
IEEE TRANSACTION ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION JANUARY 2012, REVISED MAY 2013, ACCEPTED MAY 2013 1

Co-Evolution of Multi-Typed Objects in
Dynamic Star Networks
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Abstract—Mining network evolution has emerged as an intriguing research topic in many domains such as data mining, social
networks, and machine learning. While a bulk of research has focused on mining the evolutionary pattern of homogeneous
networks (e.g., networks of friends), however, most real-world networks are heterogeneous, containing objects of different types,
such as authors, papers, venues, and terms in a bibliographic network. Modeling co-evolution of multi-typed objects can capture
richer information than that on single-typed objects alone. For example, studying co-evolution of authors, venues, and terms in
a bibliographic network can tell better the evolution of research areas than just examining co-author network or term network
alone. In this paper, we study mining co-evolution of multi-typed objects in a special type of heterogeneous networks, called
star networks, and examine how the multi-typed objects influence each other in the network evolution. A Hierarchical Dirichlet
Process Mixture Model-based evolution model is proposed, which detects the co-evolution of multi-typed objects in the form of
multi-typed cluster evolution in dynamic star networks. An efficient inference algorithm is provided to learn the proposed model.
Experiments on several real networks (DBLP, Twitter, and Delicious) validate the effectiveness of the model and the scalability of
the algorithm.

Index Terms—Information network analysis, data mining, co-evolution, clustering, dynamic star networks
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1 INTRODUCTION

With the advent of social Web, social and information
networks are ubiquitous. Examples include social net-
works (e.g., MySpace, Facebook, Foursquare), microblogs
(e.g., Twitter, Jaiku), bibliographic databases (e.g., DBLP,
PubMed), and sharing systems (e.g., Delicious, Flickr).
Since networks are rather dynamic, it is interesting to study
how objects in the networks form different clusters and how
clusters evolve over time. The clusters represent groups of
objects that are closely linked to each other, either due
to hidden common interests or due to some social events.
Most recent studies on cluster detection and evolution in
networks [5], [11], [19], [6], [8] are on homogeneous
networks, however, most real-world networks are heteroge-
neous, containing objects of different types, such as authors,
papers, venues and terms in a bibliographic network like
DBLP. One may wonder if modeling co-evolution of multi-
typed objects may capture richer semantic information than
that of single-typed objects. Let’s examine an example.
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Example 1. To study how research areas are evolving in the
computer science bibliographic network formed by the D-
BLP data (hence called the DBLP network), one may model
the evolution of author communities only (e.g., author
collaborations), or topics only (e.g., hot terms in papers).
However, by putting authors, papers, terms, and venues
together, one may discover the dynamics of an area, such
as in the web mining community, not only new researchers
joined in, but also they brought in fresh terminology and
set up new venues and influenced many senior authors.
Such modeling can uncover the hidden multi-typed clusters
at different time periods and their evolutionary structure,
such as evolving, splitting, and merging in heterogeneous
networks.

Fig. 1 shows a partial evolutionary structure of clusters
from the DBLP network, where a rectangle box denotes a
cluster with top occurred objects displayed and the area of
the box denotes the relative size of the cluster (measured
by the number of papers). It shows both the evolution of
multiple types of objects in each cluster and the evolution-
ary structure among the clusters. For example, database and
software engineering first formed a huge cluster, but later,
database, data mining and machine learning merged into
a big cluster, and software engineering itself became an
independent cluster. As illustrated, each cluster is composed
of objects from different types, and the cluster’s evolution
is determined by the co-evolution of objects from different
types.

This problem is non-trivial, and it poses several chal-
lenges: (1) how to take different types of objects collective-
ly to detect clusters? (2) how to discover the evolutionary
structure (split, merge, and evolve) among clusters of
different time windows by modeling the co-evolution of
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Fig. 1. An example of evolutionary clusters extracted from the DBLP data.

objects in each type? and (3) how to develop an efficient
algorithm to solve the problem, as real-world information
networks can be very large?

This paper develops a systematic approach to address the
challenges for a particular type of heterogeneous networks,
the star networks, which contain nodes from a center
type and multiple attribute types, and links only exist
between the center type and attribute types. Most event-
based networks can be modeled into star networks: for
the DBLP network, papers (as events) belong the center
type, linking to authors, conferences, and terms as attribute
types; and for the Twitter network, tweets can be taken as
the center type, linking to users, text, hashtags, and so on.
Then, a probabilistic model called Evo-NetClus is proposed
to model the co-evolution of different types of objects.
Both the content evolution (object distribution evolution in
a cluster) and the evolutionary structure of the clusters (the
dependency relationship between clusters) are modeled. An
efficient algorithm is proposed to learn the model.

In all, the study makes the following contributions:
1) A novel problem of studying the co-evolution of

multi-typed objects in dynamic heterogeneous star
networks is proposed, with the goal of detecting
evolutionary multi-typed clusters in such networks.

2) A Hierarchical Dirichlet Process Mixture Model-
based generative model (Evo-NetClus) is proposed
to solve the problem and an efficient algorithm is
proposed for the model learning; and

3) Experimental results on several real datasets have
demonstrated the effectiveness of the proposed model
and the efficiency of the algorithm.

The remaining of the paper is organized as follows.
Section 2 introduces preliminary concepts on heterogeneous
information networks and Dirichlet process. Section 3 de-

velops a generative model Evo-NetClus for evolutionary
heterogeneous clusters in dynamic networks. Section 4
presents an efficient greedy learning algorithm. Section
5 reports the experiment results, Section 6 discusses the
related work, and Section 7 concludes the study.

2 PRELIMINARIES
In this section, we first introduce some preliminary knowl-
edge and definitions, then formalize the evolutionary multi-
typed cluster detection problem, and finally introduce the
Dirichlet process that our model is built upon.

2.1 Heterogeneous Information Networks
A heterogeneous information network G is a network
containing multiple types of objects and/or multiple types
of links. Among all the heterogeneous networks, we con-
sider in this paper only those with star network schema,
i.e., links only exist between the center type of objects
(e.g., papers) as target objects, and several other types
of objects (e.g., authors, conferences, and terms) as at-
tribute objects. Many of the heterogeneous networks can
be modeled with the star network schema. For example,
the DBLP bibliographic network can be modeled with
research papers as the target objects, and their authors,
terms used in the papers, and venues where these papers
published as attribute objects; the Twitter network can be
modeled with tweets as target objects, and users, terms and
hashtags as attribute objects; and the Flickr network can be
modeled with images as target objects and users, groups,
and tags as attribute objects. A more detailed example of
DBLP bibliographic information network with star network
schema is introduced below.
Example 2 (Star bibliographic network.) A DBLP bib-
liographic network consists of information about research
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papers, each written by a group of authors, using a set of
terms, and published in a venue (a conference or journal).
Such a bibliographic network is composed of four types
of objects: authors, venues, terms, and papers. Links exist
between papers and authors by the relationship of “write”
and “written by,” between papers and terms by “contain”
and “contained in,” between papers and venues by “publish”
and “published by.”

2.1.1 Multi-typed Cluster
Instead of the traditional clusters containing objects from
one single type, we are interested in clusters containing
multiple types of objects, namely, multi-typed clusters
[23]. Given a heterogeneous network, a multi-typed cluster
is a subnetwork of it, which contains different types of
objects that (partially) belong to it. In this paper, we further
define the size of a cluster as the number of target objects
assigned to the cluster, and the number of occurrences of
an attribute object in a cluster as the number of target
objects linked to this object in the cluster. For example, we
say the occurrence of an author is 4 in data mining cluster,
if he/she has (published) 4 papers belonging to data mining
area.

Following [23], we model each multi-typed cluster as a
statistical model parameterized by distributions of attribute
types (parameters denoted as ϕ), which defines the prob-
ability of target objects in each cluster according to their
linked attribute objects. In this paper, we use the parameter
vector ϕ to represent its corresponding multi-typed cluster
model. Given the statistical model for each cluster, we
can then assign the target objects into the cluster with
the maximum posterior probability, and get the induced
subnetwork of the cluster containing these target objects
and their linked attribute objects accordingly.

2.1.2 Network Sequence
Objects and links in the networks are usually associated
with time. A dynamic network can then be segmented into
a network sequence according to such time information.
We denote a network sequence as GS = (G1,G2, . . . ,GT ),
where Gt = ⟨Vt, Et⟩ is the network associated with time
window t. In the DBLP case, each Gt is a network com-
prised of all the papers published in year t or time window
t, as well as the authors, venues and terms linking to them.
In the Twitter case, each Gt is a network comprised of all
the tweets posted in the time window t, and all the users,
terms and hashtags associated with these tweets.

2.1.3 Co-Evolution Problem Formulation
In this paper, we consider the co-evolution problem in an
online mode. That is, we try to detect the evolutionary
multi-typed clusters at time t+1, once the network Gt+1 is
observed at time t+1. Although algorithms in offline mode
that use all-time network information can produce a global
view of evolution, online mode algorithm is more realistic
for detecting evolution for real-time large-scale networks.

The evolutionary multi-typed cluster detection problem
is then formalized as follows. Given an input network

sequence GS = (G1,G2, . . . ,GT ), the output is a T -
partite graph, where the nodes are the multi-typed clusters
{ϕt,k}Kt

k=1 defined as statistical models for each network
Gt, and Kt is the automatically learned number of clusters
for Gt. A dependency link exists between two clusters in
adjacent networks, say ϕt−1,k′ and ϕt,k, iff the cluster ϕt,k

is (partially) evolved from ϕt−1,k′ , namely, there exists a
target object that is assigned to cluster k in time window t
and would be assigned to cluster k′ in time window t− 1
given the statistical models.

2.2 Dirichlet Process Mixture Model

We now first briefly introduce the Dirichlet process mixture
model (DPM), which our evolution model is based on.
Mixture model is a frequently used method in clustering,
which assumes an observation oi is generated from a fixed
number, say K, of different statistical models {ϕk}Kk=1

(clusters), with different component weights πk. A mixture
model can be formalized as oi ∼

∑K
k=1 πkp(oi|zi = k).

However, it is usually difficult for people to specify the
correct cluster number K in the mixture model. Dirich-
let process mixture model is a typical way to solve the
problem, where the number of potential clusters is count-
able infinite, and the distribution of components follows a
Dirichlet process (an extension of Dirichlet Distribution to
infinite space) with a base distribution G0. We follow the
work [15] and define the DPM model as in Equation 3:

G ∼ DP(α,G0)

θi|G ∼ G

oi|θi ∼ f(θi)

(1)

where G is generated by a Dirichlet Process with the
base measure G0 and concentration parameter α, with the
meaning of precision of G around base distribution G0,
θi follows the distribution of G, and oi is generated from
cluster with parameter θi.

According to [15], this model is equivalent to the fol-
lowing finite mixture model (Equation 2), when the cluster
number K goes to infinity:

oi|zi, ϕ1:K ∼ f(ϕzi)

zi|π ∼ Discrete(π1, . . . , πK)

ϕ1:K ∼ G0

π ∼ Dirichlet(α/K, . . . , α/K)

(2)

where zi stands for the latent class label of the observation
oi. In this model, given the cluster number K, the parame-
ters ϕ1:K for all the clusters are drawn from the same prior
distribution G0, and the component weights π1:K are drawn
from a Dirichlet distribution as the prior.

Later, researchers extended DPM into hierarchical
Dirichlet process mixture model (HDP) [26], which can
generate clusters for objects coming from different groups,
where different groups may share some common clusters
across groups but also have some unique clusters within
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the group. Formally,

G0 ∼ DP(γ,H)

Gj ∼ DP(α,G0)

θji|Gj ∼ Gj

oji|θji ∼ f(θji)

(3)

where γ is the first level concentration parameter, H is the
first level base distribution, Gj is the set of measures for
group j, and θji is the component parameter for oji, which
is drawn from Gj .

3 MODELING EVOLUTIONARY MULTI-
TYPED CLUSTERS

In this section, we propose a probabilistic model to solve
the evolutionary multi-typed cluster detection problem.

3.1 Overview
We decompose the problem of modeling evolutionary clus-
ters into two sub-problems: (i) model multi-typed clusters
with flexible numbers for static networks, and (ii) model the
evolutionary structure among them. A probabilistic model
Evo-NetClus that solves the two sub-problems in a unified
framework is proposed.

First, we propose the DP-NetClus model, which is able
to detect multi-typed clusters with flexible numbers using
the objects from multiple types collectively in a static
network. To automatically detect the best number of clusters
is important, as it is unrealistic for human to specify the
number of clusters in every time window, considering the
emergence of new clusters and the fading-out of old ones.

Second, in order to model the evolutionary structure be-
tween clusters of adjacent time windows, we propose Evo-
NetClus on top of DP-NetClus. That is, the evolutionary
network clustering is an generative model for target objects
at current time window, by using both the prior knowledge
of clusters learned from the previous time window and the
background knowledge in the current time window.

To better illustrate the idea of evolutionary cluster de-
tection and probabilistic modeling, we take the DBLP
bibliographic network as an example. Nevertheless, the
model and algorithm can be used in any heterogeneous
networks with a star network schema.

3.2 DP-NetClus: Modeling Multi-Typed Clusters
Similar to the ranking-based clustering algorithm for star
networks, NetClus [23], the probability of a target object
in a multi-typed cluster is defined as the conditional prob-
ability in that cluster, given their linked attribute objects.
In addition, we model two more factors. First, in NetClus,
the number of the clusters is specified by users, which is
a difficult task in a dynamic scenario. Thus we add a prior
to the component coefficients to guide the selection of the
number of clusters. Second, we add a prior to the object
distributions in the model, which makes the whole process
as a generative model. The two priors can be unified in one

framework by using the Dirichlet process [15]. We call our
new multi-typed network clustering model as DP-NetClus,
as it is a Dirichlet process-based network clustering model.

Specifically, in the DBLP network, there are four type-
s of objects: papers (O), authors (A), venues (C), and
terms (W ), where links exist only between O and each
of the other three types. For each target object (paper)
oi ∈ O, it is represented as a tuple (ai, ci,wi), where
ai = (nai1 , . . . , nai|A|) is a vector with length of |A|, |A|
denotes the size of the author set, and naij denotes the
weight of the link between oi and author aj ∈ A. ci and wi

have similar meanings. In the author vector, naij is a binary
value, denoting whether author aj has written paper oi or
not; in the venue vector, ncij is a binary value, denoting
whether oi is published in venue cj ; and in the term vector,
nwij is a positive integer indicating the number of times oi
has used term wj . We model each target object oi generated
from a mixture model: p(oi) =

∑
k πkp(oi|k), where πk is

the component probability for cluster k.
We assume that for every attribute type, the objects

within that type follow a discrete distribution in each cluster
k. Each target object oi in the cluster k is modeled as a
joint probability of its linked attribute objects in k. Let
ϕk be the parameter vector for the statistical model for
cluster k, which can be further decomposed into three
components, i.e., ϕk = (ϕA

k , ϕ
C
k , ϕ

W
k ), where ϕA

k is the
parameter vector for the conditional discrete distribution of
Type A in cluster k, i.e., ϕA

k (a) denotes the probability
of author a in cluster k within the author type (similarly
for ϕC

k and ϕW
k ). The probability of generating paper oi in

cluster k is then p(oi|k) = p(ai|k)p(ci|k)p(wi|k), where
p(ai|k) =

∏|A|
j=1(ϕ

A
k (a))

naij , according to the discrete
distribution, and similarly for p(ci|k) and p(wi|k).

In order to model the flexible number of clusters and
add prior knowledge to distributions for attribute types,
we introduce Dirichlet process (DP) [25] as the prior for
the mixture model, which could have infinite number of
clusters. In other words, cluster parameters are assumed to
be generated from G, which is generated from a Dirichlet
process, G ∼ DP (α,G0), where α is a concentration
parameter, which controls the probability of creating a new
cluster, and G0 is the base distribution for each cluster
model. Notice that, Dirichlet process is a distribution over
distributions, which defines the distribution for all the
possible cluster models. In our model, the base distribution
G0 is defined as three independent symmetric Dirichlet
distributions for the three attribute types, with concentration
parameters as βA, βC and βW (denoted as β collectively).

The DP-based generative model for target objects in
networks can be described in the following generative
process (Figure 2):

• Sample cluster component coefficients π = {πk}∞k=1.
π|α ∼ GEM(α) (GEM denotes the stick-breaking
processing [25]), namely, π′

k|α ∼ Beta(1, α), πk =

π′
k

∏k−1
l=1 (1− π′

l).
• Sample cluster component models {ϕk}∞k=1. ϕA

k ∼
HA(βA), ϕC

k ∼ HC(βC), and ϕW
k ∼ HW (βW ),
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Fig. 2. Graphical Model for DP-NetClus.

where HA,HC , and HW are background distributions
(prior distributions) for each type of attribute objects.
Particularly, we assume all ϕk’s are multinomial distri-
butions and the prior distributions H’s are symmetric
Dirichlet distribution, namely HA is a |A|-dimensional
Dirichlet distributions, i.e., Dir(βA, . . . , βA). HC and
HW are similarly defined.

• Sample papers. For each paper, first sample its cluster
z according to the component coefficients, z ∼ π;
then for each type of attribute objects, sample au-
thors, conferences, and terms according to the cluster
models, with the probability of ϕA

z (a), ϕC
z (c), and

ϕW
z (w). In other words, o|z ∼ F (ϕz), i.e., object o

in cluster z follows the distribution of cluster model
with parameter ϕz .

To sum up, the probability for generating all the target
objects in the network under the hyper-parameters α and
β is then:

p(o|α,β) =

∫
π

p(π|α)
∏
i

∞∑
k=1

πkp(ai|k, βA)p(ci|k, βC)p(wi|k, βW )

where p(ai|k, βA) is the probability of generating the
author set for paper oi in cluster k under hyper-parameter
βA, which is calculated by

∫
ϕA
k
p(ai|ϕA

k )p(ϕ
A
k |βA), where

ϕA
k |βA ∼ Dir(βA, . . . , βA), the symmetric Dirichlet distri-

bution. The formulas are similarly defined for other attribute
types.

3.3 Evo-NetClus: Modeling Evolutionary Clusters
In order to model the evolution of clusters, we need to
model the evolution structure between clusters in addition
to the clusters themselves. We then propose the hierarchical
Dirichlet process-based [26] model Evo-NetClus, which is
built on top of DP-NetClus, to solve the problem.

As the network sequence comes in a streaming way in
the real world, we model the evolution of clusters in an
incremental (online) way: a cluster in time window t is
only dependent on the clusters of previous time window
t − 1 and the network in current time window t. Notice
that, the desired cluster models at time window t denoted

as {ϕt,k}Kt

k=1 are a result of co-evolution of different types
of attribute objects from the cluster models of the previous
time window t− 1 denoted as {ϕt−1,k′}Kt−1

k′=1 .
In order to model the evolution structure, intuitively, we

first assume all the target objects at time t are generated
from clusters at time t− 1, then they are re-structured into
new clusters, which represent a better hidden structure of
the networks. These new clusters are generated in a way
that they can capture both the common clusters across
different old clusters and the special clusters within single
old clusters. By using hierarchical Dirichlet process, we can
model the dependency relationship between the old clusters
(at time t − 1) and the new clusters (at time t), and thus
the evolution structure.

Given the clusters learned at time t − 1, denoted as
{ϕt−1,k′}Kt−1

k′=1 , they are treated as prior knowledge to guide
the formation of clusters in time t. First, we use the learned
cluster models at time t− 1 to partition target objects into
groups, each representing a “pseudo” cluster as if the cluster
models do not change. We group target objects at time
window t into Kt−1 + 1 prior groups according to the
posterior probability it is generated from each historical
cluster model and a new cluster under background model
Ht. The calculation of these posteriors will be introduced in
Section 4. Note that, these prior groups would be exactly the
clustering results for time window t if the cluster models do
not change at all. Then, to model the dependency between
previous clusters and current clusters, we model objects
in each prior group j as a mixture model of new cluster
models {ϕt,k}Kt

k=1, which follows a hierarchical Dirichlet
process (HDP) Gt,j ∼ DP (α,Gt,0), where Gt,0 is a
higher level Dirichlet process Gt,0 ∼ DP (γ,Ht). Ht is the
symmetric dirichlet distribution for each type of objects at
time t, and γ is the higher level concentration parameter.
Hence, mixture models for objects in different prior groups
share the same cluster models (sampled from Gt,0) but with
different proportions (dependent on γ and α).

Second, we use the previous cluster models at time t−1
as prior distributions for the current cluster models. In other
words, we consider objects at time t− 1 with their cluster
assignments as prior observations of cluster models at time
t, but with a damping factor to discount their impacts. For
example, we treat a paper oi with cluster assignment k at
time t− 1 as a paper observed in cluster k at time t, but it
is only counted as a much smaller ratio. The posterior DP
under these prior clusters for time t is then:

Gt,0|ηt−1, {ϕt−1,k′}, λ,Ht

∼ DP (γ + λ,
γHt + λ

∑Kt−1

k′=1 ηt−1,k′δϕt−1,k′

γ + λ
)

(4)

where γ is the concentration parameter for the higher level
DP, and λ denotes the total impact coming from clusters
at time t− 1 (the strength of pre-existing clusters); ηt−1,k′

denotes the proportion of the size of each cluster k′ at time
t−1 and {ϕt−1,k′} denotes the statistical models of clusters
at time t − 1. Notice that, if the number of target objects
at time t − 1 is Nt−1, through simple calculation it could
be found that each target object at time t − 1 is damped
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with a rate λ
Nt−1

. By re-examining the base distribution in
the posterior DP, one can see that the prior distributions
for new clusters are determined by a mixture model of
the previous cluster distributions at time t − 1 and the
current background distribution Ht. We can also see that,
the evolution of clusters are determined by the evolutions of
objects in each type collectively, since each cluster model
is determined by distributions of all the attribute types.
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Fig. 3. Graphical Model for Evo-NetClus.

The generative process for Evo-NetClus, given the
knowledge of the prior group for each object at time
window t, is described as follows, with the graphical
representation of Evo-NetClus shown in Figure 3:

• Sample global cluster component coefficients: ηt ∼
GEM(γ+λ), where GEM denotes the stick-breaking
processing as introduced in DP-NetClus.

• Sample group-wise cluster component coefficients
πt,j , where πt,j |α, ηt ∼ DP (α, ηt), namely within
group j, component coefficients are sampled from
the higher level component coefficients distribution ηt,
with a concentration parameter α.

• Sample cluster component models: ϕt,k ∼
γHt+λ

∑Kt−1

k′=1
ηt−1,k′δϕ

t−1,k′

γ+λ . That is, for each cluster
k, it is either sampled from background distribution
Ht with probability γ

γ+λ , or sampled from an existing

cluster k′ at time t− 1 with probability ληt−1,k′

γ+λ .
• Sample papers oji for each group j: first sample its

cluster label according to zji ∼ πt,j , and then sample
its attribute objects according to oji ∼ F (ϕt,zji).

Notice that, πt,j,k, the kth item in group-wise component
coefficient vector πt,j , is the proportion that target objects
belong to cluster j at time t− 1 but belong to cluster k at
time t. From this, we can track where a cluster is evolving
to. A T -partite graph between clusters from adjacent time
windows can thus be constructed.

Intuitively, HDP first clusters target objects in each prior
group into micro clusters, and then clusters these micro
clusters into macro clusters that are shared across different
groups. Please refer to [26] for a more detailed explanation

for this intuition. Thus, we can build the relationship
between clusters from previous time and clusters of current
time, as a prior group can be viewed as a linear combination
of current clusters.

3.4 Discussions
We now provide some discussions on Evo-NetClus, about
the issues on hyper-parameter settings and the potential
extension to more general heterogeneous information net-
works.

3.4.1 Determine Hyper-Parameters in the Model
In the Evo-NetClus model, three sets of hyper-parameters
are used: (i) γ and α, which are used to control the prob-
ability to generate a new cluster; (ii) β = (βA, βC , βW ),
associated with Dirichlet prior distributions for each type of
attribute objects; and (iii) λ, which controls the smoothness
between clusters in adjacent time windows: the larger λ the
larger the weight for a previous target object in the current
time window.

By using different settings for the hyper-parameters γ,
α, and β, we can control the granularity of detected
clusters. For one level DP with parameter α and fixing
β, the expected number of clusters are O(α log(1 + n

α ))
[25], where n is the number of target objects. β can be
considered as the smoothing parameter as introduced in
[31] for the Dirichlet smoothing method. For a larger β,
it means more smoothing on the distributions for attribute
objects, and therefore, the larger chance a target object goes
to an existing cluster than a new one, and thus the fewer
clusters. For the smoothing parameter λ, we have shown
in the experiment section that, a good level of smoothness
can improve the quality of detected clusters.

Another question is how to determine these hyper-
parameters. A frequently used method is to add further
hyper-parameters, for example, the gamma distribution for
γ and α as used in [32], and these hyper-parameters can be
estimated by optimizing the model. In practice, these values
can be set empirically according to tentative runnings of the
algorithm, and they are dependent on the granularity of the
clusters required by the users.

Note that, these hyper-parameters only need to be set
once for the whole network sequence, and the model con-
trols the granularity level of the clusters and automatically
determines whether to create a new cluster, split an existing
cluster, an so on. This provides more practical usability
than evolutionary algorithms that need to specify number
of clusters for each time window.

3.4.2 Modeling More General Heterogeneous Infor-
mation Networks
In this paper, we have introduced the evolution model for a
special type of heterogeneous information networks, which
are star networks. We now give some discussion on how to
model more general heterogeneous information networks.

More General Bibliographic Networks. In many bib-
liographic networks, there could be other link types, for
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example, the citation links between papers. In this case,
the papers can be treated as both target objects and attribute
objects, such as in Link-LDA [14]. In addition to the the
ranking distributions for venues, authors, and terms, we also
need to model the ranking distribution for papers in terms of
the probabilities of being cited in a certain research area.
We then can define the generative probability of a paper
by considering citation links in addition, and the evolution
model can be extended straightforwardly.

In other cases, people may want to directly model the
co-authorship between two authors. A straightforward way
is to model the probability of the co-occurrences of author
pairs in addition to the probability of the occurrence of
single authors. Then the probability of a paper in a cluster
is determined also by the probability of all pairs of authors
for this paper in that cluster. By directly modeling co-
authorship and other relationships, the clustering model
can be further enriched due to the introduction of more
parameters, but this is likely to cause overfitting as well.

Arbitrary Heterogeneous Information Networks. For
information networks with arbitrary network structure, the
major difficulty of directly applying current model lies in
the difficulty of identifying target objects. A possible way
to handle this issue is to treat each link as a virtual target
object, and model the generation of links from different
types separately. The ranking distributions of objects from
different types are also modeled separately, but share the
same value for the same type of objects, even they could
be in different relations.

4 THE LEARNING ALGORITHM FOR EVO-
NETCLUS
Learning the Evo-NetClus model is to estimate the unknown
parameters in the model. The main unknown parameters
are distributions for all attribute types in different clusters
{Φt} = (ϕA

t , ϕ
C
t , ϕ

W
t ) in all time windows. Also, we

need to learn the hidden cluster labels for each target
object. It is usually intractable to perform exact inference
in such a probabilistic model, and the typical method is
to conduct approximate inference such as Gibbs sampling
[15]. However, the Gibbs sampling algorithm needs to take
thousands of iterations to converge, which is very time
consuming, especially for large data sets.

In this paper, we propose an efficient greedy algorithm
to learn Evo-NetClus. The general idea is that instead
of assigning each target object to clusters following the
conditional probabilities as in collapsed Gibbs sampling
for HDP [26], we greedily assign each target object to
the cluster with the highest conditional probability. This is
similar to the idea used in k-means which always assigns a
target object to the cluster that is with the closest distance,
except that in our case we need to dynamically create new
clusters and remove empty ones as no specified number of
clusters is given.

In Section 4.1, we first introduce how to calculate the
conditional probability of a target object in each potential
cluster, and then we use it in Section 4.2 for the learning
algorithm.

4.1 Calculate the Posterior Conditional Probabili-
ty
First, we introduce how to calculate the conditional prob-
ability of a target object oi generated from an existing
cluster k or a new cluster knew in a general case, given
the assignment of rest of the objects, under a conjugate
Dirichlet prior H = (HA,HC ,HW ), which will be used
substantially in our learning algorithm.

The probability of a target object oi generated from an
existing cluster k given the rest of objects in k, f−oi

k (oi),
can be calculated as the product of conditional probabilities
of its linked attribute objects in each type:

f−oi
k (oi) = f−ai

k (ai)f
−ci

k (ci)f
−wi

k (wi)

where f−ai

k (ai) is the probability of observing
authors ai in cluster k given the rest of the authors.

f−ai

k (ai) =
Γ(βA|A|+n−i

k,A)

Γ(βA|A|+nai
+n−i

k,A)

∏|A|
j=1 Γ(βA+naij

+n−i
k,A(j))∏|A|

j=1 Γ(βA+n−i
k,A(j))

,

where nai is the number of authors for paper oi; naij

indicates whether aj writes paper oi; n−i
k,A is the total

occurrences of authors in cluster k without considering
paper oi, and n−i

k,A(j) is the occurrence number of author
aj in cluster k without considering oi. This can be
calculated as the integral over posterior distributions under
prior HA, which is still a Dirichlet distribution with the
updated parameters by the observed data. f−ci

k (ci) and
f−wi

k (wi) can be similarly calculated.
The probability of object oi generated from a new cluster

can be directly calculated according to the integral over
the prior distributions for each type, which are Dirichlet
distributions:

fknew(oi) = fknew(ai)fknew(ci)fknew(wi)

with fknew(ai) =
Γ(βA|A|)

Γ(βA|A|+nai
)

∏|A|
j=1 Γ(βA+naij

)∏|A|
j=1 Γ(βA)

. Similarly,

we can define fknew(ci) and fknew(wi).

4.2 The Learning Algorithm
Before we learn the algorithm at each new time window
t, we need to first generate prior groups for all the target
objects in t. The learning algorithm is an iterative algorithm,
given the prior groups. At each iteration, each target object
(ot,i) is assigned to an existing cluster or a new cluster
according to their maximum posterior probabilities in each
cluster. Once a target object has changed its cluster, the
statistics associated with the related clusters are dynami-
cally updated. Finally, the algorithm stops when the cluster
membership for target objects is not significantly changed.
The algorithm is summarized in Algorithm 1, and the
details are in the following three steps.
Step 0: Generating Prior Groups. First, we assign the
target objects ot,i into different prior groups according
to the posterior probabilities they belong to each cluster
model. Here a prior group can represent an existing cluster
at time t − 1, or a new possible cluster at time t. Notice
that, for the first time window t = 1, as there are no
exiting clusters, all the objects go to one prior group. The
posterior probabilities of a target object in different clusters
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are determined by both the size of the cluster and the
conditional probability of the target object in that cluster:

p(zt,i = k|ot,i, zt−1,Ot−1,Ht) ∝ nt−1,kf
−ot,i
k (ot,i)

p(zt,i = knew|ot,i, Ht) ∝ γfknew(ot,i)

We then denote ot,ji as the ith object in prior group j,
which is simplified as oji when there is no ambiguity. For
other notations, we also omit the time index t when there is
no ambiguity, e.g., η is short for ηt, and so on. Note that for
background distribution Ht, we use the same β parameters
for all time windows, but use a different attribute set, which
is a union of attribute objects appeared in time t − 1 and
time t, as we need to consider the networks from both time
windows.
Step 1: Iterative Hidden Cluster Label Assignment.
Second, we follow the idea of collapsed Gibbs sampling
[26], where the parameters for each cluster have been
integrated out, but assign hard cluster labels to target
objects. At each iteration, the target objects are randomly
shuffled for a new order. For each object oji at an iteration,
the target object is first greedily assigned to either an
existing cluster or a new cluster, according to the maximum
posterior probability; second, the statistics associated with
each cluster are immediately updated if the object has
changed its assignment. The two steps are introduced in
the following.
1.1 Cluster Assignment Step: Assign object oji into an
existing cluster k or a new cluster knew according to the
maximum posterior probabilities:

p(zji = k, k /∈ {Kt−1}|z−ji,o) ∝ (n
−ji
j·k + αηk)f

−oji
k (oji)

p(zji = k, k ∈ {Kt−1}|z−ji,o) ∝ (n
−ji
j·k + λ

nt−1,k

Nt−1

+ αηk)f
−oji
k (oji)

p(zji = knew|oji) ∝ αηufknew (oij)

where n−ji
j·k denotes the number of objects in group j

belonging to cluster k without considering object oji, ηk
is the higher level proportion coefficient for cluster k, and
ηu is the proportion coefficient for unseen clusters. As the
group-wise cluster coefficients are sampled from DP (α, η),
the posterior probability naturally takes αηk as pseudo
counts for the size of cluster k in group j. Also, if k is
an existing cluster at time t − 1, i.e., k ∈ {Kt−1}, the
objects in t− 1 need to be considered with discount λ

Nt−1
.

1.2 Statistics Adjustment Step: Once the object oji has
changed its cluster label from kold to k, several statistics
need to be updated immediately for further calculating the
conditional probability of a target object in the updated
clusters.

1) Update mjk and mjkold
, which are the number of

micro clusters in group j that belong to clusters k
and kold, respectively. For cluster k, this problem
is equivalent to the question of “how many clusters
are there for nj·k objects following a DP process
with concentration parameter αηk.” For our greedy
algorithm, we set it as its approximated expected
value: mjk ≃ αηk log(1 +

nj·k
αηk

) [25]. mjkold
is

similarly calculated.

Input: Network Gt, Gt−1, zt−1; γ, α, β, λ ;
Output: The cluster assignment vector zt; the parameters

Φt = {ϕA
t , ϕ

C
t , ϕ

W
t };

Assign each object into prior groups;
repeat

for each object oji do
1. Cluster Assignment Step: Assign oji to the

cluster with the maximum posterior probability in
either existing cluster k or a new cluster k + 1;

2. Statistics Adjustment Step: Update relevant
statistics;

3. if cluster kold for oi contains no objects,
remove the cluster;

end
until reaches cluster change threshold;
Estimate parameters Φt for each cluster;

Algorithm 1: Parameter Estimation Algorithm.

2) Update the cluster proportion coefficients η.
Conditioning on the assignment of target
objects into clusters and micro clusters,
according to [26], (η1, η2, . . . ηK , ηu) ∼
Dir(m·1,m·2, . . . ,m·K , γ), where m·k denotes
the number of micro clusters associating with cluster
k. For our greedy algorithm, we set η as the expected
value, ηk = m·k∑K

k=1 m·k+γ
, and ηu = γ∑K

k=1 m·k+γ
.

3) Update the counting information, namely nk,A, nk,C ,
nk,W , etc., for each type of objects in clusters k and
kold.

Notice that, if cluster kold becomes empty after the re-
assignment, it needs to be removed from the cluster list.
Step 2: Cluster Distribution Estimation. Once the as-
signment for each object is fixed, the parameter ϕk for
each cluster can be estimated accordingly. Specifically, the
parameter for each component ϕk = (ϕA

k , ϕ
C
k , ϕ

W
k ) is a

Dirichlet distribution given the observations in cluster k,
and has the MAP estimation as:

ϕ
A
k (j) =

βA + nA
j

βA|A| + nA
;ϕ

C
k (j) =

βC + nC
j

βC |C| + nC
;ϕ

W
k (j) =

βW + nW
j

βW |W | + nW
.

4.3 Time Complexity Analysis
It is easy to see that for each iteration of Step 1 of the
learning algorithm, which contributes the major computa-
tion cost, the time complexity of the learning algorithm for
each time window is O(dn log n), where n is the number
of target objects in that time window, d is the average
number of attribute objects linked to each target object in
the network, and log n is the average number of clusters in
that time window.

5 EXPERIMENT
Here we study the effectiveness and efficiency of the Evo-
NetClus model and algorithm using real datasets.

5.1 Datasets
The experiments were performed on three real datasets.

1) The 20-year DBLP network sequence from year 1990
to 2009, which contains four types of objects: papers
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(645K), authors (50K), conferences (journals) (1K)
and terms (10K). Terms are extracted from paper
titles. Stop words and low frequency objects have
been removed.

2) The 8-week Twitter network sequence from March
1 to May 29 of 2011, which is a sample (1%) of
all the tweets via Twitter API. The network contains
four types of objects: tweets (1994K), the users who
posted more than 5 tweets (68K), the terms appeared
more than 35 times (30K), and the hashtags appeared
more than 10 times (12K).

3) The half-year (26-week) Delicious network sequence
from July. 1 to Dec. 29, 2010. The network also
contains four types of objects, namely tagging events
(330K), users (63K), web URLs (102K) and tags
(58K), following a star network schema, where tag-
ging events are the target objects. Objects that are
with low frequency have been removed.

5.2 Effectiveness Study
To evaluate the effectiveness of our model, a subset of
DBLP called “four-areas” dataset is used, which includes
22 major conferences1 in data mining related areas such as
data mining, information retrieval, database, and machine
learning. We set each time window with the length of 4
years, and thus obtain a network sequence with 5 segments.
For the hyper parameters, we set γ = 1, α = 1, λ =
10, βA = βC = 0.05, βW = 0.1 by default.

5.2.1 Quality of Clusters
To evaluate the quality of clustering, we use Normalized
Mutual Information (NMI) [21] to compare the clusters
detected by Evo-NetClus and three baselines.

The three baselines are (1) NetClus [23], which is a
static multi-typed clustering algorithm for heterogeneous
networks and is used to demonstrate the power of our
evolution model over static clustering models; (2) a spectral
clustering algorithm on multi-mode networks proposed in
[24], which we only use the static clustering part, due
to its difficulty in handling variant object sets, and is
used to demonstrate the advantages of our probabilistic
approach-based model in dealing with networks that are
very sparse and with variant object sets; and (3) Evo-Text,
which is Evo-NetClus limited on text type and is used to
demonstrate the power of co-evolution over evolution on
a single attribute type. We test the clustering results for
conference type according to the four-area ground truth,
where each conference is labeled as one of the four areas.
For Evo-Text and Evo-NetClus, the algorithms are applied
on the whole network sequence, with no input of the
number of clusters. NetClus and spectral clustering are only
applied on G5, and the input number of clusters are set as
8, which is learned by Evo-NetClus. We then apply the k-
means further by setting K = 4 to get the final 4 clusters for

1. KDD, ICDM, SDM, PKDD, PAKDD, SIGIR, ECIR, TREC, ACL,
CIKM, WSDM, WWW, NIPS, ICML, UAI, IJCAI, AAAI, SIGMOD,
VLDB, ICDE, PODS, EDBT.

conferences according to either the soft clustering results
or spectral vectors, and then use NMI to compare the hard
clustering results with the ground truth. The results are
shown in Fig. 4, which is consistent with our assumptions.

Spectral Evo−Text NetClus Evo−NetClus

0.5

0.6

0.7

0.8

0.9

Fig. 4. Comparison of Clustering Accuracy for Venues
in NMI)

In addition, we compare Evo-NetClus with Evo-Text and
recurrent CRP-based evolution algorithms that are extended
from [2], using measures including precision, recall, and
F-measure, where whether a pair of objects in the output
cluster truly belongs to the same cluster in the ground
truth is evaluated. The results are summarized in Table 1.
RCRP-All denotes the recurrent CRP evolution algorithm
using all types of objects, and RCRP-Text denotes the
evolution algorithm using text information only. We can see
that Evo-NetClus has the best F-measure, compared with
other evolution algorithms that either considers only partial
attribute information or models simpler evolution structure.

TABLE 1
Comparison of Clustering Accuracy for Venues in

Precision, Recall, and F-Measure

Precision Recall F-Measure
Evo-NetClus 1.0000 0.6600 0.7952

Evo-Text 0.3082 0.9000 0.4592
RCRP-All 1.0000 0.5800 0.7342
RCRP-Text 0.2647 0.5400 0.3553

5.2.2 More Analysis on Co-Evolution
To further evaluate the quality of co-evolution, we propose
two new measures and test them on the “four-areas” dataset.

The first measure evaluates how well we can model
each target object’s cluster membership by studying their
posterior membership vectors, called cluster compactness.
Intuitively, the more similar two target objects, the more
similar their posterior cluster probabilities. In DBLP, two
papers published in the same conference should be usually
more similar than those published in different conferences.
Thus, we define cluster compactness for papers as the ratio
between the average similarity score within the same con-
ference and the average similarity score between different
conferences:

Compactness =∑
i ̸=j cos(ωi,ωj)1{c(i)=c(j)}∑

i ̸=j 1{c(i)=c(j)}
/

∑
i ̸=j cos(ωi,ωj)1{c(i) ̸=c(j)}∑

i̸=j 1{c(i) ̸=c(j)}

(5)

where ωi is the K dimensional posterior cluster mem-
bership vector, ωik ∝ nkf

−oi
k (oi) denotes the posterior

probability target object oi belonging to cluster k, and K
is the learned number of clusters; c(i) and c(j) denotes the
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conferences for papers oi and oj , and 1 is the indicator
function, which is 1 if the predicate is true otherwise
0. We use cosine to measure the similarity between two
membership vectors. Note that, the higher compactness, the
higher quality of the clusters.

The second measure is to evaluate how well we can
separate different clusters by studying the differences of the
conditional distributions for each type of attribute objects in
different clusters, called average KL-divergence. Intuitively,
the better quality of the cluster partition for the network,
the more scattered the conditional distributions of attribute
types in different clusters. In DBLP, we expect that for
two different clusters, the author, conference, and term
distributions should be quite distinct from each other. We
then use average KL-divergence to quantify the pair-wised
conditional distribution differences for each attribute type:

avgKLA =

∑
k1 ̸=k2

KL(ϕA
k1
||ϕA

k2
)

K(K − 1)
(6)

where ϕA
k is the parameter vector for the discrete dis-

tribution of the author type, K is the final number of
clusters. avgKLC and avgKLW are similarly defined
for conference and term types. To measure the overall
average KL-divergence over all the attribute types, we use
avgKLall, the mean of the average KL-divergence for each
attribute type. Note that, the larger average KL-divergence,
the higher quality of the clusters.

Single-Type vs. Multi-Type We compare the quality of
clusters detected using multi-typed attribute objects with
those detected using single-typed attribute objects in static
networks. For the segment G5 (i.e., year 2006 to 2009), we
select different combinations of attribute types for learning
the clusters and compare the results of the generated
clusters, which is summarized in Table 2. The attribute
types used for modeling clusters are listed in the first col-
umn, the compactness score for target objects is computed
accordingly. We then calculate the average KL-divergence
for each type of attributes and their overall mean. For the
cases using only single type or partial types of attribute
objects, the distribution parameters for all other types can
also be obtained according to the target objects in each
cluster. For example, in the first row of Table 2, we model
and learn the clusters only through the authors linked to
papers, but once we get the papers in each cluster, we
can get the count of conferences and terms accordingly for
each cluster. We do not put single venue in the table, since
one cannot cluster papers merely according to its published
venue as one paper goes to one venue exactly.

TABLE 2
Cluster Qualities under Different Attribute Type

Combinations

Attr. Type Compa. avgKLC avgKLA avgKLW avgKLall

A 1.0153 0.0735 3.3411 0.7697 1.3948
W 0.9952 0.5836 1.6649 2.5658 1.6048

C+A 1.2135 2.6390 3.4382 1.1055 2.3942
C+W 2.0016 2.6819 2.3187 2.5264 2.5090
A+W 1.7606 1.2398 2.7205 2.4060 2.1221

C+A+W 3.1158 3.3135 3.0007 2.3521 2.8888

TABLE 3
Cluster Qualities under Different Historical Impacts

Net. Seq. Compa. avgKLC avgKLA avgKLW avgKLall

G5 3.1158 3.3135 3.0007 2.3521 2.8888
G4-G5 3.9076 3.6770 2.4924 2.3772 2.8489
G3-G5 3.6753 3.1765 2.6869 2.3070 2.7224
G2-G5 4.1364 3.2095 2.6424 2.2723 2.7081
G1-G5 4.3120 3.2953 2.3818 2.2729 2.6500
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Fig. 5. The Impacts of Smoothing Parameter λ

Table 2 shows that the more types of the attribute objects
we use, the better quality the detected clusters, in both
NMI and avgKLall measures. Notice that by merely using
some single type of attribute objects, say terms (W ), the
value for this type, avgKLW , could be high. However, this
causes overfitting for the particular type, and therefore
reduces the overall performance. That is the reason why
we use multiple types of objects to model the target objects
collectively.

Static vs. Evolution We compare the quality of cluster-
s detected in static networks with those detected in an
evolution setting (Table 3). We study how prior clusters
in previous time windows can improve the quality of the
clusters detected in the current time. Still considering the
cluster quality detected in G5, we vary the length of history
information in detecting these clusters. In other words,
we run Evo-NetClus algorithm for network sequences of
different lengths that end at G5, and compare the cluster
quality between them. The results show that using longer
history information in general produces higher cluster qual-
ity for G5 in terms of compactness scores for target objects.
However, the overall avgKLall has an inverse trend. This
implies that detecting clusters by merely using networks
observed in current time window may cause overfitting
for the particular time period, and affect the model
performance.

Further, we study the impact of smoothing hyper-
parameter λ to the cluster qualities. Recall that the smooth-
ing rate given λ and γ is λ

γ+λ . The results are shown in Fig.
5, from which we can see that λ should be set as a trade-off
between the current network and the previous one, though
different evaluation measures indicate different preferences.
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Fig. 6. Efficiency Test of Evo-NetClus Algorithm
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5.3 Efficiency Study
We test the efficiency of Evo-NetClus on the DBLP network
sequences with the time window length as 1 from year 1991
to 1997, each with the former year as the prior year. The
running time (seconds) per iteration versus the number of
papers in networks at each year is shown in Fig. 6. We also
implement a multi-threading version for the algorithm. Our
algorithm is nearly linear to the number of target objects in
the network, and the 2-thread version of the algorithm can
achieve an average speed up of 1.55 times. In most cases,
Evo-NetClus converges within 50 iterations.

5.4 Case Studies
We use case studies to show the co-evolution of multiple
types of objects within clusters and the evolutionary struc-
ture between the clusters.
DBLP Network Case Study Fig. 1 already gave a partial
evolution structure over the whole computer science area in
DBLP from 1990 to 2009, with the length of time window
set to 2. Now, we use the “four-areas” dataset to show the
evolution in a finer scale. As it is difficult to show the
whole T -partite graph (here T = 5), we output the partial
structure in a query mode.

First, we output the co-evolution of authors, confer-
ence, and terms within the cluster “database” (the label
“database” is added to the cluster only afterwards, Fig. 7),
and compare it with the results merely using terms in the
modeling (Fig. 8). We can see that using only terms, one
cannot detect pure database clusters that are as good as
using all the attribute types.

Second, we trace back the cluster of “web search and
web service” (“web” in short) and plot the evolutionary
structure between it and other related clusters in a tree
structure (Fig. 9). In Fig. 9, each square represents a cluster,
where the labels for the clusters are shown with their cluster
size (the number of target objects in the cluster). The links
are displayed between other clusters and the “web” cluster,
if the cluster is among the top-3 contributors for the “web”
cluster. The weight of the link between clusters A and B
means the number of papers belonging to A as the prior
group but are assigned to cluster B after learning. One
can see that the “web” cluster emerges in the time window
t = 3 (year 1998 to 2001), as no prior clusters are major
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contributors to it. It then absorbs contents from the web
cluster in database conferences and database cluster and
grows in time window 4. After that, it further absorbs
contents from database and data mining cluster, and grows
into an even bigger cluster.
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Twitter Network Case Study For the 8-week Twitter
network sequence, by setting βhashtag = βterm = 0.1
and βuser = 0.05, we obtain around 10-12 clusters each
week. We follow two clusters: “news” and “soccer”, and
display their top attribute objects in Table 4 (a) and (b).
The “news” cluster is a relatively stable cluster in terms of
its size and participants from different types of objects. We
can correctly figure out the hot trends each week, such as
Japan nuclear crisis in middle March, royal wedding in late
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TABLE 4
Evolution of Clusters in Twitter Network Sequence

(a) “News” Cluster
Week 3/13 - 3/19 3/20 - 3/26 . . . 4/24 - 4/30 5/1 - 5/7

Cluster size 15728 19299 . . . 24189 24472
Top Hashtags job japan libya tcot bahrain nu-

clear
job libya tcot japan hiring egypt . . . royalwedding job nfldraft tcot

elxn41 syria
job elxn41 tcot obl osama travel

Top Terms japan news online march busi-
ness nuclear social

news online march business
japan blog libya

. . . news online wedding business
post royal money

news online business post obama
bin laden

Top Users mashable reuters breakingnews
youtube guardian huffingtonpost

mashable digg breakingnews wn-
blibya reuters addtoany

. . . youtube icreate id mashable
technobuffalo pddekock digg

youtube mashable gmail hutting-
tonpost technobuffalo guardian

(b) “Soccer” Cluster
Week . . . 4/3 - 4/9 . . . 4/24 - 4/30 5/1 - 5/7

Cluster size N/A 1209 . . . 1747 1670
Top Hashtags N/A youright wizard rionocineartcafedia8 mufc

jackmarshallrules motogp
. . . youright mufc letsgopens tragic-

moviedeaths football cfc
mufc football manutd cfc ynwa champi-
onsleague

Top Terms N/A rafael chelsea inter united schalke tan milan . . . madrid barca barcelona united messi
schalke arsenal

madrid united barca barcelona final milan
manchester

Top Users N/A duniasoccer vinyciusn demilmylife soni-
aabrao restertempe mayara no

. . . tweetramalan detiksport detikcom duni-
asoccer stafanyls allsmiler

tweetramalan detikcom duniasoccer detik-
sport onlyls metro tv

April, and Bin Laden got killed in early May. Notice that,
“Bin Laden” topped in many other clusters that week. Our
algorithm chooses not to merge these clusters although they
talk about some common topic for a while. By studying
co-evolution of different types of objects, our algorithm
can correctly detect the hidden clusters even if they have
overlaps in some types of objects. The “soccer” cluster does
not exist in the first 3 weeks, and it appears in the week
of April 3 - April 9, when the first quarter final of 2010-
11 UEFA Champions League starts. By looking more into
the top objects, we can see the team names, player names,
coach names, and so on.

In Table 5, we list 3 clusters detected under Evo-NetClus
and Evo-Text respectively for the Twitter network for Week
8. For each cluster, we only show the top-10 terms. By
using Evo-NetClus, we can discover consistent clusters such
as “news”, “digital products”, “food” and so on. However,
the clusters detected by Evo-Text, which only uses terms for
clustering, are generally with poorer quality. For example,
“news” and “digital products” are mixed together in Cluster
5, due to that Evo-Text has not further used other types
of objects (such as users) to distinguish the two clusters
and text information in each tweet is quite short. “Food”
cluster has not been found in Evo-Text, instead, a “weather”
cluster is detected due to the overfitting by using only
terms. However, in reality weather is usually mentioned as
background in different clusters and should not be treated
as a cluster by itself. For clusters that are with much more
focused terms, such as “soccer” cluster, Evo-Text and Evo-
NetClus output similar top-k terms.

Delicious Network Case Study For the half-year Delicious
dataset, we track a cluster related to “wikileaks”, and show
the co-evolution of websites and tags in the cluster. Users
are not shown here as we can hardly read information
from the user IDs. As the urls are usually too long for
display, we only show the last segment of the urls. We
can see that as the cablegate event happened on Nov. 28,
a cluster was formed to discuss the related issues on that
week; then the arrest of Assange in the next week made

TABLE 5
Comparison of Clusters in Twitter Network T = 8

(Only Showing Top-10 Terms)

(a) Evo-NetClus
ID:5 ID:10 ID:2
news battery ang
online iphone ice

wedding bir cream
business frame eat

post laptop chicken
royal black chocolate

money apple eating
blog ipad easter
april wind dinner
guide case cheese

(b) Evo-Text
ID:4 ID:6 ID:9
news ang madrid
online wind barcelona

business humidity united
iphone mph barca
money ako schalke
battery rain arsenal

post harry league
blog draft messi
guide temperature final
apple potter goal

the size of the cluster into peak; after that the cluster kept
for another 2 weeks and evolved to a cluster discussing
reviews of 2010 in the end of the year. Besides the event-
based clusters, we also have detected relative stable clusters
like “electronic devices” and “web design.” Compared to
the DBLP network, clusters in Delicious are overall more
dynamic and varied.

6 RELATED WORK

The problem of community detection and evolution has
been studied extensively with numerous methods proposed,
such as modularity-based community discovery [17], [16],
clustering-based community detection [27], [28], proba-
bilistic model-based network analysis [20], [9], [7], [1], and
dynamic community analysis [5], [11], [3], [19], [6], [8].
However, most of the existing methods are on homogeneous
networks, with very few on detecting evolutionary clusters
and co-evolving different types of objects in dynamic
heterogeneous information networks.

Two recent studies [24], [12] are on cluster detection
and evolution in heterogeneous networks. However, their
approaches are matrix factorization-based methods, and
encounter difficulties at handling real-world networks. First,
it is difficult for them to handle dynamic variation of
object sets. Second, they need users to specify the number
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TABLE 6
Evolution of the “Wikileaks” Cluster in Delicious Network Sequence

Time Win. (Size) Top Urls Top Tags
11/25-12/01 (1065) 4thamendment; tsa-x-ray-backscatter-body-scanner.html; us-embassy-

cables-wikileaks; us-embassy-cable-leak-diplomacy-crisis; julian-
assange-and-the-computer-conspiracy

wikileaks politics tsa science security internet health gov-
ernment travel journalism cablegate privacy economics

12/02-12/08 (1258) dont-shoot-messenger-for-revealing-uncomfortable-truths;julian-
assange-wikileaks; western-democracies-must-live-with-leaks;
after secrets;wikileaks.ch/mirrors.html

wikileaks politics journalism internet government cablegate
media news security assange democracy censorship

12/09-12/15 (1028) more wikileaks; wikileaks-cables-shell-nigeria-spying; climate-
change.html; wikirebels the documentary; wikileaks-backlash-cyber-
war

wikileaks politics internet travel history video privacy doc-
umentary security culture media government

12/16-12/22 (803) anonymous-wikileaks-protest-amazon-mastercard; julian-assange-
sweden;save tweets;the-political-power-of-social-media

wikileaks politics phd 2010 journalism internet news educa-
tion photography economics guardian data media

12/23-12/29 (594) demolition of the paris metro; 2010-year-review; the-
political-power-of-social-media; year-review-2010.cfm;
2010 in photos part 1 of 3.html

politics culture 2010 video photography internet education
history economics science media news research wikileaks

of clusters for each time window and cannot model the
evolutionary structure among clusters. In this study, we
adopt statistical methods that can add prior knowledge for
different types of objects and automatically determine the
best clusters without specifying the numbers of them.

Dirichlet process [15], [26] provides a way to add prior
on the parameters of a mixture model, and is helpful
to decide the number of clusters automatically. Recently,
some studies, such as in [33] and [18], have extended the
Dirichlet process to consider time information. Some other
DP-based extensions [29], [30], [2] have been proposed
to model evolutionary clustering. However, these methods
are designed for traditional (i.e., numerical value or text)
attribute-based clusters, and cannot be directly applied to
our problem setting, where a cluster is a multi-typed cluster
in a heterogeneous network. Also, many of these studies [2]
model only limited evolution structures, such as birth, death
and evolving, while neglecting other evolution structures
such as split and merge. Dirichlet Process has recently been
used to model blockmodel-based link generation, where the
clusters of nodes can be infinite and dynamically evolved
[10]. However, it can only output evolutional communities
for homogeneous networks, and it is unclear how this model
can be extended to model co-evolution yet.

Another line of work related to evolutionary network
clustering is evolutionary topic modeling, which tries to
extract the best topic models at each timestamp that satisfy
the constraints of temporal smoothness, such as in [4],
[13], [32]. However, merely studying the evolution of topics
without considering the link information in the networks
cannot fully reflect the evolution of clusters: A cluster
containing different types of objects carries more semantic
information, and links in the network can tell more about
the connections between clusters and can help detect more
accurate evolutionary clusters. In this paper, we study the
co-evolution of multi-typed objects.

Our recent work [22] studied the community evolution
in heterogeneous networks. However, it can only model
limited evolutionary structure such as birth, death, evolving,
and split, while in real-world network cluster evolution also
involves structures such as merge. In this paper, we extend
the previous model such that it can model more complex
dependency structure between clusters, and can output a

full T -partite graph as the evolutionary structure.

7 CONCLUSIONS
In this paper, we have studied the problem of co-evolution
of multi-typed objects in dynamic heterogeneous informa-
tion networks with star network schemas. A Hierarchical
Dirichlet Process Mixture Model-based generative model
Evo-NetClus is proposed to model the cluster generation
process given the prior clusters in the previous time win-
dow. An efficient greedy algorithm is proposed to learn the
model. Experiments on the DBLP, Twitter, and Delicious
datasets have demonstrated the effectiveness and efficiency
of the algorithm. It shows shows that modeling the co-
evolution of objects from multiple types indeed enhances
the cluster quality. The case study shows that the evolution-
ary structure so detected are meaningful and interesting.
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