
On the Security of Generalized Selective Decryption

Abstract

Generalized Selective Decryption (GSD) is an easy to define game based on a symmetric encryption
scheme Enc. It was introduced by Panjwani [TCC’07] to capture the difficulty of proving adaptive
security of certain protocols. In the GSD game there are n keys k1, . . . , kn, which the adversary may
adaptively corrupt (i.e., learn); moreover, it can ask for encryptions Encki(kj) of keys under other keys.
The adversary’s task is to distinguish keys (which it cannot trivially compute) from random. Proving
the hardness of GSD assuming only IND-CPA security of the encryption scheme is surprisingly hard.
One can prove security using “complexity leveraging”, but this reduction loses a factor exponential in
n, which makes the proof basically useless.

We can think of the GSD game as building a graph on n vertices, where we add an edge i→ j when
the adversary asks for an encryption of kj under ki. If restricted to graphs of depth `, Panjwani gave an
improved reduction that lost only a factor exponential in ` (not n). To date, this is the only non-trivial
result known for GSD or related problems.

In this paper we give almost polynomial reductions for large classes of graphs. Most importantly,
we show that the security of the GSD game restricted to trees (which is an important special case
abstracting some real-world protocols like the Logical Key Hierarchy protocol) can be proven losing
only a quasi-polynomial factor n3 logn+5. Our proof borrows ideas from the “nested hybrids” technique
recently introduced by Fuchsbauer at al. [Asiacrypt’14] for proving the adaptive security of constrained
PRFs.

1 Introduction

Proving security of protocols where an adversary can make queries and/or corrupt players adaptively is
often a notoriously hard problem. Selective security, where the adversary must commit to its queries before
the protocol starts, often allows for an easy proof, but in general does not imply (the practically relevant)
adaptive security notion [CFGN96].

Panjwani [Pan07] argues that the two common approaches to achieving adaptive security, namely
requiring that all parties erase past data [BH92], or using non-committing encryption [CFGN96] are not
satisfactory. He introduces the generalized selective decryption (GSD) problem and uses it as an abstraction
of security requirements of multicast encryption protocols [WGL00, MP06]. GSD is defined by a very simple
game, while capturing the difficulty of proving adaptive security of some interesting protocols.

The generalized selective decryption (GSD) game. In the GSD game we consider a symmetric
encryption scheme Enc and a parameter n ∈ N. Initially, we sample n random keys k1, . . . , kn and a bit
b ∈ {0, 1}. During the game the adversary A can make two types of queries. Encryption query: on input
(i, j) she gets c = Encki(kj); corruption query: on input i, she gets ki. At some point, A chooses some i to
be challenged on. If b = 0, she gets the key ki; if b = 1, she gets a uniformly random ri.

1 Finally, A outputs

1Below, we will consider a (seemingly) different experiment and output ki in both cases (b = 0 and b = 1), but if b = 1,
then on any query (j, i), we will encrypt Enckj (ri) and not Enckj (ki). This is just a semantic change assuming the following:
during the experiment we always answer encryption queries of the form (a, b) with Encka(kb) (note that we don’t know if we’re
encrypting the challenge at this point), and once the adversary chooses a challenge i, if b = 1, we simply switch the values of
ri and ki (this trick is already used in [Pan07]).
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a guess bit b′. The goal is prove that for any efficient A, |Pr[b = b′]− 1/2| is negligible (or, equivalently, ki is
pseudorandom) assuming only that Enc is a secure encryption scheme. We only allow one challenge query,
but this notion is equivalent to allowing any number of challenge queries by a standard hybrid argument
(losing a factor that is only the number of challenge queries).2

It is convenient to think of the GSD game as dynamically building a graph, which we call key graph.
Initially, we have a graph with n vertices labeled 1, . . . , n, where we associate vertex i with key ki. On an
encryption query Encki(kj) we add a directed edge i→ j. On a corruption query i we label the vertex i as
corrupted. Note that if i is corrupted then A also learns all keys kj for j where there’s a path from i to j in
the key graph by simply decrypting the keys along the path. To make the game non-trivial, we therefore
only allow challenge queries for keys that are not reachable from any corrupted key. Another restriction
we must make is to disallow encryption cycles, i.e., loops in the graph. The reason is simply that we
cannot hope to prove security when allowing cycles assuming only a standard security notion (in our case
IND-CPA) of the underlying encryption scheme. This would require circular (or key-dependent-message)
security [BRS02], which is stronger than IND-CPA [ABBC10]. Finally, we require that the challenge query
is a leaf in the graph; this restriction too is necessary unless we make additional assumptions on the
underlying encryption scheme.3

Selective security of GSD. In order to prove security of the GSD game, one must show how to turn
an adversary A who breaks the GSD game with some advantage ε = |Pr[b = b′] − 1/2| into an adversary
B who breaks the security of Enc with some advantage ε′ = ε′(ε). The security notion we consider is
the standard notion of indistinguishability under chosen plaintext attacks (IND-CPA). Recall that in the
IND-CPA security game an adversary B is given access to an encryption oracle Enck(.). At some point B
chooses a pair of messages (m0,m1), then gets a challenge ciphertext c = Enck(mb) for a random bit b,
and finally must output a guess b′. The advantage of B is |Pr[b = b′]− 1/2|.

It’s not at all clear how to construct an adversary B that breaks IND-CPA from an A who breaks GSD.
This problem becomes much easier if we assume that A breaks the selective security of GSD, where A must
choose all its encryption, corruption and challenge queries before the experiment starts.

In fact, it is sufficient to know the topology of the connected component in the key graph that contains
the challenge node. Let α denote the number of edges in this component. One can now define a sequence
of 2α hybrid games H0, . . . ,H2α−1, where the first game is the real game (i.e., the GSD game with b = 0
where the adversary gets the key), the last hybrid is the random game (b = 1), and moreover, from any
adversary who distinguishes Hi from Hi+1 with some advantage ε′, we get an adversary against the IND-
CPA security of Enc with the same advantage. In particular, if we have an A with advantage ε against
GSD, we can break the IND-CPA security with advantage ε′ ≥ ε/(2α − 1) ≥ ε/n2 (as an n vertex graph
has ≤ n2 edges). We illustrate this reduction in Figure 1.

Adaptive security of GSD. In the selective security proof for GSD we crucially relied on the fact that
we knew the topology of the underlying key graph. Proving adaptive security, where the adversary decides
what queries to ask adaptively during the experiment, is much more difficult. A generic trick to prove
adaptive security is “complexity leveraging”, where one simply turns an adaptive adversary into a selective
one by initially guessing the relevant choices to be made by the adaptive adversary and committing to
those (as required by the selective security game). If during the security game the adaptive choices by
the adversary disagree with our initial guess, we simply abort. The problem with this approach is that

2A related problem to GSD is security under selective opening attacks [DNRS99, FHKW10, BHY09], where one wants
to prove security when correlated messages are encrypted under different keys. Here, the adversary may adaptively chose to
corrupt some keys after seeing all ciphertexts, and one requires that the messages in the unopened ciphertexts are indistin-
guishable from random messages (sampled so they are consistent with the already opened ciphertexts). Also this problem is
notoriously hard, and no reduction to IND-CPA security of the underlying scheme is known.

3Concretely, this would require that for any k, k′,m one cannot distinguish Enck(m) from Enck′(m); see Footnote 11.
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Figure 1: Illustration of the selective security game. The green nodes correspond to keys, the dark nodes are
random values. The adversary commits to encryption queries (1, 3), (2, 3), (3, 5) and challenge 5 (there’s also an
encryption query (4, 6), but it’s not in the connected component containing the challenge, and thus not relevant for
defining the hybrids. The adversary can also corrupt keys 4 and 6 as they are outside of the component containing
the challenge). The hybrid H0 corresponds to the real game, the hybrid H5 is the random game, where instead of
an encryption of the challenge key Enck3(k5), the adversary gets an encryption of the random value Enck3(r5). If
an adversary A can distinguish any two consecutive hybrids Hi and Hi+1 with some advantage δ, we can use this A
to construct B which breaks the IND-CPA security of Enc with the same advantage δ: E.g., assume B is given an
IND-CPA challenge c = Enck(z) where z is one of two messages (which we’ll call k5 and r5). Now B can simulate
the game H2 for A, but when A makes the encryption query (3, 5) we answer with z. If z = k5, then we simulate
the game H2, but if z = r5 we simulate the game H3. (Note that B can simulate the games because k3, which in
the simulation is B’s challenger’s key, is not used anywhere else.) Thus, B has the same advantage in the IND-CPA
game, as A has in distinguishing H3 from H4.

assuming the adaptive adversary has advantage ε, the selective adversary we get via complexity leveraging
only has advantage ε/P where 1/P is the probability that our guess is correct, and typically is exponentially
small. Concretely, in the GSD game, we need to guess the nodes in the connected component containing
the challenge, and as the number of such choices is exponential in the number of keys n, this probability
is 2−Θ(n).

No security proofs for the adaptive security of GSD with a subexponential (in n) security loss are
known in general. But remember that the GSD problem abstracts the problems we encounter in proving
adaptive security of many real-world applications where the underlying key graph is typically not com-
pletely arbitrary, but often has some special structure. Motivated by this, Panjwani [Pan07] investigated
better reductions assuming some special structure of the key graph. He gives a proof where the security
degradation is only exponential in the depth of the key graph, as opposed to its size. Concretely, he proves
that if the encryption scheme is ε-IND-CPA secure then the adaptive GSD game with n keys where the
adversary is restricted to key graphs of depth ` is ε′-secure where

ε′ = ε ·O(n · (2n)`) .

Until today, Panjawain’s bound is the only non-trivial improvement over the 2Θ(n) loss for GSD and related
problems.

Our result. The main result of this paper is Theorem 2, which states that GSD restricted to trees can
be proven secure with only a quasi-polynomial loss

ε′ = ε · n3 log(n)+5 .

Our bound is actually even stronger as we don’t need the entire key graph to be a tree, it is sufficient
that the subgraph containing only the nodes from which the challenge node can be reached is a tree (when
ignoring edge directions).
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The bound above is derived from a more fine-grained bound: assuming that the longest path in the
key graph is of length `, the in-degree of every node is at most d and the challenge node can be reached
from at most s sources (i.e., nodes with in-degree 0) we get (note that `, d and s are at most n, and the
above bound was derived setting ` = d = s = n)

ε′ = ε · dn((2d+ 1)n)dlog se (3n)dlog `e .

Panjwani [Pan07] uses his bound to give a quasi-polynomial reduction of the Logical Key Hierarchy (LKH)
protocol [WGL00]. Panjwani first fixes a flaw in LKH, and calls the new protocol rLKH with “r” for
repaired. rLKH is basically the GSD game restricted to a binary tree.4

The users are the leaves of this tree, and keys are associated with all the nodes from leaves to the root.
Thus, if the tree is almost full and balanced, then it has only depth ` ≈ log n and Panjwani’s bound loses
only a quasi-polynomial factor nlog(n)+2 (if ` = log n). As here d = 2, ` = log n, s = n, our bound gives
a slightly worse nlog(n)+log log(n)+4 bound for this particular problem, but this is only the case if a large
fraction of the keys are actually used, and the adversary gets to see almost all of them. If ` is significantly
larger than log n (e.g., because only few of the keys are active, or the tree is constructed in an unbalanced
way) our bounds decrease only marginally, as opposed to exponentially fast in ` in [Pan07].

Graphs with small cut-width. The reason our result is restricted to trees is that in the process of
generating the hybrids, we have to guess nodes such that removing this node splits the tree in a “nice”
way (this has to be done log n times, losing a factor n in the distinguishing advantage every time).

One can generalize this technique (but we do not work out the details in this paper) to graphs with
small “cut-width” where we say that a graph has cut-width w if for any two vertices u, v that are not
connected by an edge, there exists a set of at most w vertices such that removing those vertices disconnects
u from v (note that a tree has cut-width w = 1). For graphs with cut-width w we get

ε′ = ε · n(2w+1) log(n)+4 ,

which is subexponential in n, and thus beats the existing exponential bound whenever w = o(n/ log2(n)).
Whether there exists a subexponential reduction which works for any graph is an intriguing open problem.

Shorter keys from better reduction. An exponential security loss (as via complexity leveraging)
means that that, even when assuming exponential hardness of Enc (which is a typical assumption for
symmetric encryption schemes like AES), one needs to use keys for Enc whose length is at least linear in
n to get any security guarantee for the hardness of GSD at all. Whereas our bound for trees means that a
key of length polylog(n) is already sufficient to get asymptotically overwhelming security (again assuming
Enc is exponentially hard).

Nested hybrids. In a classical paper [GGM86] Goldreich, Goldwasser and Mical gave a construction of
a pseudorandom function (PRF) from a length-doubling pseudorandom generator (PRG). More recently,
three papers independently [BW13, KPTZ13, BGI14] observed that this construction can also be used as
a so called constrained PRF, where one can, for every string x, output a constrained key kx that allows to
evaluate the PRF on all inputs with prefix x. Informally, the security required here is that an adversary
who can ask for constrained keys cannot distinguish the output of the PRF on some challenge input from
random. All three papers [BW13, KPTZ13, BGI14] only prove selective security of this constrained PRF,

4Let us stress that the graph we get when just adding an edge for every encryption query in rLKH is not a tree after a
rekeying operation. But for every node v, the subgraph we get when only keeping the nodes from which v can be reached is
a tree, and as explained above, this is sufficient.
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Figure 2: Illustration of our adaptive security proof for paths.

where the adversary must commit to the input on which it wants to be challenged before making any
queries (this proof is a hybrid argument losing a factor 2m in the distinguishing advantage, where m is
the input length of the PRF). One can then get adaptive security losing a huge exponential factor 2m

via complexity leveraging. Subsequently, Fuchsbauer et al. [FKPR14] gave a reduction that only loses
a quasi-polynomial (3q)logm factor, where q denotes the number of queries made by the adversary. Our
proofs borrows ideas from their work.

Very informally, the idea behind their proof is the following. As just outlined, in the standard proof
for adaptive security using leveraging, one first guesses the challenge query (losing a huge factor 2m) which
basically turns the adaptive attacker into a selective one, followed by as simple hybrid argument (losing
a small factor 2m) to prove selective security. The proof from [FKPR14] also first makes a guessing step,
but a much simpler one, where one just guesses which of the q queries made by the adversary is the first to
coincide with the challenge query on the first m/2 bits. This is followed by a hybrid argument losing a factor
3, so both steps together lose a factor 3q. At this point the reduction is not finished yet, but intuitively,
only reduced to the same problem, but now on inputs of only half the size m/2. These two steps can be
iterated logm times (losing a total factor of (3q)logm) to get a reduction to the security of the underlying
PRG.

Proof outline for paths. Our proof for GSD uses a similar approach as the one just explained, iterating
fairly simple guessing steps with hybrid arguments, but the analogy ends here, as the actual steps are very
different.

We first outline the proof for the adaptive security of the GSD game for a special case where the
adversary is restricted in the sense that the connected component in the key graph containing the challenge
must be a path. Even for this very special case, currently the best reduction [Pan07] loses an exponential
factor 2Θ(n). Here we’ll outline a reduction losing only a quasi-polynomial nlogn factor.5 Recall that the
standard way to prove adaptive security is to first guess the entire connected component containing the
challenge, and then prove selective security as illustrated in Figure 1.

Our approach is not to guess the entire path, but in a first step only the node in the middle of the path
(as we make a uniform guess, it will be correct with probability 1/n). This reduces the adaptive security
game to a “slightly selective” game where the adversary must commit initially to this middle node, at the

5Let us mention that it is trivial to prove security of GSD restricted to paths if we additionally assume that for random
keys k, k′ the ciphertext Enck(k′) is uniform given k′ (this is e.g. the case for one-time pad encryption Enck(k′) = k ⊕ k′), as
then the real and random challenge have the same distribution (they’re uniform) and thus even a computationally unbounded
adversary has zero advantage. (This is because in the path case, every key is used only once to encrypt.) The proof we outline
here does not require this special property of Enc, and this will be crucial to later generalize it to more interesting graphs.
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price of losing a factor n in the distinguishing advantage.6

Let H0 and H3 denote these “slightly selective” real and random GSD games (we also assume that the
adversary initially commits to the challenge query, which costs a factor of n). We have illustrated this with
a small example featuring a path of length 4 in Figure 2. The correct guess for the middle node for the
particular run of the experiment illustrated in the figure is i = 5. As now we know the middle vertex is
i = 5, we can define new games H1 and H2 which are derived from H0 and H3, respectively, by replacing
the ciphertext Enckj (ki) with an encryption Enckj (ri) of a random value (in the figure this is illustrated by
replacing the edge kj → ki with kj → ri).

So, what have we gained? If our adaptive adversary has advantage ε in distinguishing the real and
random games then she has advantage at least ε/n to distinguish the “slightly selective” real and random
games H0 and H3, and thus for some i ∈ {0, 1, 2} she can distinguish the games Hi and Hi+1 with advantage
ε/3n. If we look at two consecutive games Hi and Hi+1, then we see that they only differ in one edge (e.g.,
in H2 we answer the query (3, 5) with Enck3(r5), in H3 with Enck3(k5)), and moreover this edge will be at
the end of a path that now has only length 2, that is, half the length of the path we had for our original
real and random games.

We can now continue this process, constructing new games where the path length is halved, paying a
factor 3n in distinguishing advantage. For example, as illustrated in Figure 2, we can guess the node which
halves the path leading to the differing query in games H2 and H3 (for the illustrated path this would
be i = 3), then define new games where we assume the adversary commits to this node (paying a factor
n), and then define two new games H ′2 and H ′3 which are derived from games H2 and H3 (which now are
augmented by our new guess), respectively, by answering the query (j, i) that asks for an encryption of
this node (in the figure (j, i) = (1, 3)) with an encryption Enck1(r3) of the random r3 instead of Enck1(k3).

If we start with a path of length ` ≤ n, after log ` ≤ log n iterations of this process we have proven
the existence of two consecutive games (let’s call them G0 and G1) which differ only in a single edge, and
in the underlying key graph, this edge forms a path j → i of length 1 (i.e., the vertex j has in-degree 0).
That is, both games are identical, except that in one game we must answer the encryption query (j, i) with
Enckj (ki), in the other with Enckj (ri). Moreover, the key kj is not used anywhere else in the experiment
and we know exactly when this query is made during the experiment (as the adversary has committed
to i).

Given a distinguisher A for G0 and G1, we can now construct a new attacker B that breaks the IND-
CPA security of the underlying encryption scheme with the same advantage. For this, we let B choose
the two messages m0,m1 it wants to be challenged on in the IND-CPA security game at random.7 The
IND-CPA game samples a random bit b, and returns the challenge C = Enck(mb) to B, who must then
output a guess b′ for b. At this point, B invokes A and simulates the game G0 for it, choosing all keys at
random, except that it uses C to answer the encryption query (j, i).8 Finally, B forwards A’s guessing bit
b′. Identifying (k,m0,m1) with (kj , ki, ri) we see that depending on whether b = 0 or b = 1, we simulate
either the game G0 or G1. Thus, whatever advantage |Pr[b = b′]− 1/2| the adversary A has in distinguishing
G0 from G1, B will break the IND-CPA security of Enc with the same advantage.

6Technically, we never actually construct this “slightly selective” adversary, but (exactly as in complexity leveraging) we
simply commit to a random guess, then run the adaptive adversary, and if its queries are not consistent with our guess, we
abort outputting a random value. (We can also output a constant value, the point is that the advantage of the adversary,
conditioned on our guess being wrong, is zero; whereas the advantage, conditioned on the guess being correct, is the same
as the advantage of the adaptive adversary). Instead of this experiment, it is easier to follow our proof outline by thinking
of this experiment as having the adversary actually commit to its choices initially, but the reduction paying a factor (on the
distinguishing advantage of the adversary who is allowed to make this choice adaptively) that corresponds to the size of the
sample space of this guess.

7Note that B makes no encryption queries (which are allowed by the IND-CPA experiment) at all.
8Note that here we need the fact that node j has in-degree 0. This allows us to indentify the key kj with the key k used

by the IND-CPA experiment, as we never have to encrypt kj .
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Proof outline for trees. We will now outline our reduction of the adaptive security of the GSD game
to the IND-CPA security of Enc for a more general case: The adversary is restricted in that the key graph
resulting from his queries is such that the connected component containing the challenge is a tree. (Recall
that we already disallowed cycles in the key graph as this would require circular security. Being a tree means
that we also have no cycles in the key graph when ignoring edge directions). Note that paths as discussed
in the previous section are very special trees. The GSD problem on trees is particularly interesting, as it
captures some multicast encryption protocols like the Logical Key Hierarchy (LKH) protocol [WGL00], we
refer the reader to [Pan07] for details.

Trees with in-degree ≤ 1. Let us first consider the case where the connected component containing
the challenge is a tree, and moreover all vertices in it have in-degree 0 or 1. It turns out that this case is
not really more difficult to prove than the case of paths. The proof outlined for paths goes through with
only minor changes for such trees. In particular, note that given such a tree, there is exactly one vertex
with in-degree 0, which we call the root, and there is a unique path from the root to the challenge node.
We can basically ignore all the edges not on this path, and do a reduction as the one outlined above. The
only interesting difference is that now, when simulating the game Gb (where b is 0 or 1 depending on the
whether the challenge C with which we answer the encryption query (j, i) is Enckj (ki) or Enckj (ri)), the
adversary can also ask for encryption queries (j, x), for any x. This might seem like a problem as we don’t
know kj (we identified kj with the key used by the IND-CPA challenger). But recall that in the IND-CPA
security game we have access to an encryption oracle Enckj (.), and can thus simply ask the oracle for the
answer Enckj (kx) to such encryption queries.

General Trees. For general trees, where nodes can have in-degree greater than 1, we need to work a
bit more. We cannot directly generalize the proof for paths as now nodes (in particular, the challenge) can
be reached from more than 1 node with in-degree 0. We’ll call these the sources of this node, for example
in the tree H0 in Figure 3, the (challenge) node k7 has four sources k1, k2, k3 and k12.

On a high level, our proof strategy will be to start with a tree where the challenge node c has s sources
(more precisely, we have two games that differ in one edge that points to ki in one game, and to ri in the
other, like games H0 and H7 in Figure 3). We then guess a node v that “splits” the tree in a nice way, by
which we mean the following: Assume v has in-degree d, and we divert every edge going into v to a freshly
generated node; let’s call them v1, . . . , vd. Then this splits the tree into a forest consisting of d + 1 trees
(the component containing the challenge and one component for every vi). The node v “well-divides” the
tree if after the split the node c and all of v1, . . . , vd have at most ds/2e sources.

As an example, let’s consider again the tree H0 in Figure 3, where the challenge node k7 has 4 sources.
The node k9 would be a good guess, as it well-divides the tree: consider the forest after splitting at this
node as described above (creating new nodes v1, v2, v3 and diverting the edges going into k9 to them, i.e.,
replacing k5 → k9 by k5 → v1, k3 → k9 by k3 → v2, and k12 → k9 by k12 → v3). Then we obtain 4 trees,
where now c = k7 has only one source (k9) and the new nodes v1, v2, v3 have will have 2, 1 and 1 sources,
respectively.

Once we have guessed a well-dividing node v (or equivalently, the adversary has committed to such a
node), we define 2d hybrid games (where d is the degree of the well-dividing node) between the two existing
games, which we call H0 and H2d+1, as follows. H1 is derived from H0 by diverting the first encryption
query that asks for an encryption of v (i.e., it’s of the form (j, v) for some j) from real to random, i.e.,
we answer with Enckj (rv) instead of Enckj (kv). For i ≤ d, Hi is derived from H0 by diverting the first i
encryption queries. Hd+1 is derived from Hd by diverting the encryption query that asks for an encryption
of c from real to random. The final d− 1 hybrids games are used to switch the encryption of v back from
random to real, one edge at a time. This process is illustrated in the games H0 to H7 in Figure 3.

Because v was well-dividing (and we show in Lemma 2 that such a node always exists), it’s not hard
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k1 r1
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k11 r11

k3 r3

k6 r6
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H7: key graph in the
random experiment

challenge

Figure 3: Illustration of our adaptive security proof for general trees.

to prove the following property for any two consecutive games Hi and Hi+1. Those games differ in exactly
one edge, which for some j, v in one game is kj → kv and kj → rv in the other, and moreover, kj has at
most ds/2e sources. If we repeat this guessing/hybrid steps log(s) times, we end up with two games G0

and G1 which differ in one edge that has only one source. At this point we can use our reduction for trees
with only one source outlined above.

Analyzing the Security Loss. Every time we halve the number of sources, we have to guess a well-
dividing vertex (that costs us a factor n in the reduction), and then must add up to 2d intermediate
hybrids (where d is the maximum in-degree of any node), costing us another factor 2d. Assuming that the
number of sources is bounded by s, we have to iterate the process at most log(s) times. Finally, we lose
another factor d (but only once) because our final node can have more than one ingoing edge. Overall,
assuming the adversary breaks the GSD game with advantage ε on trees with at most s sources and in-
degree at most d, our reduction yields an attacker against the IND-CPA security of Enc with advantage
ε/ d(2d)log snlog s(3n)log `. For general trees, since s, d ≤ n, we have ε/ n3 logn+5.

2 Preliminaries

For a ∈ N, we let [a] = {1, 2, . . . , a} and [a]0 = [a]∪{0}. We say adversary (or distinguisher) D is t-bounded
if D runs in time t.

Definition 1 (Indistinguishability) Two distributions X and Y are (ε, t)-indistinguishable, denoted
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Y ∼(ε,t) X or ∆t(Y,X) ≤ ε, if no t-bounded distinguisher D can distinguish them with advantage greater
than ε, i.e.,

∆t(Y,X) ≤ ε⇐⇒ ∀Dt :
∣∣Pr [Dt(X) = 1]− Pr [Dt(Y ) = 1]

∣∣ ≤ ε . ♦

Symmetric encryption. A pair of algorithms (Enc,Dec) which take an input k ∈ {0, 1}λ, where λ is the
security parameter, and a message m (or a ciphertext) from {0, 1}∗ is a symmetric-key encryption scheme
if for all k,m we have Deck(Enck(m)) = m. Consider the game Expind-cpa-b

Enc,D between a challenger C and a

distinguisher D. C chooses a uniformly random key k ∈ {0, 1}λ and a bit b ∈ {0, 1}. D can make encryption
queries for messages m and receives Enck(m). Finally, D outputs a pair (m0,m1), is given Enck(mb) and
outputs a bit b′ ∈ {0, 1}, which is also the output of Expind-cpa-b

Enc,D .9

Definition 2 Let t ∈ N+ and 0 < ε < 1. An encryption scheme (Enc,Dec) is (t, ε)-IND-CPA secure if for
any t-bounded distinguisher D, we have∣∣Pr

[
Expind-cpa-1

Enc,D = 1
]
− Pr

[
Expind-cpa-0

Enc,D = 1
]∣∣ ≤ ε . ♦

3 The GSD Game

In this section we describe the generalized selective decryption game as defined in [Pan07] and give our

main theorem. Consider the following game, Exp
gsd-(n, b)
Enc,A called the generalized selective decryption (GSD)

game, parameterized by an encryption scheme Enc,10 an integer n and a bit b. It is played by the adversary
A and the challenger B. The game starts with B sampling n keys k1, k2, . . . , kn uniformly at random from
{0, 1}λ. A can make three types of queries during the game:

• encrypt: A query of the form encrypt(i, j) is answered with a ciphertext c← Encki(kj).

• corrupt: A query of the form corrupt(i) is answered with ki.

• challenge: The response to challenge(i) depends on the bit b: if b = 0 then the answer is ki; if b = 1
then the answer is a random value ri ∈ {0, 1}λ.

A can make multiple queries of each type, adaptively and in any order. It can also make several challenge
queries at any point in the in the game. Allowing the adversary to make multiple challenge queries means
that the respective keys are jointly pseudorandom (as opposed to individual keys being pseudorandom by
themselves). Allowing to interleave challenges with other queries models the requirement that they remain
pseudorandom even after more corrupting more keys or seeing further ciphertexts.

We can think of the n keys that B creates as n vertices, labeled 1, 2, . . . , n, in a graph. In the beginning
of the game there are no edges, but every time A queries encrypt(i, j), we add the edge i→ j to the graph.
When A queries corrupt(i) for some i ∈ [n] then we mark i as a corrupt vertex; when A queries challenge(i)
then we mark it as a challenge vertex. For an adversary A we call this graph the key graph, denoted G(A)
and we write V corr(A) and V chal(A) for the sets of corrupt and challenge nodes, respectively. (Note that
G(A) is a random variable depending on the randomness used by A and its challenger.)

9For this notion to be satisfied, Enc must be probabilistic. In this paper one may also consider deterministic encryption,
in which case the security definition must explicitly require that the challenge messages are fresh in the sense that D has not
asked for encryptions of them already.

10We will never actually use the decryption algorithm Dec in the game, and thus will not mention it explicitly.
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Legitimate adversaries. Consider an adversary that corrupts a node i in G(A) and queries challenge(j)
for some j which is reachable from i. Then A can successively decrypt the keys on the path from j to
i, in particular kj , and easily deduce the bit b. We only consider non-trivial breaks and require that no
challenge node is reachable from a corrupt node in G(A).

This is not the only restriction we must impose on G(A) if all we want to assume is that the encryption
scheme satisfies IND-CPA. First, we do not allow key cycles, that is, queries yielding

Enck1(k2),Enck2(k3), . . . ,Encks−1(ks),Encks(k1) ,

as this would require the scheme to satisfy key-dependent-message (a.k.a. circular) security [BRS02, CL01].
Second, IND-CPA security does not imply that keys under which one has seen encryptions remain

pseudorandom.11 Pseudorandomness of keys (assuming only IND-CPA security of the underlying scheme)
can thus only hold if their corresponding node does not have any outgoing edges. We thus require that all
challenge nodes in the key graph are sinks (i.e., their out-degree is 0). The requirements (as formalized
also in [Pan07]) are summarized in the following.

Definition 3 An adversary A is legitimate if in any execution of A in the GSD game the values of G(A),
V corr(A) and V chal(A) are such that:

• For all i ∈ V corr(A) and j ∈ V chal(A) we have that j is unreachable from i in G(A).

• G(A) is a directed acyclic graph (DAG) and every node in V chal(A) is a sink.

Let n ∈ N+ and G be a class of DAGs with n vertices. We say that a legitimate adversary A in the GSD
game is a G-adversary if in any execution the key graph belongs to G, i.e., G(A) ∈ G. ♦

Definition 4 Let t ∈ N+, 0 < ε < 1. An encryption scheme Enc is called (n, t, ε,G)-GSD secure if for
every legitimate G-adversary A running in time t, we have∣∣∣Pr

[
Exp

gsd-(n, 1)
Enc,A = 1

]
− Pr

[
Exp

gsd-(n, 0)
Enc,A = 1

]∣∣∣ ≤ ε . ♦

It is enough to assume one challenge query. Although the definition of GSD allows an adversary to
make any number of corruption queries, Panjwani [Pan07] observes that by a standard hybrid argument
one can turn any adversary with advantage ε (who makes at most q ≤ n challenge queries) into a new
adversary which makes only one challenge query, but still has advantage at least ε/q. From now on we
therefore only consider adversaries who make exactly one challenge query (keeping in mind that we have
to pay an extra factor n in the final distinguishing advantage for statements about general adversaries).

4 Single Source

In this section we begin with studying a simplified case. Assume that in the key graph constructed during
the GSD game there is only one source node from which the challenge node is reachable. That is, there
exists a path p1 → p2 → . . . → pq where p1 has in-degree 0, pq is the node for which A queries challenge
and all nodes pi, i ∈ [q] have in-degree 1. Let G1 be the set of all such graphs, and G`1 the subset of G1

where this path has length at most ` (note that ` ≤ n).

11IND-CPA does not guarantee that encryptions under different keys are indistinguishable: Consider an IND-CPA-secure
encryption scheme (Enc,Dec) and define a new scheme as follows: keys are doubled in length and an encryption of m under
k1||k2 is defined as Enck1(m)||k2. Then this scheme is still IND-CPA, encryptions can be linked to their keys.
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Theorem 1 (GSD on trees with one path to challenge) Let t ∈ N, 0 < ε < 1 and G1 be the class of
key graphs just defined. If an encryption scheme is (t, ε)-IND-CPA secure then it is also (n, t′, ε′,G1)-GSD
secure for

ε′ = ε · n (3n)dlogne and t′ = t−QAdvTEnc − Õ(QAdv) .

Here TEnc denotes the time required to encrypt a key, and QAdv denotes an upper bound on the number of
queries made by the adversary.12 If we replace G1 with G`1 we get

ε′ = ε · n (3n)dlog `e and t′ = t−QAdvTEnc − Õ(QAdv) .

GSD on single-source graphs. In GSD game Exp
gsd-(n, b)
Enc on G1 between a challenger B and an

adversary A B first samples n keys k1, k2, . . . , kn at random from {0, 1}λ. Let us assume that B also
samples fake keys r1, . . . , rn. On all encrypt queries B returns real responses. If b = 0, the response to
challenge(z) is kz; if b = 1 then the response is rz.

The connected component of the key graph containing z contains a path p1 → p2 → . . .→ pq (with p1

having in-degree 0, all other pi having in-degree 1 and pq = z having out-degree 0.) Thus, during the game
encrypt(pi−1, pi) was queried for all i ∈ [q] but there were no other queries encrypt(x, pi) for any x ∈ [n]
and pi. Eventually, A outputs a bit b′ ∈ {0, 1}, which is also the output of the game. If the encryption
scheme Enc is not (t′, ε′,G1)-GSD secure then there exists a G1-adversary A running in time t′ such that∣∣Pr

[
Exp

gsd-(n, 0)
Enc,A = 1

]
− Pr

[
Exp

gsd-(n, 1)
Enc,A = 1

]∣∣ > ε′ , (1)

Our goal. Suppose we knew that our GSD adversary A wants to be challenged on a fixed node z∗ and
that it will make a query encrypt(y, z∗) for some y which it will not use in any other query. Then we could
use A directly to construct a distinguisher D as in Defintion 2: D sets up all keys kx, x ∈ [n], samples a
value rz∗ and runs A, answering all its queries using its keys; except when encrypt(y, z∗) is queried for any
y ∈ [q], D queries its own challenger on (kz∗ , rz∗) and forwards the answer to A. Moreover, challenge(z∗) is
answered with kz∗ . If D’s challenger C chose b = 0, this perfectly simulates the real game for A. If b = 1
then A gets an encryption of rz∗ and the challenge query is answered with kz∗ , although in the random
GSD game A expects an encryption of kz∗ and challenge(z∗) to be answered with rz∗ . However, these two
games are distributed identically, since both kz∗ and rz∗ are uniformly random values that do not occur
anywhere else in the game. Thus D simulates the real game when b = 0 and the random game when b = 1.
Note that D implicitly set ky to the key that C chose, but that’s fine, since we assumed that ky is not used
anywhere else in the game and thus not needed by D for the simulation.

Finally, suppose that, in addition to the challenge z∗, we knew y∗ for which A will query encrypt(y∗, z∗).
Then we could also allow A to issue queries of the form encrypt(y∗, x), for x other than z∗. D could easily
simulate any such query by querying kx to its encryption oracle.

Unfortunately, general GSD adversaries can decide adaptively on which node they want to be chal-
lenged, and worse, they can make queries encrypt(x, y), where y is a key that encrypts the challenge.

We will construct a series of hybrids where any two consecutive games Game and Game′ are such that
from a distinguisher A for them, we can construct an adversary D against the encryption scheme with the
same advantage. For this, the two games should only differ in the response of one encryption query on the
path to the challenge, say encrypt(y, z), which is responded to with a real ciphertext Encky(kz) in Game
and with a fake ciphertext Encky(rz) in Game′. Moreover, the key ky must not be encrypted anywhere
else in the game, as our distinguisher D will set the unknown key of its IND-CPA challenger C to be ky.

12If Enc is deterministic, then w.l.o.g. we can assume QAdv ≤ n2 as there are ≤ n(n− 1)/2 possible encryption queries (plus
at most n corruption and challenge queries). If Enc is probabilistic, then we allow the adversary any number of encryption
queries.
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Thus, in Game and Game′ all queries encrypt(x, y), for any x, are responded to with a fake ciphertext
Enckx(ry).

Summing up, for some y we need the two games to have the following properties:

• Property 1. Game and Game′ are identical except for the response to one query encrypt(y, z), which
is replied to with a real ciphertext in Game and a fake one in Game′.

• Property 2. Queries encrypt(x, y) are replied to with a fake response in both games.

If we knew the entire key graph G(A) before answering A’s queries then we could define a series of 2q − 1
games as in Figure 1 where we consecutively replace edges from the source to the challenge by fake nodes
and then go back replacing fake edges with real ones starting with pq−2 → pq−1. Any two consecutive
games in such a sequence would satisfy the two properties, so we could use them to break IND-CPA.

The problem is that in general the probability of guessing the connected component of the challenge
is exponentially small in n and consequently from a GSD adversary’s advantage ε′ we will obtain a dis-
tinguisher D with advantage ε = ε′/O(n!). To avoid an exponential loss, we thus must avoid guessing the
entire component at once.

The first step. Our first step is to define two new games Game{q}∅ and Game{q}{q} , which are modifications

of Expgsd-0 and Expgsd-1, respectively. Both new games have an extra step at the beginning of the game:
B guesses which key is going to be the challenge key and at the end of the game only if its guess was correct,
the output of the game is A’s output and otherwise it is 0. Clearly B’s guess is correct with probability
1/n. Aside from this guessing step, Game{q}∅ is identical to Expgsd-0; all responses are real. We therefore

have Pr[Game{q}∅ = 1] = 1/n · Pr[Expgsd-0 = 1].

Analogously, we define an auxiliary game, Game{q}1 , which is identical to Expgsd-1, except for the

guessing step. Again we have Pr[Game{q}1 = 1] = 1/n · Pr[Expgsd-1 = 1]. We then define Game{q}{q} exactly

as Game{q}1 , except for a syntactical change: Let z be the guessed value for the challenge node. Then
any query encrypt(x, z) is replied to with Enckx(rz), that is, an encryption of the fake key rz. (Note that
this game can be simulated, since we “know” z when guessing correctly.) On the other hand, the query
challenge(z) is answered with kz (rather than rz in Expgsd-1). Since the difference between Game{q}1 and

Game{q}{q} is that we have replaced all occurrences of kz by rz and all occurrences of rz by kz, which are

distributed identically (thus we’ve merely swapped the names of kz and rz), we have Pr[Game{q}{q} = 1] =

Pr[Game{q}1 = 1] = 1/n · Pr[Expgsd-1 = 1].
Together with Equation (1), we have thus∣∣Pr

[
Game

{q}
∅ = 1

]
− Pr

[
Game

{q}
{q} = 1

]∣∣ = 1/n ·
∣∣Pr

[
Expgsd-0 = 1

]
− Pr

[
Expgsd-1 = 1

]∣∣ > 1/n · ε′ .

Note that we use the notational convention that for sets I ⊆ P ⊆ [n], the game GamePI is derived from the
real game by additionally guessing the nodes corresponding to P and answering encryptions of the nodes
in I with fake keys (this is made formal in Figure 4 below).

The second step. Assume q is a power of 2 and consider Game{q/2, q}∅ , which is identical to Game{q}∅ ,
except that in addition to the challenge node, B also guesses which node x ∈ [n] is going to be the node in
the middle of the path to the challenge, i.e. pq/2 = x. The output of Game{q/2, q}∅ is A’s output if the guess
was correct and 0 otherwise. Since B guesses correctly with probability 1/n, we have

Pr
[
Game

{q/2, q}
∅ = 1

]
= 1/n · Pr

[
Game

{q/2}
∅ = 1

]
.
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By guessing the middle node, we can assume the middle node is known and this will enable us to define
a hybrid game, Game{q/2, q}{q/2} , in which the query for the encryption of kpq/2 is responded to with a fake

answer. In addition, we consider games Game{q/2, q}{q} and Game{q/2, q}{q/2, q} which are similarly defined by making

the same changes to game Game{q}{q} , i.e. guessing the middle node and replying to the encryption query

of the guessed key with a fake and a real ciphertext respectively. Again, we have Pr[Game{q/2, q}{q} = 1] =
1/n ·Pr[Game{q}{q} = 1]. Therefore (t′, ε′/n)-distinguishablity of Game{q}∅ and Game{q}{q} implies that Game{q/2, q}∅

and Game{q/2, q}{q} are (t′, ε′/n2)-distinguishable, i.e. ∆t

(
Game{q/2, q}∅ ,Game{q/2, q}{q}

)
> ε′/n2, and therefore by

the triangle inequality

∆t

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q/2}

)
+ ∆t

(
Game

{q/2, q}
{q/2} ,Game

{q/2, q}
{q/2, q}

)
+ ∆t

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
≥ ∆t

(
Game

{q/2, q}
∅ ,Game

{q/2, q}
{q}

)
>

ε′

n2
. (2)

By Equation (2), at least one of the pairs of games must be (t′, ε′/3n2)-distinguishable. The two games
of every pair differ in exactly one point, as determined by the subscript of each game. For instance, the
difference between Game{q/2, q}{q/2, q} and Game{q/2, q}{q} is the encryption of node q/2.

Recall that our goal is to construct hybrids where the differing query encrypt(y, z) is such that all
queries encrypt(x, y) are replied to with Enckx(ry), as formalized as Property 2. Games Game{q}∅ and

Game{q}{q} differed in the last query in the path and the only key above it that is not encrypted anywhere
is the start of the path. What we have achieved with our games above is to halve that distance: the first
games, Game{q/2, q}∅ ,Game{q/2, n}{q/2} and the last two games Game{q/2, q}{q/2, q} ,Game{q/2, q}{q} differ in a node that is only

half way down the path; and the middle two games Game{q/2, q}{q/2} ,Game{q/2, q}{q/2, q} differ in the last node, but half
way up the path there is a key, namely kq/2, which is not encrypted anywhere, as all queries encrypt(x, q/2)
are answered with Enckx(rq/2).

The remaining steps. For any of the three pairs that is (t′, ε′/3n2)-distinguishable (and by Equation (2)
there must exist one), we can repeat the same process on the half of the path which ends with the query
that is different in the two games. For example, assume this holds for the last pair, that is

∆t

(
Game

{q/2, q}
{q/2, q},Game

{q/2, q}
{q}

)
>

ε′

3n2
. (3)

We repeat the process of guessing the middle node between the differing node and the random node above
(in this case the root of the path), which is thus node q/4, and obtain a new pair which satisfies

∆t

(
Game

{q/4, q/2, q}
{q/2, q} ,Game

{q/4, q/2, q}
{q}

)
>

ε′

3n3
, (4)

by Equation (3) and the fact that the guess is correctly with probability 1/n. We can now define two
intermediate games

Game
{q/4, q/2, q}
{q/4, q/2, q} and Game

{q/4, q/2, q}
{q/4, q} (5)

where we replaced the encryption of kpq/4 by one of rpq/4 . As in Equation (2), we can again define a
sequence of games by putting the games in Equation (5) between the ones in Equation (4) and argue that
by Equation (4), two consecutive hybrids must be is (t′, ε′/(32n3))-distinguishable. What we have gained
is that any pair in this sequence differs by exactly one edge and the closest fake answer above is only a
fourth of the path length away. Repeating these two steps a maximum number of dlog qe times, we arrive
at two consecutive games, where the distance from the differing node to the closest “fake” node above is
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GamePI , with I ⊆ P ⊆ [n] is defined as follows:

• For every i ∈ P , B chooses vi ← [n], which is B’s guess for the node at position i in the final path.

• B chooses 2n keys k1, r1, k2, r2 . . . , kn, rn ← {0, 1}λ and runs A.

• Whenever A makes a query encrypt(x, y), B does the following: If y = vi for some i ∈ I then reply with
Enckx(rvi); otherwise reply with Enckx(ky).

• When A makes the query challenge(z), return kz.

• Let b′ ∈ {0, 1} be A’s output. At then end of the game, consider the longest path p0 → p1 → · · · → pq in
G(A), with pq being the argument of A’s challenge query. If for all i ∈ P , we have vi = pi then B returns b′,
that is, A’s output. Otherwise, B returns 0.

Figure 4: Definition of GamePI for the single-source case.

1. We have thus found two games which satisfy Properties 1 and 2, meaning we can use a distinguisher A
to construct an adversary D against the encryption scheme.

Since a path has at most n nodes, after at most log n steps we end up with two games that are
(t′, ε′/n(3n)dlogne)-distinguishable and which can be used to break the encryption scheme. If the adversary
is restricted to paths of length ` (i.e., graphs in G`1), this improves to (t′, ε′/n(3n)dlog `e).

Proof of Theorem 1. We formalize our method in order to give a proof of the theorem. In Figure 4 we
describe game GamePI , which is defined by the nodes on the path that are guessed (represented by the set
P ) and the nodes where an encryption of a key is replaced with an encryption of a value r (represented by
I with I ⊆ P ).

Lemma 1 Let I ⊆ P ⊆ [n] and z ∈ P \ I. Also let y be the largest number in I such that y < z, and y = 0
if z is smaller than all elements in I. If GamePI and GamePI∪{z} are (t, ε)-distinguishable then

• If z = y + 1 then Enc is not (t+QAdvTEnc + Õ(QAdv)), ε)-IND-CPA-secure.

• If z > y + 1, define z′ = y + b(z − y)/2c, P ′ = P ∪ {z′} and

I1 = I , I2 = I ∪ {z′} , I3 = I ∪ {z′, z} , I4 = I ∪ {z} .

Then for some i ∈ {1, 2, 3}, games GameP
′

Ii
and GameP

′
Ii+1

are (t, ε/3n)-distinguishable.

The proof of this lemma can be found in Appendix A. Applying Lemma 1 repeatedly dlog ne times (or
dlog `e if we know an upper bound on the path length `), we obtain the proof of Theorem 1.

5 General Trees

For a node v in a directed graph G let Tv denote the subgraph of G we get when only keeping the edges
on paths that lead to v.

In this section we prove bounds for GSD if the underlying key graph is a tree. Concretely, let Gτ be
the class of key graphs where G ∈ Gτ if G contains one designated “challenge node” z and the graph Tz is
a tree (when ignoring edge directions).

To give more fine-grained bounds we’ll define a subset Gs,d,`τ ⊆ Gτ as follows. For G ∈ Gτ , let z be the
challenge node and Tz as above. Then G ∈ Gs,d,`τ if the challenge node has at most s sources (i.e., there are
at most s nodes u of in-degree 0 s.t. there is a directed path from u to z), every node in Tz has in-degree
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at most d and the longest path in Tz has length at most `. Note that as d < n, s < n and ` ≤ n any G ∈ Gτ
with n nodes is trivially in Gn−1,n−1,n

τ .

Theorem 2 (Security of GSD on trees) Let n, t ∈ N, 0 < ε < 1 and Gτ be the class of key graphs just
defined. If an encryption scheme is (t, ε)-IND-CPA secure then it is also (n, t′, ε′,Gτ )-GSD secure for

ε′ = ε · n2(6n3)dlogne ≤ ε · n3dlogne+5 and t′ = t−QAdvTEnc − Õ(QAdv)

(with QAdv, TEnc as in Theorem 1). If we replace Gτ with Gs,d,`τ then

ε′ = ε ·
(
dn((2d+ 1)n)dlog se (3n)dlog `e) and t′ = t−QAdvTEnc − Õ(QAdv) .

Notation. As all our graphs will have vertex set [n], with “graph” we also refer to the set of edges of a
graph. Thus for two graphs (set of edges) T, T′, by T \T′ we mean the graph T (with vertex set [n]) after
removing all edges of T′ and T ∪ T′ is the graph of all edges of T and T′.

For a node x ∈ [n] we denote by Tx the graph (set of edges) of all the paths in G(A) that reach x.
Recall that a node with in-degree 0 is called a source and denote by S(v) the number of sources in the tree
Tv. Note that S(v) is also the number of paths to a node v. For a tree T with at least 2 sources we say
a node v well-divides T if the number of sources in each subtree obtained from removing all edges of the
form ∗ → v, is less than or equal to half of the sources in T. If (x, y) ∈ T, we call x a parent of y and y a
child of x. Furthermore, we let x[i] denote the i-th parent of node x, which means that in the GSD game
resulting in G(A) there was a query encrypt(x[i], x) and before that there were i − 1 queries of the form
encrypt(y, x) with y 6= x[i].

Our approach. Generalizing the proof for single-source graphs from Section 4, we will define a sequence
of hybrids such that there are two games Game and Game′ which have the following properties:

• the two games differ in exactly one query, encrypt(y, z);

• the node y has only one source, i.e., S(y) = 1.

Finding Game and Game′ will enable us to apply Theorem 1 to these two games and derive contradiction
as we did before.

In the single-source game we guessed which node will be in the middle of the path to the challenge,
as this allowed us to reduce the problem to smaller problems. Here we need a new metric since there are
multiple paths. Whereas before we halved the length of the path to the challenge, we now first halve the
number of such paths, by guessing a node v that well-divides the tree.

Let us look at the original games Expgsd-0 and Expgsd-1 and suppose they are δ-distinguishable.
Unlike for the single-source case, these games differ not in one but in at most d edges: with z denoting
the challenge, in Expgsd-0 all edges ∗ → z are real, whereas they are fake in Expgsd-1 (and there are
at most d of them). We start with defining two new games, where the only change is that we guess the

challenge node. Other than that Game
(0)
(0) is defined as Expgsd-0 and Game

(0)
(d) as Expgsd-1 (except for the

syntactical swap of kz and rz). Note that the subscript (d) of Game denotes that the “first d” (that is, all)

queries of the form encrypt(∗, z) are replied to with fake ciphertexts. Games Game
(0)
(0) and Game

(0)
(d) are thus

(δ/n)-distinguishable.

We now define d− 1 intermediate games Game
(0)
(i) , 1 ≤ i ≤ d− 1, where in Game

(0)
(i) the first i responses

to encrypt(∗, z) are fake and the rest are real. For some i ∈ [d], Game
(0)
(i−1) and Game

(0)
(i) are thus (δ/(dn))-

distinguishable. What we have gained is that now in the sequence of hybrids, two games only differ in the
response of one query.
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Suppose that Game
(0)
(j−1) and Game

(0)
(j) are (δ/(dn))-distinguishable and let z denote the challenge. The

games differ in the edge z[j] → z, which is real in Game
(0)
(j−1) and fake in Game

(0)
(j). The node z[j] could

itself still have s sources, so our next step is to reduce this. We thus define two new games where we

guess a well-dividing node for Tz[j]. We define Game
(0,j)
(j−1) as Game

(0)
(j−1), where in addition to the challenge,

we guess the node v that well-divides Tz[j], that is the tree above the j-th edge that goes into z. We

analogously define Game
(0,j)
(j) and have that Game

(0,j)
(j−1) and Game

(0,j)
(j) are (δ/(dn2))-distinguishable.

Having found a well-dividing node v, we can now define 2d intermediate hybrids, where we replace

every edge ∗ → v, one by one, with a fake edge and call these hybrids Game
(0,j)
(j−1,i) for i = 1, . . . , d.

Game
(0,j)
(j−1,i) is thus defined as Game

(0,j)
(j−1), except that the first i answers to queries encrypt(∗, v) are fake.

In Game
(0,j)
(j−1,d), our splitting node v has thus only fake ingoing edges, which means that in the key graph

we have removed S(v) real sources from the challenge and added one source, namely v. The next hybrid

is Game
(0,j)
(j,d) (where we changed the edge z[j] → z from real to random), and then a sequence of hybrids

Game
(0,j)
(j,i) for i = d, . . . , 1, which changes back the edges ∗ → v from fake to real.

What have we gained by this? Since v well-divided the tree, each differing edge between two consecutive
hybrids in the sequence

Game
(0,j)
(j−1) = Game

(0,j)
(j−1,0), . . . ,Game

(0,j)
(j−1,d),Game

(0,j)
(j,d), . . . ,Game

(0,j)
(j,0) = Game

(0,j)
(j) (6)

has at most ds/2e sources. Moreover, there must be two consecutive hybrids that are δ/((2d + 1)dn2)-
distinguishable .

Continuing with this pair and guessing a well-dividing node (paying a factor 1/n), we embed 2d inter-
mediate hybrids, of which a pair must be (δ/((2d+1)2dn3))-distinguishable. The differing edge in this pair
has now only ds/4e source nodes. We can now continue this recursion, e.g., guessing and then embedding

between games Game
(0,j1,j2)
(j1,j2−1) and Game

(0,j1,j2)
(j1,j2) the sequence

Game
(0,j1,j2)
(j1,j2−1) = Game

(0,j1,j2)
(j1,j2−1,0), . . . ,Game

(0,j1,j2)
(j1,j2−1,d),Game

(0,j1,j2)
(j1,j2,d), . . . ,Game

(0,j1,j2)
(j1,j2,0) = Game

(0,j1,j2)
(j1,j2) .

But what happens if in Equation (6), the middle games Game
(0,j)
(j−1,d) and Game

(0,j)
(j,d) are distinguishable?

They differ in the j-th edge to the challenge, i.e., z[j]→ z. Since in both games all edges going into v (the
first splitting node) are fake, we now need to find a node which well-divides the tree Tz \ Tv, as this is
the tree containing all the real sources leading to z. Whereas j ∈ [d] in the superscript denoted guessing a
well-dividing node for the j-th tree above, we denote by ‘0’ the fact that the guessed node must well-divide

the tree below. We thus obtain Game
(0,j,0)
(j−1,d) and Game

(0,j,0)
(j,d) from Game

(0,j)
(j−1,d) and Game

(0,j)
(j,d), respectively,

where in addition we guess a node v′ well-dividing the tree Tz \ Tv. In any case we obtain a pair that is
(δ/((2d+ 1)3dn4)-distinguishable and the differing edge has fewer than ds/8e sources.

Since, every time we guess and embed intermediate games, we halve the number of sources, after dlog se
such steps we have two games that differ in one edge which has only 1 source, (meaning we have found
Game and Game′). These games are thus (δ/d(2d+ 1)dlog sendlog se+1)-distinguishable. We now switch to
the technique from Section 4, guessing the middle node of the path and embedding 2 intermediate hybrids,
losing 1/3n in every step. After dlog `e (where ` is the maximum length of any path), we arrive at two
games from which we can construct an IND-CPA distinguisher. We lost another factor 1/(3n)dlog `e. In
total, starting from a GSD adversary with success probability δ, we obtain an IND-CPA distinguisher with
probability

δ/
(
dn((2d+ 1)n)dlog se (3n)dlog `e) .
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GamePI is defined as follows:

• P is a list (a1, . . . , amP
), where a1 = 0 and ai ∈ [d]0.

• I is a list (e1, . . . , emI
) with mI ≤ mP and ei ∈ [d]0

• B starts with guessing nodes v1, v2, . . . , vmP
.

• For all 1 ≤ i ≤ mI and every ei = I[i], B returns fake responses to the first ei queries encrypt(∗, vi). All other
queries are responded with real answers. In the end A outputs bit b ∈ {0, 1}.

• Define T(1), . . . ,T(mP ) from P, v1, . . . , vmP
as in Equation (7).

• If v1 is the challenge node and for i > 1, vi well-divides T(i), then return b; otherwise return 0.

Figure 5: Definition of GamePI for the general-tree case.

To formalize this approach, in Figure 5 we formally define a hybrid game GamePI , where P determines
the nodes we guess in the graph and I determines the queries (involving the guessed nodes) that are replied
to with a fake answer. In contrast to Section 4, P and I are ordered lists rather than sets. We explain our
definition in the following.

Checking whether we’ve guessed correctly. We start with explaining how in GamePI we check
whether our guesses were well-dividing nodes. As an example, consider Figure 3. H0 corresponds to

Game
(0,1)
(0,0) (the superscripts mean that we must guess the challenge v1 (the 0 in (0, 1)) and a splitting node

v2 for the tree Tv1[1] that ends in the first (denoted by 1 in (0, 1)) edge going into the challenge; the
subscripts mean that there are 0 fake edges going into v1 and 0 fake nodes going into v2. Guesses v1 = 7
and v2 = 9 would be correct, since A queried challenge(7) and v2 = 9 well-divides the first subtree going
into the challenge, that is Tv1 .

Now consider H3 and H4, corresponding to Game
(0,1)
(0,3) and Game

(0,1)
(1,3), respectively. The next guess v3

should split the tree Tv1 \ Tv2 (obtaining games Game
(0,1,0)
(0,3) and Game

(0,1,0)
(1,3) ). If we were to further recurse

between these games, we thus never have to consider Tv2 anymore, because in all games all edges going
into v2 are fake edges.

The tree T(i), which vi should well-divide is thus defined for i = 1, . . . as follows: as long as there have
not been any ai = P [i] with ai = 0 (that is, we considered a subtree below the splitting node), T(i) is the
tree ending in the ai-th parent of vi−1 (that is, Tvi−1[ai]). When we have ai = 0 for the first time then the

lower subtree is chosen, that is T(i) = T(i−1) \ Tvi−1 . In any further recursion, we need not consider Tvi−1

anymore, so we store it as R(i) (for “removed”). If ai+1 ≥ 1 then vi+1 must well-divide Tvi[ai+1] \ R(i). We

need to apply the same method for the rest of the guessed nodes as well. Meaning we let R(i) be the set
of all the removed edges in the first ith steps and we first remove R(i) from Tvi−1[ai] or T(i) for ai ≥ 1 and
ai = 0 respectively, and what is left must be well-divided by the new guessed node. Formally,

R(1) = ∅ T(1) = Tv1
if ai = 0 then R(i) = R(i−1) ∪ Tvi−1 , T(i) = T(i−1) \ R(i),

if ai ≥ 1 then R(i) = R(i−1), T(i) = Tvi−1[ai] \ R(i)
(7)

Set I and the hybrid games. In Section 4 the set I was a subset of P and for every x in I the query
encrypt(∗, x) was responded with a fake answer. Unlike before, here we can have multiple queries of form
encrypt(∗, x), therefore I needs to determine which queries are fake for each node in P . To do so, the i-th
element in I, ei, determines that the first ei queries encrypt(∗, vi) are responded with fake answers and the
rest of queries are responded with real ones. If ei = 0 then all such queries are replied with real answers.
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Previously, for each new element z added to P , and for any game GamePI , we defined two new hybrid
games, one with a fake response and one with a real response to the query encrypt(∗, z). Thus for any
pair of games GamePI and GamePI′ , with |I4I ′| = 1 we ended up with 4 games which built up 3 pairs
of games satisfying property 1. Here, for a newly guessed node vi, we can define many new games with
Pnew = P ‖ (ai) and Inew = I ‖ (ei), for ai, ei ∈ [d]0. However not all of such games are needed. First
consider two games GamePI and GamePI′ with |P | = |I| = m− 1 such that they satisfy Property 1, meaning

• I and I ′ are identical except at one position i, we have I[i] = ei and I ′[i] = e′i, and |I| = |I ′| = m− 1

• e′i < d and ei = e′i + 1, where d is the indegree of vi,

• If i < m− 1 then, ai+1 = ei, ei+1 = d and ∀j , i+ 1 < j < m, ej = 0, aj = d.

The differentiating step in these two games is encrypt(vi[ei], vi). Therefore the new element (to be guessed)
must be in the subtree that ends with vi[ei]. That’s why if the (i + 1)-th element is already in the set P
then it must be ai+1 = ei, and to add a new element in P we must set am = 0. On the other hand, if ai
is the last element in S, the new element must be am = ei. Thus we only need to define 2(d + 1) games
which create 2d+ 1 pairs of games satisfying Property 1, as listed below.(

Game
P‖(am)
I‖(em) ,Game

P‖(am)
I‖(em+1)

)
for 0 ≤ em < d,(

Game
P‖(am)
I′‖(em),Game

P‖(am)
I′‖(em+1)

)
for 0 ≤ em < d,(

Game
P‖(am)
I‖(d) ,Game

P‖(am)
I′‖(d)

)
.

Finally, one of the pairs of games satisfying property 1, must be δ/n(2d+ 1)-distinguishable, if GamePI and
GamePI′ are δ-distinguishable.

In Lemma 3 we formalize this argument. Let us first show that well-dividing nodes always exist. The
proof of the following is in Appendix B.

Lemma 2 Let T be a tree of n nodes, s sources, s ≥ 2 and let x be a sink in T with strictly more than
one source reaching x. Then there exists a node x∗ in T such that x∗ well-divides Tx.

Lemma 3 Let P and I be sets of integers as defined in Figure 5 and |P | = |I| = m − 1 ≥ 0, and I ′ be
identical to I except for i∗-th element, we have I[i∗] = ei∗ and I ′[i∗] = e′i∗ = ei∗ − 1. Then there are 2
cases: either

• i∗ = m− 1, then let am := ei∗; or

• i∗ < m− 1, ai∗+1 = ei∗, ei∗+1 = d and ∀j, i∗ + 1 < j < m, aj = 0, ej = d, then let am := 0.

If GamePI and GamePI′ are (t, ε)-distinguishable then

• if m = dlog se+ 1 then, (Enc,Dec) is not (t+QAdvTEnc + Õ(QAdv), ε/(3n)dlog `e)-IND-CPA-secure.

• Otherwise, at least one of the following pairs of games is (t, ε/n(2d+ 1))-distinguishable

Game
P‖(am)
I‖(em) and Game

P‖(am)
I‖(em+1) for 0 ≤ em < d

Game
P‖(am)
I‖(d) and Game

P‖(am)
I′‖(d)

Game
P‖(am)
I′‖(em) and Game

P‖(am)
I′‖(em+1) for 0 ≤ em < d

See Appendix C for the proof. Guessing the challenge node and defining games Game
(0)
(0), . . . ,Game

(0)
(d) loses

a factor n · d. Applying Lemma 3 repeatedly for dlog se times, we get the proof of Theorem 2.
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A Proof of Lemma 1

If z = y + 1 then the pair (GamePI ,GamePI∪{z}) satisfies Properties 1 and 2. As we’ll explain below, this
allows us to construct distinguisher D that breaks the IND-CPA security of the encryption scheme with the
same advantage, in time t that it takes to run A plus the time that it takes to simulate the game GamePI ,
which consists of at most QAdv encryption or challenge queries, each taking time TEnc, plus some Õ(QAdv)
bookkeeping overhead. Thus we get a total running time of of t+QAdvTEnc + Õ(QAdv).

In both games the query encrypt(py−1, py) is answered with Enckpy−1
(rpy), meaning that kpy is never

encrypted (as there cannot be other queries encrypt(x, py), since A is a G1 adversary). Moreover, note
that py cannot be queried to corrupt either. The query encrypt(py, pz) is responded to with a real answer
Enckpy (kpz) in GamePI and with a fake answer Enckpy (rpz) in GamePI∪{z}.

We now let our distinguisher D against Enc simulate the game GamePI implicitly replacing kpy with its
challenger’s key (but sampling all remaining real and random keys itself). D answers queries encrypt(py, x),
for x 6= pz by using the encryption oracle. When A queries encrypt(py, pz), D outputs the challenge
(kpz), rpz) and forwards the answer to A. Depending on D’s challenger’s bit, D either simulates GamePI or
GamePI∪{z}, and thus has the same advantage as A.

For the case z > y+1 we have that the node z′ is roughly in the middle of y and z on the path. If GamePI and

GamePI∪{z} are (t, ε)-distinguishable then games Game
P∪{z′}
I and Game

P∪{z′}
I∪z are (t, ε/n)-distinguishable: the

guess of z′ ← [n] does not influence A’s behavior (it only influences B’s output after A has stopped), and

the probability of guessing correctly is 1/n. We therefore have Pr[GamePJ = 1] = 1/n · Pr[Game
P∪{z′}
J = 1]

for any J ⊆ P and thus

∆t

(
Game

P∪{z′}
I ,Game

P∪{z′}
I∪{z}

)
=

1

n
·∆t

(
GamePI ,GamePI∪{z}

)
>

ε

n
.

By the triangle equality we have (recall that P ′ = P ∪ {z′}):

∆t

(
GameP

′
I ,GameP

′

I∪{z′}
)

+ ∆t

(
GameP

′

I∪{z′},GameP
′

I∪{z′,z}
)

+ ∆t

(
GameP

′

I∪{z′,z},GameP
′

I∪{z}
)
≥

∆t

(
GameP

′
I ,GameP

′

I∪{z}
)
>

ε

n
.

Thus at least one of the summands in the first line must be greater than ε/ 3n, meaning one of the pairs
must be (t, ε/3n)-distinguishable.

B Proof of Lemma 2

We proof Lemma 2, by giving an algorithm that finds x∗ in Tx in Figure 6.
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Well-Dividing Node(T, x)
m← 0
sT ← S(x)
found ← false
while found = false do

if ∃ i with S(x[i]) > sT/2 then
m← sT − S(x[i])
x← x[i]

else
found ← true

end if
end while
output x

Figure 6: Algorithm finding a well-dividing node in a tree

Let S(x) denote the number of sources in the subtree Tx and let x[1], . . . , x[d] be all nodes where there
is an edge x[i] → x in T. As long as S(x) ≥ 2, the following algorithm will output a node x∗ in tree Tx
such that x∗ well-divides Tx

Termination. In each iteration of the while loop either x is replace with one of its parents, which can
happen at most n times before reaching a source, or the algorithm terminates. Therefore there can be at
most be n iterations of the while loop.

Correctness. The algorithm starts from the sink x of the tree and it traverses the tree up until it finds
a well-dividing node. In each iteration, the variable m keeps track of the number of sources in the subtree
T−Tx, where x is the node at hand and T is the tree it started with. In other words, at each iteration of
the while loop, m+ S(x) is the total number of sources in the tree. Note that at most one of the parents
of x can satisfy the predicate of the if statement and if such a parent exists then that node has more than
half of the sources of the entire tree, so we update m and x accordingly and search for the well-dividing
node in the new Tx. On the other hand, if no such a parent exists, it means that after removing all the
ingoing edges of x from the tree all the subtrees ending in one of the parents of x have less sources than
half of the sources of the entire tree. Also note that m is never greater than sT/2, since m is changed
only when S(x[i]) > sT/2. Therefore the tree T \ Tx has less than sT/2 sources as well, meaning x is the
well-dividing node.

C Proof of Lemma 3

According to P , I and I ′, the two games only differ in the response to ei∗-th query of the form encrypt(vi∗ [ei∗ ], vi∗).
If m < log s, we add another element to P . The m-th guessed node must well-divide subtree T(m) :=
Tvi∗ [ei∗ ] −

∑
i∈{2,3,··· ,m−1}:P [i]=0 Tvi−1 in both games. If such a node exists, the probability of guessing

the node correctly is 1/n, thus Game
P‖(am)
I and Game

P‖(am)
I′ are (t, ε/n)-distinguishable. Moreover, by the
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triangle inequality we have

d−1∑
em=0

∆t

(
Game

P‖(am)
I‖(em) ,Game

P‖(am)
I‖(em+1)

)
+ ∆t

(
Game

P‖(am)
I‖(d) ,Game

P‖(am)
I′‖(d)

)

+
d−1∑
em=0

∆t

(
Game

P‖(am)
I′‖(em),Game

P‖(am)
I′‖(em+1)

)
≥ ∆t

(
Game

P‖(am)
I ,Game

P‖(am)
I′

)
>
ε

n
.

Consequently at least one of the 2d + 1 pairs of games, on the left hand side of the inequality above,
must be (t, ε/n(2d+ 1))-distinguishable. On the other hand if no such a node exists we simply ignore the

rest of the guessed nodes in the game. Then Game
P‖(am)
I‖(d) and Game

P‖(am)
I′‖(d) are as distinguishable as GamePI

and GamePI′ . Therefore the claim of the lemma holds in this case as well.
Since every guessing step reduces the number sources in the subtree reaching the challenge into at most

half of what it was before, after m− 1 = dlog se steps, we know for certain that there is at most one source
left in the subtree reaching the challenge, in which case we can apply Lemma A at most dlog `e times to
conclude the proof.
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