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Real-world, multiple-typed objects are often interconnected, forming heterogeneous information networks.
A major challenge for link-based clustering in such networks is their potential to generate many different
results, carrying rather diverse semantic meanings. In order to generate desired clustering, we propose
to use meta-path, a path that connects object types via a sequence of relations, to control clustering with
distinct semantics. Nevertheless, it is easier for a user to provide a few examples (seeds) than a weighted
combination of sophisticated meta-paths to specify her clustering preference. Thus, we propose to integrate
meta-path selection with user-guided clustering to cluster objects in networks, where a user first provides
a small set of object seeds for each cluster as guidance. Then the system learns the weight for each meta-
path that is consistent with the clustering result implied by the guidance, and generates clusters under the
learned weights of meta-paths. A probabilistic approach is proposed to solve the problem, and an effective
and efficient iterative algorithm, PathSelClus, is proposed to learn the model, where the clustering quality
and the meta-path weights mutually enhance each other. Our experiments with several clustering tasks in
two real networks and one synthetic network demonstrate the power of the algorithm in comparison with
the baselines.
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11:2 Y. Sun et al.

1. INTRODUCTION

With the advent of massive social and information networks, link-based clustering of
objects in networks becomes increasingly important since it may help discover hid-
den knowledge in large networks. Link-based clustering groups objects based on their
links instead of attribute values. This is especially useful when attributes of objects
cannot be fully obtained. Most existing link-based clustering algorithms are on ho-
mogeneous networks where links carry the same semantic meaning and only differ
in their strengths (weights). However, most real-world networks are heterogeneous,
where objects are of multiple types and are linked via different types of relations or
sequences of relations, forming a set of meta-paths [Sun et al. 2011]. These meta-paths
imply diverse semantics, and thus clustering on different meta-paths will generate
rather different results, as shown in the following.

Example 1.1 (Meta-path-based clustering). A toy heterogeneous information net-
work is shown in Figure 1, which contains three types of objects: organization (O),
author (A), and venue (V), and two types of links: the solid line represents the affili-
ation relation between author and organization and the dashed line, the publication
relation between author and venue. Authors are then connected (indirectly) via differ-
ent meta-paths. For example, A − O − A is a meta-path denoting a relation between
authors via organizations (colleagues), whereas A − V − A denotes a relation between
authors via venues (publishing in the same venues). A question then arises: which
types of connections should we use to cluster the authors?

Obviously, there is no unique answer to this question. Different meta-paths lead to
different author connection graphs, which may lead to different clustering results. In
Figure 2(a), authors are connected via organizations and form two clusters: {1, 2, 3, 4}
and {5, 6, 7, 8}; in Figure 2(b), authors are connected via venues and form two different
clusters: {1, 3, 5, 7} and {2, 4, 6, 8}; whereas in Figure 2(c), a connection graph combin-
ing both meta-paths generate 4 clusters: {1, 3}, {2, 4}, {5, 7} and {6, 8}.

This toy example shows that all three clusterings look reasonable but they carry di-
verse semantics. It should be a user’s responsibility to choose her desired meta-path(s).
However, it is often difficult to ask her to explicitly specify one or a weighted combi-
nation of multiple meta-paths. Instead, it is easier for her to give some guidance in
other forms, such as giving one or a couple of examples for each cluster. For example, it
may not be hard to give a few known conferences in each cluster (field) if one wants to
cluster them into K research areas (for a user-desired K), or ask a user to name a few
restaurants if one wants to cluster them into different categories in a business review
Web site (e.g., Yelp).

Methods for user-guided clustering or semi-supervised learning have been proposed
on (homogeneous) graphs [Kulis et al. 2005; Zhu and Ghahramani 2002; Zhu et al.
2003]. However, since we are dealing with heterogeneous networks, these methods
cannot apply. We need to explore meta-paths that represent heterogeneous connections
across objects, leading to rich semantic meanings, hence diverse clustering results.
With user guidance, a system will be able to learn the most appropriate meta-paths, or
their weighted combinations. The learned meta-paths will in turn provide an insight-
ful view to help understand the underlying mechanism for the formation of a specific
type of clustering. For example, which meta-path is more important to determine a
restaurant’s category—the meta-path connecting them via customers, the one con-
necting them via text in reviews, or the kNN relation determined by their locations?

In this article, we integrate meta-path selection with user-guided clustering for bet-
ter clustering of a user-specified type of objects, i.e., the target objects, in a heteroge-
neous information network, where the user guidance is given as a small set of seeds
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Fig. 1. A toy heterogeneous information network containing organizations, authors, and venues.

Fig. 2. Author connection graphs under different meta-paths.

in each cluster. For example, to cluster authors into 2 clusters in Example 1.1, a user
may seed {1} and {5} for two clusters, which implies a selection of meta-path A−O−A;
or seed {1}, {2}, {5}, and {6} for four clusters, which implies a combination of both meta-
paths A − O − A and A − V − A with about equal weights. Our goal is to, (1) determine
the weight of each meta-path for a particular clustering task, which should be consis-
tent with the clustering results implied by the limited user guidance, and (2) output
the clustering result according to the user guidance and under the learned weight for
each meta-path.

We propose a probabilistic model that models the hidden clusters for target objects,
the user guidance, and the quality weights for different meta-paths in a unified frame-
work. An effective and efficient iterative algorithm PathSelClus is developed to learn
the model, where the clustering quality and the meta-path quality mutually enhance
each other. The experiments with different tasks on two real networks and one syn-
thetic network show our algorithm outperforms the baselines. Our contributions are
summarized as follows.

(1) We propose to integrate meta-path selection with user-guided clustering for arbi-
trary heterogeneous networks, and study a specific form of guidance: seeding some
objects in each cluster.

(2) A probabilistic model is proposed to put hidden clusters, user guidance, and the
quality of meta-paths into one unified framework, and an iterative algorithm is
developed where the clustering result and weights for different meta-paths are
learned alternatively and mutually enhance each other.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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11:4 Y. Sun et al.

(3) Experiments on real and synthetic heterogeneous information networks have
shown the effectiveness and efficiency of our algorithm over baselines, and the
learned weights of meta-paths provide knowledge for better understanding of the
cluster formation.

2. PRELIMINARIES

In this section, we introduce preliminary concepts in heterogeneous information
networks and define the problem of integrating meta-path selection with user-guided
object clustering.

2.1. Heterogeneous Information Network

A heterogeneous information network [Sun et al. 2009a] is an information network
with multiple types of objects and/or multiple types of links, formally defined in the
following.

Definition 2.1. (Information network). An information network is defined as a di-
rected graph G = (V, E) with an object type mapping function τ : V → A and a link
type mapping function φ : E → R, where each object v ∈ V belongs to one particular
object type τ(v) ∈ A, each link e ∈ E belongs to a particular relation φ(e) ∈ R, and if
two links belong to the same relation type, they share the same starting and ending
object types.

Different from the traditional network definition, we explicitly distinguish object
types and relationship types in the network. Note that, if a relation exists from type
A to type B, denoted as A R B, the inverse relation R−1 holds naturally for B R−1 A. R
and its inverse R−1 are usually not equal, unless the two types are the same and R
is symmetric. When the types of objects |A| > 1 or the types of relations |R| > 1, the
network is called a heterogeneous information network; otherwise, it is a homogeneous
information network.

Given a complex heterogeneous information network, it is necessary to provide its
meta level (schema-level) description for better understanding of the object types and
link types in the network. Therefore, Sun et al. [2011] propose the concept of network
schema to describe the meta structure of a network. The network schema of a hetero-
geneous information network has specified type constraints on the sets of objects and
relationships between the objects. These constraints make a heterogeneous informa-
tion network semistructured, guiding the exploration of the semantics of the network.

Here we introduce two heterogeneous information networks that are used in the
experiment section of this article: the DBLP network and the Yelp network.

Example 2.2. (The DBLP bibliographic network1). DBLP is a typical heterogeneous
information network (see schema in Figure 3(a)), which contains 4 types of objects,
namely paper(P), author (A), term (T), and venue (V), including conferences and jour-
nals. Links exist between authors and papers by the relations of “write” and “written
by,” between papers and terms by “mention” and “mentioned by,” and between venues
and papers by “publish” and “published by.” The “citation” relation between papers can
be added further, using other data sources, such as Google scholar.

Example 2.3. (The Yelp network2). Yelp is a Web site where users can write reviews
of businesses. The Yelp network (see schema in Figure 3(b)) used in this article con-
tains 4 types of objects, namely business (B), user (U), term (T), and review (R). Links

1http://www.informatik.uni-trier.de/∼ley/db/
2http://www.yelp.com/
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Fig. 3. Examples of heterogeneous information networks.

exist between users and reviews by the relations of “write” and “written by,” between
reviews and terms by “mention” and “ mentioned by,” between businesses and reviews
by “commented by” and “comment,” and between users by “friendship” (not included in
our dataset).

Following Sun et al. [2011], we use the concept of meta-path to describe the possi-
ble relations that can be derived from a heterogeneous network between two types of
objects in a meta level. Meta-path is defined by a sequence of relations in the network
schema, and can be described by a sequence of object types when there is no ambiguity.
For example, A−P−A is a meta-path denoting the coauthorship between authors, and
A − P − V is a meta-path denoting the publication relation between the author and the
venue type. Note that, a single relation defined in the network schema can be viewed
as a special case of a meta-path, e.g., the citation relation P → P.

2.2. The Meta-Path Selection Problem

Link-based clustering is to cluster objects based on their connections to other objects
in the network. In a heterogeneous information network, we need to specify more in-
formation for a meaningful clustering.

First, we need to specify the type of objects we want to cluster, which is called the
target type. Second, we need to specify which type of connection, i.e., meta-path, to use
for the clustering task, where we call the object type that the target type is connecting
to via the meta-path as the feature type. For example, when clustering authors based
on the venues they have published papers in, the target type is the author type, the
meta-path to use is A − P − V, and the feature type is the venue type; when clustering
venues based on venues that share common authors, the target type is the venue type,
the meta-path to use is V − P − A − P − V, and the feature type is still the venue type.

In a heterogeneous information network, target objects could link to many types of
feature objects by multiple meta-paths. For example, authors could connect to other
authors by meta-path A − P − A, or connect to terms by meta-path A − P − T. The
meta-path selection problem is then to determine which meta-paths or their weighted
combination to use for a specific clustering task.

2.3. User-Guided Clustering

User guidance is critical for clustering objects in the network. As shown in the mo-
tivating example, by using different types of link information in a network, different

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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reasonable clustering results can be generated. It is users’ responsibility to specify
which clustering result is their desired one.

In this study, we consider the guidance in the form of object seeds in each cluster
given by users. For example, to cluster authors based on their hidden research areas,
one can first provide several representative authors as seeds in each area. On one
hand, these seeds are used as guidance for clustering all the target objects in the
network. On the other hand, they provide information for selecting the most relevant
meta-paths for the specific clustering task. Note that in practice, a user may not be
able to provide seeds for every cluster, but only for some clusters they are most familiar
with. This situation should be handled by the algorithm too.

2.4. The Problem Definition

In all, given a heterogeneous information network G, a user needs to specify the fol-
lowing as inputs for a clustering task.

(1) The target type for clustering, type T, must be specified;
(2) the number of clusters, K, and the object seeds for each cluster, say L1, . . . ,LK ,

where Lk denotes the object seeds for cluster k, which could be an empty set; these
seeds will be used as the hints to learn the purpose/preference of the clustering
task;

(3) a set of M meta-paths starting from type T, denoted as P1,P2, . . . ,PM, which might
be helpful for the clustering task. These meta-paths can be determined either ac-
cording to users’ expert knowledge, or by traversing the network schema starting
from type T with a length constraint.

For each meta-path Pm, we calculate the adjacency matrix Wm, which we call rela-
tion matrix, between the target type T and the feature type Fm, by multiplying adja-
cency matrices for each relation along the meta-path. For example, the relation matrix
W for meta-path A − P − V, denoting the number of papers published by an author
in a venue, is calculated by W = WAP × WPV , where WAP and WPV are the adjacency
matrices for relation A − P and P − V respectively.

The output of the algorithm includes two parts:

(1) to determine the weight αm ≥ 0 of each meta-path Pm for a particular clustering
task, which should be consistent with the clustering result implied by the limited
user guidance; and

(2) to output the clustering result according to the user’s guidance and under the
learned weights for each meta-path, that is, to associate each target object ti in
T with a K-dimensional soft clustering probability vector, θ i = (θi1, . . . , θiK), where
θik is the probability of ti belonging to cluster k, i.e., θik ≥ 0 and

∑K
k=1 θik = 1.

3. THE PROBABILISTIC MODEL

In this section, we propose a probabilistic approach to model the problem into a uni-
fied framework. We assign probabilities for different possible clustering configurations
for each target object and quality weights for each meta-path, and the goal is to find
the most likely clustering result and quality weights under the probabilistic model
definition.

A good clustering result is determined by several factors: first, the clustering re-
sult should be consistent with the link structure, which is determined the meta-paths;
second, the clustering result should be consistent with the user guidance; and third,
the quality weight of each meta-path is implied by the user-guided clustering, which
should be modeled and learned to further enhance the clustering quality.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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In the following, we first introduce the modeling for the three aspects respectively,
and then propose a unified model that takes all of them into consideration.

3.1. Modeling the Relationship Generation

To model the consistency between a clustering result and a meta-path-derived link
structure, we propose a clustering-based generative model for relationship generation.

For a meta-path Pm, let its corresponding relation matrix between the target type T
and the feature type Fm be Wm. For each target object ti, we model its relationships as
generated from a mixture of multinomial distributions, where the probability of ti ∈ T
connecting to fj,m ∈ Fm is conditionally independent on ti given the hidden cluster label
of the relationship is known. Let πij,m = P(j|i, m) be the generative probability of the
relationship starting from ti and ending at fj,m, where

∑
j πij,m = 1, then

πij,m = P(j|i, m) =
∑

k

P(k|i)P(j|k, m) =
∑

k

θikβkj,m, (1)

where θik = P(k|i) denotes the probability of ti belonging to cluster k and βkj, m =
P(j|k, m) denotes the probability of fj,m appearing in cluster k. In other words, let
π i,m = (πi1,m, . . . , πi|Fm|,m) be the generative probability vector for target object ti, then
each π i,m can be factorized as a weighted summation of ranking distributions of fea-
ture objects in each cluster. The factorization idea is similar to that of PLSA [Hofmann
1999], PHITS [Cohn and Chang 2000], and RankClus [Sun et al. 2009a], but is built
on meta-path-encoded relationships rather than immediate links. This extension will
capture more and richer link-based features for clustering target objects in heteroge-
neous networks.

By assuming each target object ti is independent and each relationship generated
by ti is independent, conditional on that their clustering configuration is known, the
probability of observing all the relationships between all the target objects and feature
objects is the production of the probabilities of all the relationships following meta-
path Pm:

P(Wm|�m, 	, Bm) =
∏

i

P(wi,m|π i,m, 	, Bm) =
∏

i

∏
j

(πij,m)wij,m , (2)

where �m = 	Bm is the probability matrix with cells as πij,m’s, 	 is the parame-
ter matrix for θik’s, Bm is the parameter matrix for βkj,m’s, and wij,m is the weight of
the relationship between ti and fj,m. Note that, each meta-path Pm corresponds to a
different generative probability matrix �m to model the relationship generation. The
factorization of these probability matrices share the same soft clustering probabilities
	, but different ranking distributions Bm in different meta-paths.

How to define and determine the weight for each meta-path in the clustering process
for target objects is then very critical, and will be introduced in Section 3.3.

3.2. Modeling the Guidance from Users

Further, we take user guidance in the form of object seeds for some clusters as the prior
knowledge for the clustering result 	, by modeling the prior as a Dirichlet distribution
rather than treating them as hard labeled ones.

For each target object ti, its clustering probability vector θ i is assumed to
be a multinomial distribution, which is generated from some Dirichlet distri-
bution. If ti is labeled as a seed in cluster k∗, θ i is then modeled as being
sampled from a Dirichlet distribution with parameter vector λek∗ + 1, where ek∗ is
a K-dimensional basis vector, with the k∗th element as 1 and 0 elsewhere. If ti is not
a seed, θ i is then assumed as being sampled from a uniform distribution, which can

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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also be viewed as a Dirichlet distribution with parameter vector of 1. The density of θ i
given such priors is:

P(θ i|λ) ∝
{∏

k θ
1{ti∈Lk}λ
ik = θλ

ik∗ , if ti is labeled and ti ∈ Lk∗ ,
1, if ti is not labeled.

(3)

where 1{ti∈Lk} is an indicator function, which is 1 if ti ∈ Lk holds, and 0 otherwise.
The hyperparameter λ is a nonnegative value, which controls the strength of users’

confidence over the object seeds in each cluster. From Equation (3), we can find that:

— when λ = 0, the prior for θ i of a labeled target object becomes a uniform distribu-
tion, which means no guidance information will be used in the clustering process;

— when λ → ∞, the prior for θ i of a labeled target object converges to a point mass,
i.e., P(θ i = ek∗) → 1 or θ i → ek∗ , which means we will assign k∗ as the hard cluster
label for ti.

In general, a larger λ indicates a higher probability that θ i is around the point mass
ek∗ , and thus a higher confidence for the user guidance.

3.3. Modeling the Quality Weights for Meta-Path Selection

Different meta-paths may lead to different clustering results, therefore it is desirable
to learn the quality for each meta-path for the specific clustering task. We propose to
learn the quality weight for each meta-path by evaluating the consistency between its
relation matrix and the user-guided clustering result.

In deciding the clustering result for target objects, a meta-path may be of low quality
for the following reasons.

(1) The relation matrix derived by the meta-path does not contain an inherent cluster
structure. For example, target objects connect to the feature objects randomly.

(2) The relation matrix derived by the meta-path itself has a good inherent cluster
structure, however, it is not consistent with the user guidance. For example, in our
motivating example, if the user gives guidance as: K = 2,L1 = {1},L2 = {2}, then
the meta-path A − O − A should have a lower impact in the clustering process for
authors.

The general idea of measuring the quality of each meta-path is to see whether the
relation matrix Wm is consistent with the detected hidden clusters 	 and thus the
generative probability matrix �m, which is a function of 	, i.e., �m = 	Bm. The higher
the consistency of Wm with �m, the higher posterior probability of P(�m|Wm) should
be.

In order to quantify the weight for such quality, we model the weight αm for meta-
path Pm as the relative weight for each relationship between target objects and feature
objects following Pm. In other words, we treat our observations of the relation matrix
as αmWm rather than the original Wm. A larger αm indicates a higher quality and
a higher confidence of the observed relationships, and thus each relationship should
count more.

Then, we assume the multinomial distribution π i,m has a prior of a Dirichlet distri-
bution with parameter vector φi,m. In this article, we consider a discrete uniform prior,
which is a special case of Dirichlet distribution with parameters as an all-one vector,
φi,m = 1. The value of αm is determined by the consistency between the observed rela-
tion matrix Wm and the generative probability matrix �m. The goal is to find the α∗

m

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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that maximizes the posterior probability of π i,m for all the target objects ti, given the
observation of relationships wi,m with relative weight αm:

α∗
m = arg max

αm

∏
i

P(π i,m|αmwi,m, θ i, Bm). (4)

The posterior of π i,m = θ iBm is another Dirichlet distribution with the updated param-
eter vector as αmwi,m + 1, according to the multinomial-Dirichlet conjugate:

π i,m|αmwi,m, θ i, Bm ∼ Dir(αmwij,m + 1, . . . , αmwi|Fm|,m + 1), (5)

which has the following density function:

P(π i,m|αmwi,m, θ i, Bm) = �(αmni,m + |Fm|)∏
j �(αmwij,m + 1)

∏
j

(πij,m)αmwij,m , (6)

where ni,m = ∑
j wij,m is the total number of path instances from ti following meta-path

Pm.
By modeling αm in such a way, the meaning of αm is quite clear.

— αmwij,m + 1 is the parameter of jth dimension for the new Dirichlet distribution.
— The larger αm, the more likely it will generate a π i,m with a distribution as the

observed relationship distribution, i.e., π i,m → wi,m/ni,m when αm → ∞, where
ni,m is the total number of path instances from ti following meta-path Pm.

— The smaller αm, the more likely it will generate a π i that is not relevant to the re-
lation matrix Wm, and π i,m can be any |Fm|-dimensional multinomial distribution.

Note that, we do not consider negative αm’s in this model, which means relationships
with a negative impact in the clustering process are not considered, and the extreme
case of αm = 0 means the relationships in a meta-path are totally irrelevant for the
clustering process.

Discussion of the Prior of π i,m. In this article, we assume π i,m has a Dirichlet prior
with parameters as an all-one vector, that is, a discrete uniform distribution. In prac-
tice, we may vary the parameters, depending on our different assumptions on the un-
structured component of the relationship generation. For example, we may assume
π i,m follows a symmetric Dirichlet prior with a high concentration parameter, indi-
cating that we assume by default the relationships are generated totally randomly
(uniformly); or we may assume it follows a Dirichlet prior with parameters propor-
tional to the empirical distribution of the feature objects in the meta-path, indicating
that we assume by default the relationships are generated with such a background
distribution.

3.4. The Unified Model

By putting all three factors together, we have the joint probability of observing the
relation matrices with relative weights αm’s, and the parameter matrices �m’s and 	.

P({αmWm}M
m=1, �1:M, 	|B1:M, �1:M, λ)

=
∏

i

(∏
m

P(αmwi,m|π i,m, θ i, Bm)P(π i,m|φi,m)
)
P(θ i|λ), (7)

where �m is the Dirichlet prior parameter matrix for �m, and an all-one matrix in
our case. We want to find the maximum a posteriori probability (MAP) estimate for
�m’s and 	, that maximizes the logarithm of posterior probability of {�m}M

m=1, given
the observations of relation matrices with relative weights {αmWm}M

m=1 and 	, plus

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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a regularization term over θ i for each target object denoting the logarithm of prior
density of θ i:

J =
∑

i

(∑
m

log P(π i,m|αmwi,m, θ i, Bm) +
∑

k

1{ti∈Lk}λ log θik
)
. (8)

By substituting the posterior probability formula in Equation (6) and the factorization
form for all π i,m, we get the final objective function:

J =
∑

i

(∑
m

(∑
j

αmwij,m log
∑

k

θikβkj,m

+ log �(αmni,m + |Fm|) −
∑

j

log �(αmwij,m + 1)
)

+
∑

k

1{ti∈Lk}λ log θik

)
.

(9)

4. THE LEARNING ALGORITHM

In this section, we introduce the learning algorithm, PathSelClus, for the model
(Equation (9)) proposed in Section 3. It is a two-step iterative algorithm, where the
clustering result 	 and the weights for each meta-path α mutually enhance each
other. In the first step, we fix the weight vector α, and learn the best clustering results
	 under this weight. In the second step, we fix the clustering matrix 	 and learn the
best weight vector α.

4.1. Optimize � Given α

When α is fixed, the terms only involving α can be discarded in the objective function
Equation (9), which is then reduced to:

J1 =
∑
m

αm
∑

i

∑
j

wij,m log
∑

k

θikβkj,m +
∑

i

∑
k

1{ti∈Lk}λ log θik. (10)

The new objective function can be viewed as a weighted summation of the log-
likelihood for each relation matrix under each meta-path, where the weight αm in-
dicates the quality of each meta-path, plus a regularization term over 	 representing
the user guidance.

	 and the augmented parameter Bm’s can be learned using the standard EM algo-
rithm, as follows.

E-step. In each relation matrix, we use zij,m to denote the cluster label for each rela-
tionship between a target object ti and a feature object fj,m. According to the generative
process described in Section 3.1, P(zij,m = k) = θik, and fj,m is picked with probability
βkj,m. The conditional probability of the hidden cluster label given the old 	t−1 and
Bt−1

m values is:

p(zij,m = k|	t−1, Bt−1
m ) ∝ θ t−1

ik βt−1
kj,m. (11)
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The Q-function Q(	, Bm|	t−1, Bt−1
m ), which is the tight lower bound of J1 according to

Jensen’s inequality, is then:

Q(	, Bm|	t−1, Bt−1
m )

=
∑
m

αm
∑

i

∑
j

wij,m
∑

k

p(zij,m = k|	t−1, Bt−1
m ) log θikβkj,m +

∑
i

∑
k

1{ti∈Lk}λ log θik.

(12)

M-step. By maximizing the Q-function, we have the updating formulas for 	t and
Bt

m as:

θ t
ik ∝

∑
m

αm
∑

j

wij,mp(zij,m = k|	t−1, Bt−1
m ) + 1{ti∈Lk}λ (13)

βt
kj,m ∝

∑
j

wij,mp(zij,m = k|	t−1, Bt−1
m ). (14)

From Equation (13), we can see that the clustering membership vector θ i for ti is deter-
mined by the cluster labels of all its relationships to feature objects, in all the relation
matrices. Besides, if ti is labeled as a seed object in some cluster k∗, θ i is also deter-
mined by the label. The strength of impacts from these factors is determined by the
weight of each meta-path αm, and the strength of the cluster labels λ, where αm’s are
learned automatically by our algorithm, and λ is given by users.

4.2. Optimize α Given �

Once given a clustering result 	 and the augmented parameter Bm’s, we can calculate
the generative probability matrix �m for each meta-path Pm by: �m = 	Bm. By dis-
carding the irrelevant terms, the objective function of Equation (9) can be reduced to:

J2 =
∑

i

(∑
m

(∑
j

αmwij,m log πij,m + log �(αmni,m + |Fm|) −
∑

j

log �(αmwij,m + 1)
))

.

(15)
It is easy to prove that J2 is a concave function, which means there is a unique α

that maximizes J2. We use the gradient descent approach to solve the problem, which
is an iterative algorithm with the updating formula as:

αt
m = αt−1

m + ηt
m

∂J2

∂αm

∣∣∣∣
αm=αt−1

m

,

where the partial derivative of αm can be derived as:

∂J2

∂αm
=

∑
i

∑
j

wij,m log πij,m +
∑

i

ψ(αmnim + |Fm|)ni,m −
∑

i

∑
j

ψ(αmwij,m + 1)wij,m,

where ψ(x) is the digamma function, the first derivative of log �(x).
The step size ηt

m is usually set as a small enough number, to guarantee the increase
of J2. In this article, we follow the trick used in nonnegative matrix factorization
(NMF) [Lee and Seung 2000], and set

ηt
m = αt−1

m
−∑

i
∑

j wij,m log πij,m
.
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Algorithm 1. The PathSelClus Algorithm.

Input: Network: G, Metapath: {P}Mm=1, Number of cluster: K, Object seeds: {L1, . . . ,LK },
User belief: λ;

Output: The clustering result 	; the weight vector for meta-paths α;

Normalize the weight of each relation matrix Wm into Wm∑
ij Wij,m

;

α = 1;
repeat

Initialize 	0 and B0;
repeat

1. E-step: update p(zij,m = k|	t−1, Bt−1
m ) by Equation (11);

2. M-step: update 	t and Bt
m by Equations (13) and (14);

until reaches cluster change threshold;
	 = 	t ;
α0 =α ;
repeat

1. update αt by Equation (16) ;
until reaches inner α difference threshold;
α = αt ;

until reaches α difference threshold;
Output 	 and α;

By using this step size, we can get the updating formula for αm as:

αt
m = αt−1

m

∑
i
(
ψ(αt−1

m nim + |Fm|)ni,m − ∑
j ψ(αt−1

m wij,m + 1)wij,m
)

−∑
i
∑

j wij,m log πij,m
, (16)

which is guaranteed to be a nonnegative value.
Also, by looking at the denominator of the formula, we can see there is a larger log-

likelihood of observing relationships wij,m under model probability πij,m, which means
a smaller denominator as log-likelihood is negative, generally leads to a larger αm.
This is also consistent with human intuition.

4.3. The PathSelClus Algorithm

The PathSelClus algorithm is then summarized in Algorithm 1. Overall, it is an
iterative algorithm that optimizes 	 and α alternatively. The optimization of 	
contains an inner loop of an EM-algorithm, and the optimization of α contains another
inner loop of a gradient descent algorithm. We discuss some details of the algorithm
implementation in the following.

4.3.1. The Weight Setting of Relation Matrices. Given a heterogeneous information net-
work G, we calculate the relation matrix Wm for each given meta-path Pm by multi-
plying adjacency matrices along the meta-path. It can be shown that, scaling Wm by
a factor of 1/cm leads to a scaling of the learned relative weight αm by a factor of cm.
Therefore, the performance of the clustering result will not be affected by the scaling
of the relation matrix, which is a good property of our algorithm. In the experiments,
we normalize each Wm by its total weight, so that the initial contributions from each
meta-path are comparable to each other.

4.3.2. Initialization Issues. For the initial value of α, we set it as an all-one vector, which
assumes all the meta-paths are equally important. For the initial value of 	 in the
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clustering step given α, if ti is not labeled, we assign a random clustering vector to θ i;
while if ti is labeled as a seed for a cluster k∗, we assign θ i = e∗

k.

4.3.3. Time Complexity Analysis. The PathSelClus algorithm is very efficient, as it is
proportional to the number of relationships that are used in the clustering process,
which is about linear to the number of target objects for short meta-paths in sparse
networks.

Formally, for the inner EM algorithm that optimizes 	, the time complexity is
O(t1(K

∑
m |Em| + K|T| + K

∑
m |Fm|)) = O(t1(K

∑
m |Em|)), where |Em| is the num-

ber of nonempty relationships in relation matrix Wm, |T| and |Fm| are the numbers of
target objects and feature objects in meta-path Pm, which are typically smaller than
|Em|, and t1 is the number of iterations. For the inner gradient descent algorithm, the
time complexity is O(t2(

∑
m |Em|)), where t2 is the number of iterations. The total time

complexity for the whole algorithm is then O(t(t1(K
∑

m |Em|) + t2(
∑

m |Em|))), where t
is the number of outer iterations, which usually is a small number.

5. EXPERIMENTS

In this section, we compare PathSelClus with several baselines, and show the effec-
tiveness and efficiency of our algorithm.

5.1. Datasets

Two real information networks, the DBLP network and the Yelp network, and one syn-
thetic network are used for performance study. For each network, we design multiple
clustering tasks provided with different user guidance, as introduced in the following.

(1) The DBLP Network. For the DBLP network introduced in Example 2.1, we design
three clustering tasks in the following:
— DBLP-T1. Cluster conferences in the “four-area dataset” [Sun et al. 2009b],

which contains 20 major conferences and all the related papers, authors and
terms in DM, DB, IR, and ML fields, according to the research areas of the
conferences. The candidate meta-paths include: V − P − A − P − V and V − P −
T − P − V.

— DBLP-T2. Cluster top-2000 authors (by their number of publications) in the
“four-area dataset”, according to their research areas. The candidate meta-
paths include: A−P−A, A−P−A−P−A, A−P−V −P−A, and A−P−T−P−A.

— DBLP-T3. Cluster 165 authors who have ever been advised by Christos Falout-
sos, Michael I. Jordan, Jiawei Han, and Dan Roth (including these professors),
according to their research groups. The candidate meta-paths are the same as
in DBLP-T2.

(2) The Yelp Network. For the Yelp network introduced in Example 2.2, we are pro-
vided by Yelp a subnetwork,3 which includes 6900 businesses, 152,327 reviews,
and 65,888 users. Hierarchical categories are provided for each business as well,
such as “Restaurants” and “Shopping.” For the Yelp network, we design three clus-
tering tasks in the following.
— Yelp-T1. We select 4 relatively big categories (“Health and Medical”, “Food”,

“Shopping”, and “Beauty and Spas”), and cluster 2224 businesses with more
than one review according to two meta-paths: B − R − U − R − B and B − R −
T − R − B.

3http://www.yelp.com/academic dataset;
http://engineeringblog.yelp.com/2011/09/calling-all-data-miners.html
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— Yelp-T2. We select 6 relatively big subcategories under the first-level category
“Restaurant” (“Sandwiches”, “Thai”, “American (New)”, “Mexican”, “Italian”,
and “Chinese”), and cluster 554 businesses with more than one review accord-
ing to the same two meta-paths.

— Yelp-T3. We select 6 relatively big subcategories under the first-level category
“Shopping” (“Eyewear & Opticians”, “Books, Mags, Music and Video”, “Sport-
ing Goods”, “Fashion”, “Drugstores”, and “Home & Garden”), and cluster 484
businesses with more than one review according to the same two meta-paths.

(3) Synthetic Network. In addition to the two real networks, we also construct syn-
thetic networks as the test dataset, for which the ground truth labels are given.
Specifically, we generate the network according to the relationship generation
model, by fixing the 	 and Bm matrices for all the target objects and each meta-
path.
— Synthetic-T1. In Task 1, we generate 3 relation matrices for 1000 target objects,

under the same 	 but different Bm (1000, 800, 800 feature objects respectively),
which means all these relation matrices have the same underlying clustering
structure. However, we generate relationships by adding a uniform distraction
(noise) in addition to �m = 	Bm, each relation matrix with a different level of
noise (80%, 20%, 10%). This task tests whether PathSelClus will assign lower
weights to lower quality (more noise) relation matrices, and therefore improves
the clustering accuracy.

— Synthetic-T2. In Task 2, we still generate 3 relation matrices for 1000 target ob-
jects, but with different 	m and Bm (all with 800 feature objects). The seeds are
only generated according to 	1, i.e., we want to cluster target objects according
to the first relation matrix. This task tests whether PathSelClus will assign
lower weights to relation matrices that are irrelevant to the user guidance, and
therefore improves the clustering results that meet users’ demands.

5.2. Effectiveness Study

First, we study the effectiveness of our algorithm for different tasks, and compare it
with several baselines.

5.2.1. Baselines. Three baselines are used in this study. Since none of them has consid-
ered the meta-path selection problem, we will use all the meta-paths as features and
prepare them to fit the input of each of these algorithms. The first one is user-guided
information theoretic-based k-means clustering (ITC), which is an adaption of seeded
k-means algorithm proposed in Basu et al. [2002], by replacing Euclidean distance to
KL-divergence as used in information theoretic-based clustering algorithms [Banerjee
et al. 2005; Dhillon et al. 2003]. ITC is a hard clustering algorithm. For the input, we
concatenate all the relation matrices side-by-side into one single relation matrix, and
thus we get a very high dimensional feature vector for each target object.

The second baseline is the label propagation (LP) algorithm proposed in Zhu et al.
[2003], which utilizes link structure to propagate labels to the rest of the network. For
the input, we add all the relation matrices together to get one single relation matrix.
As LP is designed for homogeneous networks, we confine our meta-paths to ones that
start and end both in the target type. LP is a soft clustering algorithm.

The third baseline is the cluster ensemble algorithm proposed in Punera and Ghosh
[2008], which can combine soft clustering results into a consensus, which we call en-
semble soft. Differently from the previous two baselines that directly combine meta-
paths at the input level, cluster ensemble combines the clustering results for different
meta-paths at the output level. Besides, we also use majority voting as another base-
line (ensemble voting), which first maps each clustering result for each target object

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 3, Article 11, Publication date: September 2013.
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Table I. Clustering Accuracy for DBLP Tasks: DBLP-T1

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.9950 0.6500 0.6900 0.6500 0.6650 0.6450 0.5100

NMI 0.9906 0.6181 0.6986 0.6181 0.5801 0.5903 0.5316

2
Accuracy 1 0.7500 0.8450 0.7500 0.8200 0.8950 0.8700

NMI 1 0.6734 0.7752 0.6734 0.7492 0.8321 0.7942

Table II. Clustering Accuracy for DBLP Tasks: DBLP-T2

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.7951 0.2122 0.3284 0.2109 0.3529 0.2513 0.2548

NMI 0.6770 0.0312 0.1277 0.0267 0.0301 0.4317 0.4398

5
Accuracy 0.8815 0.2487 0.3223 0.5117 0.3685 0.3311 0.3495

NMI 0.6868 0.0991 0.1102 0.4402 0.0760 0.3092 0.4316

10
Accuracy 0.8863 0.5586 0.3694 0.4297 0.3880 0.4891 0.2969

NMI 0.6947 0.4025 0.1261 0.1788 0.1148 0.4045 0.4204

into a hard cluster label and then picks the cluster label that is the majority over dif-
ferent meta-paths. As we can use either ITC or LP as the clustering algorithm for each
ensemble method, we then get four ensemble baselines in total: ITC soft, ITC voting,
LP soft, and LP voting.

5.2.2. Evaluation Methods. Two evaluation methods are used to test the clustering re-
sult compared with the ground truth, where the soft clustering is mapped into hard
cluster labels.

The first measure is accuracy, which is used when seeds are available for every
cluster and is calculated as the percentage of target objects going to the correct cluster.
Note that, in order to measure whether the seeds are indeed attracting objects to the
right cluster, we do not map the outcome cluster labels to the given class labels.

The second measure is normalized mutual information (NMI), which does not re-
quire the mapping relation between ground truth labels and the cluster labels obtained
by the clustering algorithm. The normalized mutual information of two partitions X
and Y is calculated as: NMI(X, Y) = I(X;Y)√

H(X)H(Y)
, where X and Y are vectors containing

cluster labels for all the target objects.
Both measures are in the range of 0 to 1: a higher value indicates a better clustering

result in terms of the ground truth.

5.2.3. Full Cluster Seeds. We first test the clustering accuracy when cluster seeds are
given for every cluster. Since LP can only work on homogeneous networks, we confine
our meta-paths in each task to the ones that start and end both in the target type in
the real network cases. For synthetic network tasks, the relation matrices, however,
are not homogeneous, for which we only use ITC and ITC-related ensemble algorithms
as baselines. Performances under different numbers of seeds in each cluster are tested.
Each result is the average of 10 runs.

The accuracy for all 8 tasks is summarized in Tables I to VIII. From the results we
can see that, PathSelClus performs the best in most of the tasks. Even for a task such
as DBLP-T3 where other methods give the best clustering result, PathSelClus still
gives clustering results among the top. This means, PathSelClus can give consistently
good results across different tasks in different networks.

Also, by looking at the clustering accuracy trend along with the number of seeds used
in each cluster, we can see that using more seeds generally leads to better clustering
results.
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Table III. Clustering Accuracy for DBLP Tasks: DBLP-T3

#S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1
Accuracy 0.8067 0.9273 0.5376 0.7091 0.5424 0.4770 0.2358

NMI 0.6050 0.7966 0.5120 0.5870 0.7182 0.3008 0.3416

2
Accuracy 0.9036 0.9394 0.5285 0.7333 0.3267 0.5176 0.4085

NMI 0.7485 0.8283 0.5056 0.5986 0.8087 0.3898 0.3464

4
Accuracy 0.9248 0.9576 0.7624 0.7636 0.9255 0.6370 0.5485

NMI 0.7933 0.8841 0.6280 0.6179 0.9057 0.4437 0.4634

Table IV. Clustering Accuracy for Yelp Tasks: Yelp-T1

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.5384 0.3381 0.2619 0.1632 0.1632 0.2564 0.2769

NMI 0.5826 0.0393 0.0042 0.0399 0.0399 0.1907 0.2435

2%
Accuracy 0.5487 0.3444 0.2798 0.1713 0.1713 0.3581 0.3790

NMI 0.5800 0.0557 0.0062 0.0567 0.0567 0.2281 0.2734

5%
Accuracy 0.5989 0.3732 0.3136 0.1965 0.1965 0.5215 0.5250

NMI 0.5796 0.1004 0.0098 0.0962 0.0962 0.2583 0.2878

Table V. Clustering Accuracy for Yelp Tasks: Yelp-T2

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.7435 0.1137 0.1758 0.2112 0.2112 0.2430 0.2022

NMI 0.6517 0.0323 0.0178 0.0578 0.0578 0.2308 0.2490

2%
Accuracy 0.8004 0.1264 0.1910 0.2202 0.2202 0.2762 0.2792

NMI 0.6803 0.0487 0.0150 0.0801 0.0801 0.2099 0.2907

5%
Accuracy 0.8125 0.2653 0.2200 0.2437 0.2437 0.3049 0.3240

NMI 0.6894 0.1111 0.0220 0.1212 0.1212 0.2252 0.2692

Table VI. Clustering Accuracy for Yelp Tasks: Yelp-T3

%S Measure PathSelClus LP ITC LP voting LP soft ITC voting ITC soft

1%
Accuracy 0.4736 0.2789 0.1893 0.0682 0.0682 0.2593 0.1775

NMI 0.4304 0.0568 0.0155 0.0626 0.0626 0.1738 0.2065

2%
Accuracy 0.4597 0.4008 0.1948 0.0764 0.0764 0.2318 0.2033

NMI 0.4359 0.0910 0.0172 0.0755 0.0755 0.1835 0.1822

5%
Accuracy 0.4393 0.5351 0.2233 0.1033 0.1033 0.3337 0.3083

NMI 0.4415 0.1761 0.0194 0.1133 0.1133 0.1793 0.2285

5.2.4. Partial Cluster Seeds. We then test the clustering accuracy when cluster seeds
are only available for some of the clusters. We perform this study on DBLP-T3 and
Synthetic-T2 using PathSelClus, and the results are shown in Figure 4. We can see
that even if user guidance is only given to some clusters, those seeds can still be used
to improve the clustering accuracy. In general, the fewer the number of clusters with
seeds, the worse the clustering accuracy, which is consistent with human intuition.

Note that, label propagation-based methods like LP cannot deal with partial cluster
labels. However, in reality it is quite common that users are only familiar with some
of the clusters and are only able to give good seeds in those clusters. That is another
advantage of PathSelClus.

5.3. Efficiency Study

Now, we study the scalability of our algorithm using synthetic datasets, because we
can manipulate the size of network flexibly. In Figure 5(a), we keep the size of target
objects and the total number of relationships they issued as fixed, and vary the size of
feature objects. We can see that the average running time for one iteration of the inner
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Table VII. Clustering Accuracy for Synthetic Network Tasks: Synthetic-T1

%S Measure PathSelClus ITC ITC voting ITC soft

1
Accuracy 0.9350 0.2328 0.2879 0.2906

NMI 0.7769 0.1403 0.2231 0.0851

2
Accuracy 0.9360 0.3004 0.3482 0.3825

NMI 0.7800 0.0769 0.1253 0.2255

2
Accuracy 0.9350 0.3526 0.6417 0.4731

NMI 0.7781 0.1022 0.3285 0.2272

Table VIII. Clustering Accuracy for Synthetic Network Tasks: Synthetic-T2

%S Measure PathSelClus ITC ITC voting ITC soft

1%
Accuracy 0.9180 0.3507 0.3325 0.2912

NMI 0.7748 0.3624 0.1813 0.2652

2%
Accuracy 0.9170 0.3978 0.3612 0.3141

NMI 0.7728 0.2923 0.1739 0.2919

5%
Accuracy 0.9910 0.6538 0.5373 0.3997

NMI 0.9641 0.5034 0.2001 0.2087
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(a) DBLP-T3 with #seeds = 1
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(b) Synthetic-T2 with %seeds = 2%

Fig. 4. Clustering accuracy under parietal guidance.

EM algorithm is about linear to the size of the feature objects; and the average running
time for one iteration of the inner gradient descent algorithm is almost constant, as it
is only linear to the number of relationships in the network. In Figure 5(b), we keep
the size of feature objects as fixed, and vary the number of target objects. We keep the
average relationships for each target object as constant. From the result we can see
that the average running time for one iteration of both the inner EM algorithm and
the gradient descent algorithm is linear to the size of target objects, since the number
of relationships is also increasing linearly with the size of target objects.

From the efficiency test, we can see that PathSelClus is scalable and can be applied
to large-scale networks.

5.4. Parameter Study

In this section, we study the impact to the performance of our algorithm of the only
parameter in the algorithm, λ. We select DBLP-T1 and Yelp-T2 as the test tasks. From
the results in Figure 6, we can see that the clustering results are in general not sen-
sitive to the value of λ, as long as it has a positive value. In practice, we set it as 100
for our experiments. Notice that in Figure 6, we do not show the accuracy value when
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Fig. 5. Scalability test on synthetic networks.
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Fig. 6. Parameter study of λ.

λ = 0, because when there is no guidance from users, the accuracy cannot be correctly
defined.

5.5. Case Studies on Meta-Path Weights

One of the major contributions of PathSelClus is that it can select the right meta-paths
for a user-guided clustering task. We now show the learned weights of meta-paths for
some of the tasks.

In the DBLP-T1 task, the total weight αm for meta-path V − P − A − P − V is 1576,
and the average weight per relationship (a concrete path instance following the meta-
path) is 0.0017. The total weight for meta-path V − P − T − P − V is 17, 001, while the
average weight per relationship is 0.0003. This means that generally the relationships
between two conferences that are connected by an author are more trustable than the
ones that are connected by a term, which is consistent with human intuition since
many terms can be used in different research areas and authors are typically more
focused on confined research topics. However, as there are many more relationships
following V −P−T −P−V than following V −P−A−P−V, the former provides more
information for clustering overall.

In the Yelp network, similar to the DBLP-T1 task, in terms of the average weight for
each relationship, meta-path B−R−U−R−B has higher weight than B−R−T−R−B;
while in terms of total weight, meta-path B − R − T − R − B has higher weight. An
interesting phenomenon is that, for the Yelp-T2 task, which tries to cluster restaurants
into different categories, the average weight for relationships following B−R−U−R−B
is 0.1716, much lower than the value (0.5864) for the Yelp-T3 task, which tries to
cluster shopping businesses into finer categories. This simply says that most users
actually will try all different kinds of food, therefore they will not serve as a good
connection between restaurants as they are in other categories.
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In the synthetic networks, for Task 1, that is, Synthetic-T1, the learned quality
weights for all three relation matrices are 32,416, 47,620, and 52,892 respectively,
and the quality weights for each relationship are 0.5893, 0.8807, and 0.9250, which is
consistent with the ground truth of the noise level for each relation matrix, that is, we
have successfully assigned lower quality weight to more noisy meta-paths. For Task 2,
that is, Synthetic-T2, the learned quality weights for all the three relation matrices
are 83,858, 44,353, and 44,532 respectively, and the quality weight for each relation-
ship is 1.3496, 0.7138, and 0.7167, which is consistent with the user guidance, that is,
we have successfully assigned the highest quality weight to Relation 1.

6. DISCUSSION

In this article, we have proposed PathSelClus, which assigns different weights to dif-
ferent meta-paths for a user-specified clustering task in a heterogeneous information
network scenario. In this section, we briefly discuss some interesting issues.

6.1. The Power of Meta-Path Selection

Different meta-paths in heterogeneous networks could be viewed as different sources
of information for defining link-based similarity between objects. We first discuss what
should be the right level to combine different meta-paths to get the best clustering
result, which distinguishes our algorithm from the existing approaches for combining
different sources of information to perform a clustering task.

(1) Combining at the Relation Matrix Level. The first way to combine information of
different meta-paths (or from different sources) is to combine at the relation matrix
(feature) level, either by appending the M relation matrices, or by summing up all
the relation matrices if all of them are linking the same type. Then traditional
feature-based or graph-based semisupervised clustering algorithms can be used to
derive the clustering results.
However, there are two limitations of such a level of combination. First, different
relation matrices may carry very different scales of values, and there is no easy way
to assign proper weights to each relation matrix. Second, the more critical issue is
that in many cases, there could be no proper weights at all to linearly combine
different sources of information, as they may have completely different semantic
meanings. This is why we can see in the experiment section, ITC and LP do not
perform well for most of the clustering tasks, which belong to the algorithms that
combine information at the relation matrix level.

(2) Combining at the Clustering Result Level. Another choice of combining different
sources of information is to consider clustering ensemble methods that combine
the clustering results and output a consensus clustering result.
However, the major limitation of this level of combination is that if the clustering
result obtained by each source is not good enough, the combination of all the clus-
tering results will be not that good. For the motivating example in Example 1.1, we
can see that neither A−O−A nor A−V −A provides enough information to cluster
authors into 4 groups, and thus the clustering result for each metapath is not good.
Their ensemble result turns out to be not good as well. This is also demonstrated in
the experiment section, where ITC soft, ITC voting, LP soft, and LP voting belong
to the ensemble algorithms.

(3) Combining in the Middle. The third choice is to combine different sources of infor-
mation in between, which is the option adopted in this article. Instead of combining
relation matrices into a single relation matrix, we model the relationships in each
relation matrix separately. By looking at the updating formula in Eq. (13) in the
M-step, we can see that the clustering result for a target object is determined by
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the cluster label of each relationship in each relation matrix. Also, differently from
clustering ensemble methods that combine the clustering results at the output
level, the learned clustering result 	 will feed back into the modeling of each re-
lation matrix, and to generate a better cluster label for each relationship. It turns
out that, in most of cases, this approach is more flexible for combining the informa-
tion from different sources, and its advantage has been shown in the experiment
section.

6.2. Meta-Paths vs. Path Instances

In this article, we only consider the different semantics encoded by different meta-
paths. In practice, different concrete paths (path instances) between two objects may
also differ from each other, for example, two objects may be linked via a “bridge” or
via a “hub,” indicating different meanings. The difference between the two concepts,
that is, meta-path and path instance, is similar to the difference between a source of
features and a concrete feature in a vector space. Due to the limited scope, this article
only discusses the selection of meta-paths. The theme of selection of path instances at
the object level is left to future research.

7. RELATED WORK

Recently, many clustering algorithms have been proposed for networks, for example,
spectral clustering-based methods [Luxburg 2007; Shi and Malik 1997]; link-based
probabilistic models [Airoldi et al. 2008; Cohn and Chang 2000]; modularity function-
based algorithms [Newman 2004; Newman and Girvan 2004]; and density-based algo-
rithms [Wang et al. 2008; Xu et al. 2007] on homogenous networks; and ranking-based
algorithms [Sun et al. 2009a, 2009b], nonnegative matrix factorization [Lee and Seung
2000; Wang et al. 2011], spectral clustering-based methods [Long et al. 2006], and
probabilistic approaches [Long et al. 2007] on heterogeneous networks. However, while
all these clustering methods use the information given in the networks, none considers
that different users may have different purposes for clustering, nor do they ask users
to help select different information for link-based clustering. In this article, we show
that different types of relationships encoded by meta-paths have different semantic
meanings in determining the similarity between target objects, and the selection of
these meta-paths should be done with user guidance in order to derive user-desired
clustering results.

There are several lines of research on how to add user guidance to derive good clus-
tering results, consistent with users’ demands in vector space or networked data.

— Clustering with constraints. In Basu et al. [2002, 2004] and Kulis et al. [2005],
clustering algorithms that consider constraints either in the form of seeds in each
cluster or pairwise constraints such as must-link or cannot-link are proposed. A
probabilistic model with an HMRF (hidden Markov random field) as a hidden layer
that models the must-link and cannot-link between objects is proposed to solve the
problem [Basu et al. 2004]. This approach can also be extended to graph data with
the use of kernels instead of vector-based features [Kulis et al. 2005]. However,
these methods assume there is one trustable information source to either define
the feature of each object or define the network structure between objects. The goal
is to output the clustering result that is consistent with both the similarity defined
by the data as well as the user guidance. In this article, we dig further and study
which type of information source encoded with meta-paths is more trustable in a
heterogeneous network.

— Semi-supervised learning on graphs. In Zhu and Ghahramani [2002] and Zhu et al.
[2003], algorithms that propagate labels for a small portion of objects into the rest
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of the network are proposed, which are based on harmonic functions defined be-
tween objects using the network structure. Again, these kinds of methods totally
trust the given network and determine the best labels of the rest of the nodes ac-
cording to the cost function defined on the network.

— Semi-supervised metric learning. In Bilenko et al. [2004] and Bar-Hillel et al.
[2005], algorithms that learn the best distance metric functions according to the
constraints for the clustering task are proposed. This line of problem is closer to
the meta-path selection problem, but still differs significantly. First, they study
features of objects in vector space instead of a network; second, the metric func-
tions should be given in an explicit format, which is very difficult to determine in a
network scenario. In this article, we are not to find an explicit metric function that
determines the similarity between any two target objects, instead, we model and
learn the quality weight for each metapath in the clustering process, which can be
viewed as an implicit way to determine the similarity between two target objects.

— User-guided clustering in relational data. CrossClus [Yin et al. 2007] deals with an-
other type of guidance from users: the attribute set of the target object type. The al-
gorithm extracts a set of highly relevant attributes in multiple relations connected
via linkages defined in the database schema, and then uses the whole attribute
set as the feature set to apply traditional vector space-based clustering algorithm.
CrossClus works for relational data with complete attributes, but not for purely
link-based clustering.

Cluster ensemble [Punera and Ghosh 2008; Strehl et al. 2002] is a method that
combines clustering results of different methods or different datasets to a single con-
sensus. Most of these cluster ensemble methods try to find a mean partition given
different partitions of target objects. However, in reality, these clusterings may conflict
with each other, representing different purposes of clustering tasks, and a consensus
does not necessarily lead to a clustering desired by users. In this study, we do not com-
bine clustering results at the output level, but use intermediate clustering results as
feedback to adjust the weight of each meta-path, and thus the clustering results and
the quality weight for each meta-path can mutually enhance each other.

Our work also differs from traditional feature selection [Guyon and Elisseeff 2003]
and the recently emerged semisupervised feature selection [Xu et al. 2010; Zhao and
Liu 2007], which focus on vector space features, and do not have an immediate ex-
tension to solve our problem. For our metapath selection problem, each meta-path
provides a source of features instead of a concrete feature, and we have shown that
simple combinations of features from different sources may lead to no good solution.

8. CONCLUSIONS

Link-based clustering for objects in heterogeneous information networks is an im-
portant task with many applications. Different from traditional clustering tasks
where similarity functions between objects are given and with no ambiguity, objects
in heterogeneous networks can be connected via different relationships, encoded by
different metapaths. In this article, we integrate the meta-path selection problem
with the user-guided clustering problem in heterogeneous networks. An algorithm
PathSelClus is proposed, which utilizes very limited guidance from users in the form
of seeds in some of the clusters, and automatically learns the best weight for each
meta-path in the clustering process. The experiments on different tasks on real and
synthetic datasets have demonstrated that our algorithm can output the most stable
and accurate clustering results compared with the baselines. Also, the learned weights
for each meta-path are insightful to explain the hidden similarities between target
objects under a particular clustering task.
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Exploration of other types of user guidance, such as must-link and cannot-link, in
meta-path selection for effective link-based clustering is an interesting topic for future
study. More generally, the meta-path selection problem exists in many other mining
tasks, such as classification, ranking, and relationship prediction, which requires fu-
ture research on integrating meta-path selection with all these different mining tasks.
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