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Abstract—The problem of predicting links or interactions
between objects in a network, is an important task in network
analysis. Along this line, link prediction between co-authors
in a co-author network is a frequently studied problem. In
most of these studies, authors are considered in a homogeneous
network, i.e., only one type of objects (author type) and one
type of links (co-authorship) exist in the network. However, in a
real bibliographic network, there are multiple types of objects
(e.g., venues, topics, papers) and multiple types of links among
these objects. In this paper, we study the problem of co-author
relationship prediction in the heterogeneous bibliographic net-
work, and a new methodology called PathPredict, i.e., meta
path-based relationship prediction model, is proposed to solve
this problem. First, meta path-based topological features are
systematically extracted from the network. Then, a supervised
model is used to learn the best weights associated with different
topological features in deciding the co-author relationships. We
present experiments on a real bibliographic network, the DBLP
network, which show that meta path-based heterogeneous
topological features can generate more accurate prediction
results as compared to homogeneous topological features. In
addition, the level of significance of each topological feature can
be learned from the model, which is helpful in understanding
the mechanism behind the relationship building.

I. INTRODUCTION

Link prediction in networks has been an important topic
since the emergence of online social networks. Most of the
existing link prediction studies ([7], [4], [15], [8], [6]) are
designed for homogeneous networks, in which only one
type of objects exists in the network. Examples of such
networks include friendship and co-author networks. Recent
research [14] has also studied the problem of link prediction
in networks containing different kinds of attribute values
associated with objects. However, most of the networks
in real world are heterogeneous, and attribute values of
objects are often difficult to fully obtain. Therefore, the use
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Table I
TOP-5 PREDICTED CO-AUTHORS FOR JIAN PEI IN 2003-2009

Rank Hybrid heterogeneous features # Shared authors

1 Philip S. Yu Philip S. Yu
2 Raymond T. Ng Ming-Syan Chen
3 Osmar R. Zaı̈ane Divesh Srivastava
4 Ling Feng Kotagiri Ramamohanarao
5 David Wai-Lok Cheung Jeffrey Xu Yu

* Authors in bold format are the true new co-authors of Jian in the time
period 2003-2009.

of topological features between objects in a heterogeneous
network is critical in predicting links in a holistic way.

In this paper, we study the problem of predicting fu-
ture co-author relationships between existing authors in a
heterogeneous bibliographic network, using heterogeneous
topological features. Different from the traditional co-author
network setting, a heterogeneous bibliographic network is
considered, which contains multiple types of objects, such as
authors, venues, topics and papers, as well as multiple types
of links denoting different relations among these objects,
such as “write” and “written by” relations between authors
and paper, “cite” and “cited by” relations between papers,
and so on. In link prediction tasks, paths between two
objects play a very important role in generating topological
features in homogeneous networks. For example, the number
of common neighbors used in [7] is the number of length-2
paths between the two objects; and the Katzβ measure used
in [5] is a weighted sum of counts of paths with different
lengths. However, in heterogeneous networks, different paths
between the same pair of authors in the network may
represent different relations and denote different semantic
meanings. For example, a path between two authors “Jim”
and “Mike” could be “Jim-P5-SIGMOD-P6-Mike” (Fig. 3),
that is Jim and Mike are linked together as they both
published papers (P5 and P6) in the conference “SIGMOD”.
They can also be connected through a path denoting they
have common co-authors, e.g., “Jim-P1-Ann-P3-Mike”, and
so on. We can see that the type information associated with
objects and links makes the topological structure in hetero-
geneous networks more complex and with richer semantics
than that in homogeneous networks.

We then propose a new methodology called PathPre-
dict, i.e., meta path-based relationship prediction model,



to solve the problem. Instead of treating objects and links
of different types equally or extracting homogeneous sub-
networks from the original network, we propose a meta path-
based topological feature framework in the heterogeneous
bibliographic network. The goal is to systematically define
the relations between authors encoded in different paths
using the meta-structure of these paths, i.e., the meta paths
[12]. For example, the meta path for “Jim-P5-SIGMOD-P6-
Mike” is “author-paper-venue-paper-author”. Further, sev-
eral measures are proposed to quantify these meta path-based
relations, each of which quantifies the relation in a different
way. We then use a supervised learning framework to learn
the best weights associated with each topological feature.
Experiments show that by considering the rich semantics
of heterogeneous topological features, the accuracy of link
prediction can be improved significantly. For example, Table
I shows the top-5 predicted co-authors for Jian Pei in the
time period of 2003 to 2009 in DBLP network, using
hybrid heterogeneous topological features and the number of
common neighbors in the extracted co-author sub-network
from year 1996 to 2002 respectively. We can see that, the
results generated by heterogeneous features has a higher
accuracy compared with the homogeneous one. Furthermore,
from the model we can tell which topological feature plays
a more important role in deciding their future collaboration,
which is helpful for us to understand the mechanism of
future relationship construction. The contributions of this
paper include:
• We study the problem of co-author relationship predic-

tion in heterogeneous bibliographic networks;
• A new methodology called PathPredict, i.e., meta path-

based relationship prediction model, is developed to
solve this problem;

• Experiments on the real DBLP bibliographic network
show that by considering the heterogeneous types of
objects and links in the network collectively, the co-
author relationship prediction accuracy can be signifi-
cantly improved.

II. PROBLEM DEFINITION

In this section, we introduce the definition of a heteroge-
neous bibliographic network and the co-author relationship
prediction task in this network setting.

A. Heterogeneous Bibliographic Network

In this paper, we use the DBLP bibliographic network
as an example of heterogeneous bibliographic networks.
The DBLP bibliographic dataset with citation information
provided by [13] consists of rich information for publica-
tions, such as the authors, venues, titles and so on. We
further extract frequent phrases from titles as topics using
the sequential pattern mining algorithm PrefixSpan [10]. The
network then contains 4 types of objects, namely papers,
authors, topics, and venues (conferences or journals).
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Figure 1. Schema for DBLP Bibliographic Network

As an abbreviation, we use the initial capital letters to
denote these object types, namely P for papers, A for
authors, T for topics, and V for venues. Links exist between
authors and papers by the relations “write” and “written
by” (denoted as write−1), between papers and topics by
“mention” and “ mentioned by” (denoted as mention−1),
between venues and papers by “publish” and “published
by” (denoted as publish−1), between papers by “cite” and
“cited by” (denoted as cite−1), and between topics by
“contain” and “contained in” (denoted as contain−1) if one
topic is contained in the other topic. We can see that the
DBLP bibliographic network is a directed graph with type
information on objects and links. Further, we use a meta
structure called network schema to summarize the network,
which is shown in Fig. 1. In the network schema, the nodes
are the types of objects, and the edges are relations between
types.

B. The Co-Author Relationship Prediction Task

Given a heterogeneous network, the link prediction task is
then generalized to relationship building prediction, which
is to predict whether two objects will build a relationship
following a certain target relation. Notice that relationships
between objects are instances of the target relation. In
our case, we say Jim and Mike have built a co-author
relationship, if they follow a co-author relation. Unlike ho-
mogeneous co-author networks, the co-author relation is not
defined in our DBLP network schema directly. Nevertheless,
it can be defined through the composition of two relations
“write” and “write−1”, that is, two authors ai and aj are
co-authors, if and only if ai has written a paper p that is
written by aj .

Formally, following the work [12], we use the concept of
meta path defined over the network schema to describe the
relations that can be derived from the network. A meta path
is a path defined on the network schema, where nodes are
object types and edges are relations between object types.
For example in the DBLP network, the co-author relation

can be described using the meta path A
write−→ P

write−1

−→ A,
and in abbreviation as A− P −A, if there is no ambiguity
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Figure 2. Supervised Framework for Relationship Prediction

in either the meaning or the order of the relation. Another
example is A − P → P − A, which is short for A

write−→
P

cite−→ P
write−1

−→ A. This describes the citation relation
between authors. Notice that the network schema provides
a meta structure description for the network, and a meta
path provides a meta structure description for paths between
objects in the network.

Also, similar to the seminal work of link prediction in
homogeneous network [7], we are interested in predicting
new relationships rather than repeated relationships. In other
words, we are interested in predicting whether two authors
that have never co-authored before will co-author sometime
in the future rather than predicting how many times two
authors will co-author in the future.

The co-author relationship building between two authors
can be affected by many factors, and in this paper we are
particularly interested in the impact of topological structures
on the relationship building process. In other words, we want
to know what kind of connections between two authors are
more helpful to lead to future collaboration(s). In order to
solve this problem, we first systematically design the topo-
logical features in the DBLP network, and then a supervised
learning method is proposed to learn the weights associated
with each topological feature in determining relationships.

The supervised learning framework is summarized in Fig.
2. Generally, given a past time interval T0 = [t0, t1], we want
to use the topological features extracted from the aggregated
network in the time period T0, to predict the relationship
building in a future time interval, say T1 = [t1, t2]. In the
training stage, we first sample a set of author pairs that have
never co-authored in T0, collect their associated topological
features in T0, and record whether a relationship is to appear
between them in the future interval T1. A training model
is then built to learn the best coefficients associated with
each topological feature by maximizing the likelihood of
relationship building. In the test stage, we apply the learned
coefficients to the topological features for the test pairs, and
compare the predicted relationship with the ground truth.

III. THE PathPredict MODEL

In this section, we introduce the PathPredict model in
detail, which includes two components: (1) the meta path-

based topological feature definition and (2) the logistic
regression-based co-authorship prediction model.

A. Topological Features in Heterogeneous Networks

First, we study how to systematically define the topolog-
ical features in the DBLP network. Topological features are
also called structural features, which aim at extracting con-
nectivity properties for pairs of objects. Topological feature-
based link prediction aims at inferring the future connectivity
by leveraging the current connectivity of the network. There
are some frequently used topological features defined in
homogeneous networks, such as the number of common
neighbors, preferential attachment [2], [9], katzβ [5] and
so on. We first review several commonly used topological
features in homogeneous networks, and then propose a sys-
tematic meta path-based methodology to define topological
features in heterogeneous networks.

1) Review Existing Topological Features: We now list
several well-known and frequently used topological features
in homogeneous networks. For more topological features,
the readers can refer to [7] .
• Common neighbors. Common neighbors is defined as

the number of common neighbors shared by two objects
ai and aj , namely |Γ(ai) ∩ Γ(aj)|, where Γ(a) is the
notation for neighbor set of the object a and |·| denotes
the size of a set.

• Jaccard’s coefficient. Jaccard’s coefficient is a measure
to evaluate the similarity between two neighbor sets,
which can be viewed as the normalized number of
common neighbors, namely |Γ(ai)∩Γ(aj)|

|Γ(ai)∪Γ(aj)| .
• Katzβ . Katzβ [5] is a weighted summation of counts

of paths between two objects with different lengths,
namely

∑∞
l=1 βl|path

〈l〉
ai,aj |, where βl is the damping

factor for the path with length l.
• PropFlow. In a recent work [8], a random walk-based

measure PropFlow is proposed to measure the topolog-
ical feature between two objects. This method assigns
the weighs to each path (with fixed length l) using the
products of proportions of the flows on the edges.

We can see that, most of the existing topological features
in homogeneous networks are based on neighbor sets or
paths between two objects. However, as there are multi-typed
objects and multi-typed relations in heterogeneous networks,
the neighbors of an object could belong to multiple types,
and the paths between two objects could follow different
meta paths and indicate different relations. Thus, we need
to design a more complex strategy to generate topological
features in heterogeneous networks to distinguish paths with
different meanings.

2) Meta Path-based Topological Features: To design the
topological features in the heterogeneous networks, we first
define the topology between two objects using meta paths,
and then define measures on the specific topology.



Table II
META PATHS UNDER LENGTH 4 BETWEEN AUTHORS IN THE DBLP

NETWORK

Meta Path Semantic Meaning of the Relation
A− P −A ai and aj are coauthors (the target relation)
A− P → P −A ai cites aj

A− P ← P −A ai is cited by aj

A− P − V − P −A ai and aj publish in the same venues
A− P −A− P −A ai and aj are co-authors of the same au-

thors
A− P − T − P −A ai and aj write the same topics
A− P → P → P −A ai cites papers that cite aj

A− P ← P ← P −A ai is cited by papers that are cited by aj

A− P → P ← P −A ai and aj cite the same papers
A− P ← P → P −A ai and aj are cited by the same papers

Meta Path-based Topology. As introduced in Sec. II,
a meta path is a path defined over the network schema,
and denotes a composition relation over the heterogeneous
networks. By checking the existing topological features
defined in homogeneous networks, we can find that both the
neighbor set-based features and path-based features can be
generalized in heterogeneous information networks, by con-
sidering paths following different meta paths. For example,
if we treat each type of neighbors separately and extend the
immediate neighbors to n-hop neighbors (i.e., the distance
between one object and its neighbors are n), the common
neighbor feature between two authors is then becoming the
count of paths between the two authors following different
meta paths. For path-based features, such as Katzβ , it can
be extended as a combination of paths following different
meta paths. Hence, each meta path defines a unique topology
between objects, representing a special relation.

Meta paths between two object types can be obtained by
traversing on the DBLP network schema, by using standard
traversal methods such as the BFS (breadth-first search)
algorithm. As the network schema is a much smaller graph
compared with the original network, this stage is very fast.
For co-authorship relation, we extract all the meta paths
within a length constraint, say 4, starting and ending with the
author type A. The meta paths between authors up to length
4 are summarized in Table II, where the semantic meaning
of each relation denoted by each meta path are given in the
second column.

Measure Functions on Meta Paths. Once the topologies
given by meta paths are determined, the next stage is to
propose measures on these meta paths. In this paper, we
propose four measures along the lines of topological features
in homogeneous networks. These are path count, normalized
path count, random walk, and symmetric random walk,
which are defined as follows.

• Path count. Path count measures the number of path
instances between two objects following a given meta
path, denoted as PCR, where R is the relation denoted
by the meta path. Path count can be calculated by the
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Figure 3. An Example of A-P -V -P -A Paths Between Two Authors

products of adjacency matrices associated with each
relation in the meta path.

• Normalized path count. Normalized path count is to
discount the number of paths between two objects in
the network by their overall connectivity, and is defined
as NPCR(ai, aj) = PCR(ai,aj)+PCR−1 (aj ,ai)

PCR(ai,·)+PCR(·,aj)
, where

R−1 denotes the inverse relation of R, PCR(ai, ·)
denotes the total number of paths following R starting
with ai, and PCR(·, aj) denotes the total number of
paths following R ending with aj . PCR(ai, ·) and
PCR(·, aj) can be viewed as degrees of ai and aj in
the network respective to R and R−1.

• Random walk. Random walk measure along a meta
path is defined as RWR(ai, aj) = PCR(ai,aj)

PCR(ai,·) , which
is a natural generalization of PropFlow [8].

• Symmetric random walk. Symmetric random walk
considers the random walk from two directions along
the meta path, and defined as SRWR(ai, aj) =
RWR(ai, aj) + RWR−1(aj , ai).

We now use the example in Fig. 3 to show the calculation
of these measures. Let R denote the relation represented by
meta path A − P − V − P − A. It is easy to check it is
symmetric, i.e., R = R−1. Let J denote Jim, and M denote
Mike. We can see that PCR(J,M) = 7, NPCR(J,M) =
7+7
7+9 = 7/8, RWR(J,M) = 1/2, RWR(M, J) = 7/16, and
SRWR(J,M) = 15/16.

For each meta path, we can apply any measure functions
on it and obtain a unique topological feature. In the exper-
imental section, we will compare the different topological
features for the co-author relationship prediction task.

B. The Co-authorship Prediction Model

Second, we introduce the relationship prediction model
which models the probability of co-authorship between two
authors as a function of topological features between them.
Given the training pairs of authors, we first extract the
topological features for them, and then build the prediction
model to learn the weights associated with these features.

In this paper, we choose the standard method, namely,
the logistic regression model as the prediction model. For
each training pair of authors 〈ai1 , ai2〉, let xi be the (d+1)-
dimensional vector including constant 1 and d topological
features between them, and yi be the label of whether they



will be co-authors in the future (yi = 1 if they will be
co-authors, and otherwise 0), which follows binomial distri-
bution with probability pi. The probability pi is modeled as
follows:

pi =
exiβ

exiβ + 1
where β is the d + 1 coefficient weights associated with
the constant and each topological feature. We then use
standard MLE (Maximum Likelihood Estimation) to derive
β̂, that maximizes the likelihood of all the training pairs:
L =

∏
i pyi

i (1− pi)(1−yi).

IV. EXPERIMENTS

In this section, we show that our proposed meta path-
based topological features can improve the co-authorship
prediction accuracy compared with the baselines that only
use homogeneous object and link information.

A. Dataset

The DBLP bibliographic network, which has been intro-
duced in Sec. II-A, is used for experiments. This network
contains 1632K papers published before 2010, 1037K au-
thors, 7.7K venues, and 280K topics that have appeared
more than 5 times in the paper titles.

B. Experiment Setting

We consider three time intervals for the network, accord-
ing to the publication year associated with each paper: T0 =
[1989, 1995], T1 = [1996, 2002], and T2 = [2003, 2009]. For
the training stage, we use T0 as the past time interval, and T1

as the future time interval, which is denoted as T0−T1 time
framework. For the test stage, we consider the same time
framework T0 − T1 for most of the studies, and consider
T1 − T2 time framework for the model generality test (Sec.
IV-D) and the query-based test (Sec. IV-E).

Let an author pair be 〈ai, aj〉, we call ai the source author,
and aj the target author. Two sets of source authors are
considered. The first set is comprised of highly productive
authors, who has published no less than 16 papers in the
past time interval; and the second set is comprised of less
productive authors, with between 5 and 15 publications. We
confine the target authors that are relatively close to the
source authors, to avoid the excessive computing between
authors that are unrelated. The target authors are selected if
they are 2-hop co-authors or 3-hop co-authors of the source
author. For each source author set under each target author
constraint (2-hop or 3-hop co-authors), we first find all the
source authors that have new relationships building with
existing authors in the future time interval, and use these
new relationships as positive training pairs. We also sample
an equal sized set of negative pairs. Therefore, in the training
dataset, the sizes of positive pairs and negative pairs are
balanced. We summarize the training datasets in Table III.
It can be noticed that, highly productive authors are more

likely to co-author with authors within a small distance than
the less productive authors (64.91% of the highly productive
authors have new relationships building with 2-hop co-
authors, while only 36.58% of the less productive authors
build new relationships with their 2-hop co-authors). We
will study other behavior differences for the two groups of
sources authors in the following parts. In all, we have four
labeled datasets: (1) the highly productive source authors
with 2-hop target authors (denoted as HP2hop); (2) the
highly productive source authors with 3-hop target authors
(denoted as HP3hop); (3) the less productive source authors
with 2-hop target authors (denoted as LP2hop); and (4)
the less productive source authors with 3-hop target authors
(denoted as LP3hop).

To evaluate the prediction accuracy, two measures are
used. The first measure is the classification accuracy rate
(accuracy) for binary prediction under the cut-off score as
0.5, and the second one is the area under ROC curve (AUC).

C. Overall Accuracy

In this section, we evaluate the accuracy of our method-
ology on the four datasets, using a 10-fold cross validation.

We first compare the heterogeneous topological features
with the homogeneous ones. For the heterogeneous topo-
logical features, we use path count measure for 9 meta
paths (denoted as heterogeneous PC) listed in Table II
(not including the target relation itself); for homogeneous
topological features, we use (1) the number of common co-
authors, (2) the rooted PageRank ([7]) with restart proba-
bility α = 0.2 for the co-author sub-network, and (3) the
number of paths between two authors of length no longer
than 4, disregarding their different meta paths (denoted as
homogeneous PC). The rooted PageRank measure is only
calculated for the HP3hop dataset, due to its inefficiency
in calculation for large number of authors. The comparison
results are summarized in Fig. 4 and Table IV. We can
see that the heterogeneous topological feature beats the
homogeneous ones in all the four datasets, which validates
the necessity to consider the different meta paths separately
in heterogeneous networks. We also notice that, in general
the co-authorship for highly productive authors is easier to
predict than less productive authors, by looking at the overall
prediction accuracy on the two groups of source authors.
Finally, we can see that the prediction accuracy is higher
when the target authors are 3-hop co-authors, which means
the collaboration between closer authors in the network is
more affected by information that is not available from
network topology.

Second, we compare different measures proposed for
heterogeneous topological features in Sec. III-A: (1) the
path count (PC), (2) the normalized path count (NPC),
(3) the random walk (RW ), (4) the symmetric random walk
(SRW ), and (5) the hybrid features of (1)-(4)(hybrid). The
results for the four datasets are shown in Fig. 5. It turns



Table III
FOUR TRAINING DATASETS IN TIME FRAMEWORK T0 − T1 SUMMARIZATION

Source author type Constraint # Source authors # Source author with new relationships # New relationships # Avg. target authors

highly productive
2-hopX 2538 1548 (64.91%) 4986 (19.43%) 159.01
3-hopX 2538 1860 (77.99%) 9215 (35.91%) 930.65

no 2538 2385 (100%) 25661 (100%) 119246

less productive
2-hopX 13075 3367 (36.58%) 6189 (12.51%) 47.97
3-hopX 13075 4333 (47.08%) 10710 (21.64%) 271.06

no 13075 9204 (100%) 49483 (100%) 119246
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Figure 4. Homogeneous Features vs. Heterogeneous PC Feature

Table IV
HOMOGENEOUS TOPOLOGICAL FEATURES VS. HETEROGENEOUS ONES

Dataset Topological features Accuracy AUC

HP2hop

common neighbor 0.6053 0.6537
homogeneous PC 0.6433 0.7098
heterogeneous PC 0.6545 0.7230

HP3hop
common neighbor 0.6589 0.7078
homogeneous PC 0.6990 0.7998
rooted PageRank 0.6433 0.7098
heterogeneous PC 0.7173 0.8158

LP2hop
common neighbor 0.5995 0.6415
homogeneous PC 0.6154 0.6868
heterogeneous PC 0.6300 0.6935

LP3hop
common neighbor 0.6804 0.7195
homogeneous PC 0.6901 0.7883
heterogeneous PC 0.7147 0.8046

out that in average (see Fig. 6): (1) all the heterogeneous
features beat the homogeneous features (common neighbor
is denoted as PC1, and homogeneous PC is denoted as
PCSum); (2) the normalized path count beats all the
other three individual measures; and (3) the hybrid feature
produces the best prediction accuracy.

Third, we compare the accuracy of our model under
different strengths of the relationship definition. In the
previous cases, we say two authors have a co-authorship
if they have co-authored one paper. Here, we study the
relationships defined by different collaboration frequency.
From Fig. 7, we can see that, the measure symmetric random
walk is more important in deciding high frequency co-
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Figure 5. Comparison of Different Heterogeneous Features
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Figure 6. Average Accuracy over 4 Datasets for Different Features

author relationships. In other words, two authors who can be
reached with high probability mutually in the network will
be more likely to build strong collaboration relationships.

D. Model Generalization

We now test the model generalization over different time
periods. In reality, we may need to train the model using
T0− T1 time framework, but apply the model to a different
time framework with a shift ∆T . In our case, we consider
the time shift as 7 years, namely the T1 − T2 framework.
In other words, we want to see whether the model trained
7 years ago can still produce reasonable prediction results
according to the new topological features. We can see that,
the accuracy of the prediction for using last time framework
as training is comparable with results using the same term
training. Notice that, the accuracy rate using a cut-off of 0.5
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Figure 7. Impacts of Collaboration Frequency on Different Measures

Table V
MODEL GENERALIZATION TEST OVER TIME EVOLVING

Training framework Test framework Prediction Accuracy
Accuracy AUC

T0 − T1 T0 − T1 0.7368 0.8211
T0 − T1 T1 − T2 0.7123 0.8325
T1 − T2 T1 − T2 0.7442 0.8313

Table VI
SIGNIFICANCE OF META PATHS WITH NORMALIZED PATH COUNT

MEASURE FOR HP3hop DATASET

Meta Path p-value significance level1

A− P → P − A 0.0378 **
A− P ← P − A 0.0077 ***
A− P − V − P − A 1.2974e-174 ****
A− P − A− P − A 1.1484e-126 ****
A− P − T − P − A 3.4867e-51 ****
A− P → P → P − A 0.7459
A− P ← P ← P − A 0.0647 *
A− P → P ← P − A 9.7641e-11 ****
A− P ← P → P − A 0.0966 *
1 *: p < 0.1; **: p < 0.05; ***: p < 0.01, ****: p < 0.001

is underestimated as predicted scores have a shift due to the
growth of the network; while the measure of AUC is more
trustable as it considers all possible cut-offs.

E. Case Study

For the case study, we first show the learned importance
for each topological feature in deciding the relationship
building in DBLP, and then show the predicted co-author
relationships for several source authors in a query mode.

First, we show the learned importance for all the 9 meta
paths with NPC measure, as NPC is the best measure for
co-author relationship prediction overall. We show the p-
value for the feature associated with each meta path under
Wald test and their significance level in Table VI. From the
results, we can see that for the HP3hop dataset, the shared
co-authors, shared venues, shared topics and co-cited papers
for two authors all play very significant roles in determining
their future collaboration(s). For the asymmetric meta paths
that represent the asymmetric relations, such as citing and
cited relations between authors, they have different impacts
in determining the relationship building. For example, for a
highly productive source author, the target authors citing her
frequently are more likely to be her future co-authors than
the target authors being cited by her frequently.

Table VII
TOP-6 SIGNIFICANT TOPOLOGICAL FEATURES IN HYBRID MEASURE

SPACE FOR HP3hop DATASET

top-k Meta Path + Measure p-value

1 A− P − V − P − A+ NPC 3.12e-38
2 A− P − A− P − A + SRW 2.14e-27
3 A− P − T − P − A + NPC 1.54e-13
4 A− P − A− P − A + RW 2.14e-06
5 A− P − V − P − A + SRW 0.0001
6 A− P ← P → P − A + PC 0.0008

Table VIII
QUERY AUTHOR SUMMARIZATION

Query author # Candidates # True relationships

Jiawei Han 11934 36
Christos Faloutsos 12945 45
Charu Aggarwal 5166 12

Jian Pei 4809 42
Xifeng Yan 1617 8

For the case of using hybrid features, we list the top-
6 featured denoted as the combination of meta paths and
measures for HP3hop dataset in Table VII.

Second, we study the predicted co-authors for several
source authors as queries. Notice that, predicting co-authors
for a given author is an extremely difficult task, as we
have too many candidate target authors (3-hop candidates
are used), while the number of real new relationships are
usually quite small. The statistics for the query authors
in T1 − T2 framework and the recall at position 50 for
the predicted results using training in T0 − T1 framework
are summarized in Table VIII and Table IX. We can see
that compared with random prediction and using the ho-
mogeneous feature of shared common authors, the model
using our hybrid heterogeneous topological features gives
the best overall performance. Table X shows the top-10
predicted co-authors in time interval T2 (2003-2009) using
the T0−T1 training framework, for both the proposed hybrid
topological features and the shared co-author feature. It turns
out that the previous feature predicts more real relationships
by considering multiple factors.

V. RELATED WORKS

The link prediction problem has been studied on homoge-
neous networks extensively. The earliest works mainly study
unsupervised methods [1], [7], in which different similarity



Table IX
Recall@50 COMPARISON

Query author Hybrid Features Random # Shared authors

Jiawei Han 0.1111 0.0042 0.0833
Christos Faloutsos 0.0889 0.0039 0.1111
Charu Aggarwal 0.4167 0.0097 0.3333

Jian Pei 0.2619 0.0104 0.2619
Xifeng Yan 0.875 0.0309 0.5

Avg. 0.3507 0.0118 0.2579

Table X
TOP-10 PREDICTED CO-AUTHORS FOR JIAWEI HAN

Rank Hybrid features # Shared authors

1 Hans-Peter Kriegel Elisa Bertino
2 Christos Faloutsos Sushil Jajodia
3 Divesh Srivastava Hector Garcia-Molina
4 H. V. Jagadish Hans-Peter Kriegel
5 Bing Liu1 Christos Faloutsos
6 Johannes Gehrke Divyakant Agrawal
7 George Karypis Elke A. Rundensteiner
8 Charu C. Aggarwal Amr El Abbadi
9 Mohammed Javeed Zaki Krithi Ramamritham
10 Wynne Hsu Stefano Ceri

1 Although not included in the time interval T2, Bing Liu co-
authored with Jiawei in Year 2010.

measures are constructed from topological structure of the
networks or from the object attributes, and are compared
to see whether they are consistent with the future link ap-
pearance. Subsequently, supervised methods were proposed
which combine different features with different coefficients
via training data sets [4], [15], [8]. Some recent work [6]
has discussed the link prediction problem when the network
is not fully observed and thus is modeled in a probabilistic
way. A good survey on link prediction may be found in [3].
In this paper, we extend the link prediction problem to more
general heterogeneous networks by exploring the topological
features in such scenarios.

Another line similar to our problem is the link prediction
task in relational data [11], [14], as relational data also
involves different types of objects and complex relationships
between objects. However, these studies have a different
focus compared with our paper. As in [11], they study
feature selection in a relational environment using relational
languages, and feed these features into supervised link
prediction models. In [14], the authors focus on modeling
the relational data via a probabilistic model, which relies
on the attributes of the objects, and the links are used to
capture the dependency relation among different variables.
In our paper, we aim at designing a model for relationship
building by systematically exploring the topological features
in the heterogeneous networks.

VI. CONCLUSIONS

In this paper, we study the problem of predicting co-
author relationship among authors in heterogeneous bibli-
ographic networks. In comparison with traditional homoge-
neous networks, heterogeneous networks contain multiple
types of objects and links. We propose the PathPredict

model to address this problem, which first defines meta path-
based topological features in such networks, and then builds
logistic regression-based co-authorship prediction model.
Experiments on the DBLP bibliographic network show that
by considering heterogeneous topological features, the rela-
tionship prediction accuracy can be significantly improved,
and the model using hybrid features that have combined
different meta paths and different measures gives the best
overall performance. Furthermore, the learned significance
for each topological feature can provide better understanding
of the relationship building mechanism in such networks.
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