected on the
website, but available to computer science instructors inter-
ested in using them in courses.

6. Conclusion
This report summarizes the progress we have made since our
first FDPE presentation on the use of theorem proving in
software engineering courses [17, 18].

After five years, we and our industrial partners confirm
that software engineering courses can (and ought to) con-
vince students that quality matters. Our experience demon-
strates that the use of functional programming, a theorem
prover, and a facility for random testing of predicates make
a significant impression on students and changes their minds
about the quality of software.

Both the courses at Oklahoma University, at Northeastern
University and the outreach workshop also show that such a
course benefits tremendously from a tightly integrated suite
of tools. DRACULA’s seamless support for test-driven de-
sign, random testing, and theorem proving has significantly
improved the software engineering course at Oklahoma and
has also enabled us to run the workshop.

Over the next couple of years, we intend to enrich the
course in two different ways. On the pedagogical side, we
will produce recipes for the joint use of the theorem prover
and random testing. On the software side, we will equip
the variant of ACL2 in DRACULA with modules, enabling
student teams to work independently on separate parts of a
project and reducing the cost of theorem proving.

References
[1] Achten, P. and M. J. Plasmeijer. The ins and outs of Clean

i/o. Journal of Functional Programming, 5(1):81–110, 1995.

[2] Arts, T. and J. Hughes. Erlang/QuickCheck. In Ninth
International Erlang/OTP User Conference, November 2003.

[3] Beck, K. and E. Gamma. Test infected: Programmers love
writing tests. In Java Report, volume 3, pages 37–50, 1998.

[4] Boyer, R. S. and J. S. Moore. Mechanized reasoning about
programs and computing machines. In Veroff, R., editor,
Automated Reasoning and Its Applications: Essays in Honor
of Larry Wos, pages 146–176. The MIT Press, Cambridge,
Massachusetts, 1996.

[5] Claessen, K. and J. Hughes. QuickCheck: a lightweight tool
for random testing of Haskell programs. In ACM SIGPLAN
International Conference on Functional Programming, pages
268–279, 2000.

[6] Cooper, G. H. and S. Krishnamurthi. Embedding dynamic
dataflow in a call-by-value language. In Sestoft, P., editor,
15th European Symposium on Programming, ESOP 2006,
volume 3924 of Lecture Notes in Computer Science, pages
294–308. Springer, 2006.

[7] Dillinger, P. C., P. Manolios, J. S. Moore and D. Vroon.
ACL2s: The ACL2 Sedan. In Proceedings of the 7th
Workshop on User Interfaces for Theorem Proving, volume
174(2) of Electronic Notes in Theoretical Computer Science,
pages 3–18. Elsevier, 2006.

[8] Eastlund, C., D. Vaillancourt and M. Felleisen. ACL2 for
freshmen: First experiences. In ACL2 ’07: Proceedings of the
Sixth International Workshop on the ACL2 Theorem Prover
and its Applications, pages 200–211, New York, NY, USA,
2007. ACM Press.

[9] Elliot, C. and P. Hudak. Functional reactive animation.
In ACM SIGPLAN International Conference on Functional
Programming, pages 196–203, 1997.

[10] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[11] Findler, R. B., J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler and M. Felleisen. DrScheme:
A programming environment for Scheme. Journal of
Functional Programming, 12(2):159–182, March 2002.

[12] Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and
M. Felleisen. DrScheme: A pedagogic programming envi-
ronment for Scheme. In Glaser, H., P. Hartel and H. Kuchen,
editors, Programming Languages: Implementations, Logics,
and Programs, volume 1292 of LNCS, pages 369–388,
Southampton, UK, September 1997. Springer.

[13] Ignatoff, D., G. H. Cooper and S. Krishnamurthi. Crossing
state lines: Adapting object-oriented frameworks to
functional reactive languages. In Hagiya, M. and
P. Wadler, editors, Functional and Logic Programming, 8th
International Symposium, FLOPS 2006, volume 3945 of
Lecture Notes in Computer Science, pages 259–276. Springer,
2006.

[14] Kaufmann, M., P. Manolios and J. S. Moore. Computer-
Aided Reasoning: ACL2 Case Studies. Kluwer Academic
Publishers, 2000.

[15] Kaufmann, M., P. Manolios and J. S. Moore. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers,
2000.

[16] Page, R. Software is discrete mathematics. In Runciman, C.
and O. Shivers, editors, Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional
Programming, ICFP 2003, pages 79–86. ACM, August 2003.

[17] Page, R. Engineering software correctness. In Proc. 2005
Workshop on Functional and Declarative Programming in
Education, pages 39–46, New York, NY, USA, 2005. ACM.

[18] Page, R. Engineering software correctness. Journal
of Functional Programming, 17(6):675–686, April 2007.
Preliminary presentation at FDPE ’05.

[19] Vaillancourt, D., R. Page and M. Felleisen. ACL2 in
DrScheme. In ACL2 ’06: Proceedings of the Sixth
International Workshop on the ACL2 Theorem Prover and
its Applications, pages 107–116, New York, NY, USA, 2006.
ACM Press.

