
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

October 26, 2014

Set Data: Frequent Pattern Mining

mailto:sun22@illinois.edu

Reminder

•Midterm

•Next Monday (Nov. 3), 2-hour (6-8pm) in class

•Closed-book exam, and one A4 size cheating

sheet is allowed

•Bring a calculator (NO cell phone)

•Cover to today’s lecture

2

Quiz of Last Week

1. What is the advantage and disadvantage of k-medoids over k-
means?

2. Suppose under a parameter setting for DBSCAN, we get the
following clustering results. How shall we change the two
parameters (eps and minpts) if we want to get two clusters?

3

Increase eps or reduce minpts!
-1.

5
-1

-0.
5

0
0.5

1
1.5

2
2.5

-1-0.
500.511.5

Methods to Learn
Matrix Data Set Data Sequence

Data
Time Series Graph &

Network

Classification Decision Tree; Naïve
Bayes; Logistic
Regression
SVM; kNN

HMM Label Propagation

Clustering K-means; hierarchical
clustering; DBSCAN;
Mixture Models;
kernel k-means

SCAN; Spectral
Clustering

Frequent
Pattern
Mining

Apriori;
FP-growth

GSP;
PrefixSpan

Prediction Linear Regression Autoregression

Similarity
Search

DTW P-PageRank

Ranking PageRank

4

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

5

Set Data

•A data point corresponds to a set of items

6

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

What Is Frequent Pattern Analysis?

• Frequent pattern: a pattern (a set of items, subsequences,

substructures, etc.) that occurs frequently in a data set

• First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of

frequent itemsets and association rule mining

• Motivation: Finding inherent regularities in data

• What products were often purchased together?— Beer and

diapers?!

• What are the subsequent purchases after buying a PC?

• What kinds of DNA are sensitive to this new drug?

7

Why Is Freq. Pattern Mining Important?

• Freq. pattern: An intrinsic and important property of datasets

• Foundation for many essential data mining tasks

• Association, correlation, and causality analysis

• Sequential, structural (e.g., sub-graph) patterns

• Pattern analysis in spatiotemporal, multimedia, time-series, and

stream data

• Classification: discriminative, frequent pattern analysis

• Cluster analysis: frequent pattern-based clustering

• Broad applications

8

Basic Concepts: Frequent Patterns

• itemset: A set of one or more items

• k-itemset X = {x1, …, xk}

• (absolute) support, or, support count
of X: Frequency or occurrence of an
itemset X

• (relative) support, s, is the fraction of
transactions that contains X (i.e., the
probability that a transaction
contains X)

• An itemset X is frequent if X’s
support is no less than a minsup
threshold

9

Customer

buys diaper

Customer

buys both

Customer

buys beer

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Basic Concepts: Association Rules
• Find all the rules X  Y with

minimum support and confidence

• support, s, probability that a

transaction contains X  Y

• confidence, c, conditional

probability that a transaction

having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer,
Diaper}:3

10

Customer

buys

diaper

Customer

buys both

Customer

buys beer

Nuts, Eggs, Milk40

Nuts, Coffee, Diaper, Eggs, Milk50

Beer, Diaper, Eggs30

Beer, Coffee, Diaper20

Beer, Nuts, Diaper10

Items boughtTid

 Strong Association rules
 Beer  Diaper (60%, 100%)
 Diaper  Beer (60%, 75%)

Closed Patterns and Max-Patterns

• A long pattern contains a combinatorial number of sub-patterns,

e.g., {a1, …, a100} contains 2100 – 1 = 1.27*1030 sub-patterns!

• Solution: Mine closed patterns and max-patterns instead

• An itemset X is closed if X is frequent and there exists no super-

pattern Y כ X, with the same support as X (proposed by Pasquier,

et al. @ ICDT’99)

• An itemset X is a max-pattern if X is frequent and there exists no

frequent super-pattern Y כ X (proposed by Bayardo @

SIGMOD’98)

• Closed pattern is a lossless compression of freq. patterns

• Reducing the # of patterns and rules

11

Closed Patterns and Max-Patterns

•Exercise. DB = {<a1, …, a100>, < a1, …, a50>}

• Min_sup = 1.

•What is the set of closed pattern(s)?

• <a1, …, a100>: 1

• < a1, …, a50>: 2

•What is the set of max-pattern(s)?

• <a1, …, a100>: 1

•What is the set of all patterns?

• !!

12

Computational Complexity of Frequent Itemset Mining

•How many itemsets are potentially to be

generated in the worst case?

• The number of frequent itemsets to be generated is

sensitive to the minsup threshold

• When minsup is low, there exist potentially an

exponential number of frequent itemsets

• The worst case: MN where M: # distinct items, and N:

max length of transactions

13

Mining Frequent Patterns, Association
and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

15

Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

16

The Apriori Property and Scalable Mining Methods

• The Apriori property of frequent patterns

• Any nonempty subsets of a frequent itemset must be frequent

• If {beer, diaper, nuts} is frequent, so is {beer, diaper}

• i.e., every transaction having {beer, diaper, nuts} also contains

{beer, diaper}

• Scalable mining methods: Three major approaches

• Apriori (Agrawal & Srikant@VLDB’94)

• Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)

• Vertical data format approach (Eclat)

17

Apriori: A Candidate Generation & Test Approach

• Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested! (Agrawal

& Srikant @VLDB’94, Mannila, et al. @ KDD’ 94)

• Method:

• Initially, scan DB once to get frequent 1-itemset

• Generate length (k+1) candidate itemsets from length k frequent

itemsets

• Test the candidates against DB

• Terminate when no frequent or candidate set can be generated

18

From Frequent k-1 Itemset
To Frequent k-Itemset

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

•From 𝐿𝑘−1 to 𝐶𝑘 (Candidates Generation)
•The join step

•The prune step

•From 𝐶𝑘 to 𝐿𝑘
•Test candidates by scanning database

19

The Apriori Algorithm—An Example

20

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

The Apriori Algorithm (Pseudo-Code)

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 2; Lk-1 !=; k++) do begin

Ck = candidates generated from Lk-1;

for each transaction t in database do

increment the count of all candidates in Ck+1 that are

contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return k Lk;

21

Candidates Generation

•How to generate candidates Ck?
• Step 1: self-joining Lk-1

• Two length k-1 itemsets 𝑙1 and 𝑙2 can join, only if the first k-
2 items are the same, and for the last term, 𝑙1 𝑘 − 1 <
𝑙2 𝑘 − 1 (why?)

• Step 2: pruning

• Why we need pruning for candidates?

• How?
• Again, use Apriori property

• A candidate itemset can be safely pruned, if it contains infrequent
subset

22

Assume a pre-specified order of items

•Example of Candidate-generation from L3

to C4

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

• abcd from abc and abd

• acde from acd and ace

• Pruning:

• acde is removed because ade is not in L3

• C4 = {abcd}

23

The Apriori Algorithm—Example Review

24

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset sup

{A} 2

{B} 3

{C} 3

{E} 3

Itemset

{A, B}

{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

Itemset

{B, C, E}

Itemset sup

{B, C, E} 2

Supmin = 2

Questions

•How many scans on DB are needed for
Apriori algorithm?

•When (k = ?) does Apriori algorithm
generate most candidate itemsets?

• Is support counting for candidates expensive?

25

Further Improvement of the Apriori
Method

•Major computational challenges

• Multiple scans of transaction database

• Huge number of candidates

• Tedious workload of support counting for candidates

• Improving Apriori: general ideas

• Reduce passes of transaction database scans

• Shrink number of candidates

• Facilitate support counting of candidates

26

*Partition: Scan Database Only Twice

•Any itemset that is potentially frequent in DB
must be frequent in at least one of the partitions
of DB
• Scan 1: partition database and find local frequent patterns

• Scan 2: consolidate global frequent patterns

•A. Savasere, E. Omiecinski and S. Navathe,
VLDB’95

DB1 DB2 DBk+ = DB++

sup1(i) < σDB1 sup2(i) < σDB2 supk(i) < σDBk sup(i) < σDB

*Hash-based Technique: Reduce the Number
of Candidates

• A k-itemset whose corresponding hashing bucket count is below the

threshold cannot be frequent

• Candidates: a, b, c, d, e

• Hash entries

• {ab, ad, ae}

• {bd, be, de}

• …

• Frequent 1-itemset: a, b, d, e

• ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is

below support threshold

• J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for

mining association rules. SIGMOD’95 28

count itemsets

35 {ab, ad, ae}

{yz, qs, wt}

88

102

.

.

.

{bd, be, de}
.
.
.

Hash Table

*Sampling for Frequent Patterns

• Select a sample of original database, mine frequent patterns

within sample using Apriori

• Scan database once to verify frequent itemsets found in

sample, only borders of closure of frequent patterns are

checked

• Example: check abcd instead of ab, ac, …, etc.

• Scan database again to find missed frequent patterns

• H. Toivonen. Sampling large databases for association rules. In

VLDB’96

29

Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

30

Pattern-Growth Approach: Mining Frequent Patterns
Without Candidate Generation

• Bottlenecks of the Apriori approach

• Breadth-first (i.e., level-wise) search

• Scan DB multiple times

• Candidate generation and test

• Often generates a huge number of candidates

• The FPGrowth Approach (J. Han, J. Pei, and Y. Yin,

SIGMOD’ 00)

• Depth-first search

• Avoid explicit candidate generation
31

Major philosophy

• Grow long patterns from short ones using local frequent items

only

• “abc” is a frequent pattern

• Get all transactions having “abc”, i.e., project DB on abc:

DB|abc

• “d” is a local frequent item in DB|abc  abcd is a frequent

pattern

32

FP-Growth Algorithm Sketch

•Construct FP-tree (frequent pattern-tree)

•Compress the DB into a tree

•Recursively mine FP-tree by FP-Growth

•Construct conditional pattern base from FP-

tree

•Construct conditional FP-tree from conditional

pattern base

•Until the tree has a single path or empty

33

Construct FP-tree from a Transaction Database

34

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

min_support = 3

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

1. Scan DB once, find
frequent 1-itemset (single
item pattern)

2. Sort frequent items in
frequency descending
order, f-list

3. Scan DB again, construct
FP-tree

F-list = f-c-a-b-m-p

Partition Patterns and Databases

•Frequent patterns can be partitioned into
subsets according to f-list
•F-list = f-c-a-b-m-p

•Patterns containing p

•Patterns having m but no p

•…

•Patterns having c but no a nor b, m, p

•Pattern f

•Completeness and non-redundency
35

Find Patterns Having P From P-conditional Database

• Starting at the frequent item header table in the FP-tree
• Traverse the FP-tree by following the link of each frequent item p
• Accumulate all of transformed prefix paths of item p to form p’s

conditional pattern base

36

Conditional pattern bases

item cond. pattern base

c f:3

a fc:3

b fca:1, f:1, c:1

m fca:2, fcab:1

p fcam:2, cb:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

From Conditional Pattern-bases to Conditional FP-trees

•For each pattern-base
• Accumulate the count for each item in the base

• Construct the FP-tree for the frequent items of the

pattern base

37

m-conditional pattern base:

fca:2, fcab:1

{}

f:3

c:3

a:3
m-conditional FP-tree

All frequent
patterns relate to m

m,

fm, cm, am,

fcm, fam, cam,

fcam




{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

Don’t forget to add back m!

Recursion: Mining Each Conditional FP-tree

38

{}

f:3

c:3

a:3
m-conditional FP-tree

Cond. pattern base of “am”: (fc:3)

{}

f:3

c:3

am-conditional FP-tree

Cond. pattern base of “cm”: (f:3)
{}

f:3

cm-conditional FP-tree

Cond. pattern base of “cam”: (f:3)

{}

f:3

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

• Suppose a (conditional) FP-tree T has a shared single

prefix-path P

• Mining can be decomposed into two parts

• Reduction of the single prefix path into one node

• Concatenation of the mining results of the two parts

39



a2:n2

a3:n3

a1:n1

{}

b1:m1
C1:k1

C2:k2 C3:k3

b1:m1
C1:k1

C2:k2 C3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =

Benefits of the FP-tree Structure

• Completeness

• Preserve complete information for frequent pattern

mining

• Never break a long pattern of any transaction

• Compactness

• Reduce irrelevant info—infrequent items are gone

• Items in frequency descending order: the more

frequently occurring, the more likely to be shared

• Never be larger than the original database (not count

node-links and the count field)
40

The Frequent Pattern Growth Mining Method

• Idea: Frequent pattern growth

• Recursively grow frequent patterns by pattern and database

partition

• Method

• For each frequent item, construct its conditional pattern-base,

and then its conditional FP-tree

• Repeat the process on each newly created conditional FP-tree

• Until the resulting FP-tree is empty, or it contains only one

path—single path will generate all the combinations of its sub-

paths, each of which is a frequent pattern

41

*Scaling FP-growth by Database Projection

• What about if FP-tree cannot fit in memory?

• DB projection

• First partition a database into a set of projected DBs

• Then construct and mine FP-tree for each projected DB

• Parallel projection vs. partition projection techniques

• Parallel projection

• Project the DB in parallel for each frequent item

• Parallel projection is space costly

• All the partitions can be processed in parallel

• Partition projection

• Partition the DB based on the ordered frequent items

• Passing the unprocessed parts to the subsequent partitions

42

FP-Growth vs. Apriori: Scalability With the Support
Threshold

43

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e

(s
e

c.
)

D1 FP-grow th runtime

D1 Apriori runtime

Data set T25I20D10K

Advantages of the Pattern Growth Approach

• Divide-and-conquer:

• Decompose both the mining task and DB according

to the frequent patterns obtained so far

• Lead to focused search of smaller databases

• Other factors

• No candidate generation, no candidate test

• Compressed database: FP-tree structure

• No repeated scan of entire database

• Basic ops: counting local freq items and building sub

FP-tree, no pattern search and matching 44

*Further Improvements of Mining
Methods

• AFOPT (Liu, et al. @ KDD’03)

• A “push-right” method for mining condensed frequent pattern

(CFP) tree

• Carpenter (Pan, et al. @ KDD’03)

• Mine data sets with small rows but numerous columns

• Construct a row-enumeration tree for efficient mining

• FPgrowth+ (Grahne and Zhu, FIMI’03)

• Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.

ICDM'03 Int. Workshop on Frequent Itemset Mining

Implementations (FIMI'03), Melbourne, FL, Nov. 2003

• TD-Close (Liu, et al, SDM’06)

45

*Extension of Pattern Growth Mining Methodology

• Mining closed frequent itemsets and max-patterns

• CLOSET (DMKD’00), FPclose, and FPMax (Grahne & Zhu, Fimi’03)

• Mining sequential patterns

• PrefixSpan (ICDE’01), CloSpan (SDM’03), BIDE (ICDE’04)

• Mining graph patterns

• gSpan (ICDM’02), CloseGraph (KDD’03)

• Constraint-based mining of frequent patterns

• Convertible constraints (ICDE’01), gPrune (PAKDD’03)

• Computing iceberg data cubes with complex measures

• H-tree, H-cubing, and Star-cubing (SIGMOD’01, VLDB’03)

• Pattern-growth-based Clustering

• MaPle (Pei, et al., ICDM’03)

• Pattern-Growth-Based Classification

• Mining frequent and discriminative patterns (Cheng, et al, ICDE’07)

46

Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

47

ECLAT: Mining by Exploring Vertical Data Format

• Vertical format: t(AB) = {T11, T25, …}

• tid-list: list of trans.-ids containing an itemset

• Deriving frequent patterns based on vertical intersections

• t(X) = t(Y): X and Y always happen together

• t(X)  t(Y): transaction having X always has Y

• Using diffset to accelerate mining

• Only keep track of differences of tids

• t(X) = {T1, T2, T3}, t(XY) = {T1, T3}

• Diffset (XY, X) = {T2}

• Eclat (Zaki et al. @KDD’97)

48

Similar idea for inverted index in storing text

Scalable Frequent Itemset Mining Methods

• Apriori: A Candidate Generation-and-Test Approach

• Improving the Efficiency of Apriori

• FPGrowth: A Frequent Pattern-Growth Approach

• ECLAT: Frequent Pattern Mining with Vertical Data

Format

• Generating Association Rules

49

Generating Association Rules

• Strong association rules
• Satisfying minimum support and minimum
confidence

• Recall: 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐴 ⇒ 𝐵 = 𝑃 𝐵 𝐴 =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴∪𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)

• Steps of generating association rules from
frequent pattern 𝑙:
• Step 1: generate all nonempty subsets of 𝑙

• Step 2: for every nonempty subset 𝑠, calculate the
confidence for rule 𝑠 ⇒ (𝑙 − 𝑠)

50

Example
• 𝑋 = 𝐼1, 𝐼2, 𝐼5 :2
• Nonempty subsets of X are:
𝐼1, 𝐼2 : 4, 𝐼1, 𝐼5 : 2, 𝐼2, 𝐼5 : 2, 𝐼1 : 6, 𝐼2 : 7, 𝑎𝑛𝑑 𝐼5 : 2

• Association rules are:

51

Chapter 6: Mining Frequent Patterns,
Association and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

52

Misleading Strong Association Rules

•Not all strong association rules are interesting

• Shall we target people who play basketball for cereal
ads?

• Hint: What is the overall probability of people who eat
cereal?

• 3750/5000 = 75% > 66.7%!

• Confidence measure of a rule could be misleading

53

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

play basketball  eat cereal [40%, 66.7%]

Other Measures

•From association to correlation

•Lift

•𝜒2

•All_confidence

•Max_confidence

•Kulczynski

•Cosine

54

Interestingness Measure: Correlations
(Lift)

55

• play basketball  eat cereal [40%, 66.7%] is misleading

• The overall % of students eating cereal is 75% > 66.7%.

• play basketball  not eat cereal [20%, 33.3%] is more accurate, although

with lower support and confidence

• Measure of dependent/correlated events: lift

33.1
5000/1250*5000/3000

5000/1000
),(CBlift

89.0
5000/3750*5000/3000

5000/2000
),(CBlift

Basketball Not basketball Sum (row)

Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

)()(

)(

BPAP

BAP
lift




1: independent
>1: positively correlated
<1: negatively correlated

Correlation Analysis (Nominal Data)

• 𝜒2 (chi-square) test

• Independency test between two attributes

• The larger the 𝜒2 value, the more likely the variables are related

• The cells that contribute the most to the 𝜒2 value are those

whose actual count is very different from the expected count

under independence assumption

• Correlation does not imply causality

• # of hospitals and # of car-theft in a city are correlated

• Both are causally linked to the third variable: population

56





Expected

ExpectedObserved 2
2)(



When Do We Need Chi-Square Test?

•Considering two attributes A and B

•A: a nominal attribute with c distinct values,

𝑎1, … , 𝑎𝑐
• E.g., Grades of Math

•B: a nominal attribute with r distinct values,

𝑏1, … , 𝑏𝑟
• E.g., Grades of Science

•Question: Are A and B related?

57

How Can We Run Chi-Square Test?
• Constructing contingency table
• Observed frequency 𝑜𝑖𝑗 : number of data objects taking

value 𝑏𝑖 for attribute B and taking value 𝑎𝑗 for attribute A

• Calculate expected frequency 𝑒𝑖𝑗 =
𝑐𝑜𝑢𝑛𝑡 𝐵=𝑏𝑖 ×𝑐𝑜𝑢𝑛𝑡(𝐴=𝑎𝑗)

𝑛
• Null hypothesis: A and B are independent

58

𝒂𝟏 𝒂𝟐 … 𝒂𝒄

𝒃𝟏 𝑜11 𝑜12 … 𝑜1𝑐

𝒃𝟐 𝑜21 𝑜22 … 𝑜2𝑐

… … … … …

𝒃𝒓 𝑜𝑟1 𝑜𝑟2 … 𝑜𝑟𝑐

• The Pearson 𝜒2 statistic is computed as:

• Χ2 = 𝑖=1
𝑟 𝑗=1

𝑐 𝑜𝑖𝑗−𝑒𝑖𝑗
2

𝑒𝑖𝑗

• Follows Chi-squared distribution with degree of

freedom as 𝑟 − 1 × (𝑐 − 1)

59

Chi-Square Calculation: An Example

• 𝜒2 (chi-square) calculation (numbers in parenthesis are expected
counts calculated based on the data distribution in the two
categories)

• It shows that like_science_fiction and play_chess are correlated in
the group
• Degree of freedom = (2-1)(2-1) = 1

• P-value = P(Χ2>507.93) = 0.0

• Reject the null hypothesis => A and B are dependent

60

Play chess Not play chess Sum (row)

Like science fiction 250(90) 200(360) 450

Not like science fiction 50(210) 1000(840) 1050

Sum(col.) 300 1200 1500

93.507
840

)8401000(

360

)360200(

210

)21050(

90

)90250(2222
2 













Are lift and 2 Good Measures of
Correlation?

• Lift and 2 are affected by null-transaction
• E.g., number of transactions that do not contain milk

nor coffee

•All_confidence

• all_conf(A,B)=min{P(A|B),P(B|A)}

•Max_confidence
•max_𝑐𝑜𝑛𝑓(𝐴, 𝐵)=max{P(A|B),P(B|A)}

• Kulczynski

• 𝐾𝑢𝑙𝑐 𝐴, 𝐵 =
1

2
(𝑃 𝐴 𝐵 + 𝑃(𝐵|𝐴))

• Cosine

• 𝑐𝑜𝑠𝑖𝑛𝑒 𝐴, 𝐵 = 𝑃 𝐴 𝐵 × 𝑃(𝐵|𝐴)

61

Comparison of Interestingness Measures

• Null-(transaction) invariance is crucial for correlation analysis
• Lift and 2 are not null-invariant
• 5 null-invariant measures

62October 26, 2014 Data Mining: Concepts and Techniques

Milk No Milk Sum (row)

Coffee m, c ~m, c c

No Coffee m, ~c ~m, ~c ~c

Sum(col.) m ~m 

Null-transactions
w.r.t. m and c Null-invariant

Subtle: They disagree

Kulczynski
measure (1927)

*Analysis of DBLP Coauthor Relationships

• Tianyi Wu, Yuguo Chen and Jiawei Han, “Association Mining in Large Databases:
A Re-Examination of Its Measures”, Proc. 2007 Int. Conf. Principles and Practice
of Knowledge Discovery in Databases (PKDD'07), Sept. 2007

63

Advisor-advisee relation: Kulc: high,
coherence: low, cosine: middle

Recent DB conferences, removing balanced associations, low sup, etc.

http://www.cs.uiuc.edu/~hanj/pdf/pkdd07_twu.pdf

*Which Null-Invariant Measure Is Better?

• IR (Imbalance Ratio): measure the imbalance of two itemsets A
and B in rule implications

• Kulczynski and Imbalance Ratio (IR) together present a clear
picture for all the three datasets D4 through D6

• D4 is balanced & neutral

• D5 is imbalanced & neutral

• D6 is very imbalanced & neutral

Chapter 6: Mining Frequent Patterns,
Association and Correlations

• Basic Concepts

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

• Summary

65

Summary

• Basic concepts

• Frequent pattern, association rules, support-

confident framework, closed and max-patterns

• Scalable frequent pattern mining methods

• Apriori

• FPgrowth

• Vertical format approach (ECLAT)

• Which patterns are interesting?

• Pattern evaluation methods

66

Ref: Basic Concepts of Frequent Pattern Mining

• (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases. SIGMOD'93.

• (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases.

SIGMOD'98.

• (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering

frequent closed itemsets for association rules. ICDT'99.

• (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns.

ICDE'95

67

Ref: Apriori and Its Improvements

• R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94.

• H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering

association rules. KDD'94.

• A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining

association rules in large databases. VLDB'95.

• J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining

association rules. SIGMOD'95.

• H. Toivonen. Sampling large databases for association rules. VLDB'96.

• S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and

implication rules for market basket analysis. SIGMOD'97.

• S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with

relational database systems: Alternatives and implications. SIGMOD'98.

68

Ref: Depth-First, Projection-Based FP Mining

• R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of

frequent itemsets. J. Parallel and Distributed Computing:02.

• J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.

SIGMOD’ 00.

• J. Liu, Y. Pan, K. Wang, and J. Han. Mining Frequent Item Sets by Opportunistic

Projection. KDD'02.

• J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed Patterns without

Minimum Support. ICDM'02.

• J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for Mining

Frequent Closed Itemsets. KDD'03.

• G. Liu, H. Lu, W. Lou, J. X. Yu. On Computing, Storing and Querying Frequent Patterns.

KDD'03.

• G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.

ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03),

Melbourne, FL, Nov. 2003

69

Ref: Mining Correlations and Interesting Rules

• M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.

Finding interesting rules from large sets of discovered association rules.

CIKM'94.

• S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing

association rules to correlations. SIGMOD'97.

• C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for

mining causal structures. VLDB'98.

• P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness

Measure for Association Patterns. KDD'02.

• E. Omiecinski. Alternative Interest Measures for Mining Associations.

TKDE’03.

• T. Wu, Y. Chen and J. Han, “Association Mining in Large Databases: A Re-

Examination of Its Measures”, PKDD'07

70

Ref: Freq. Pattern Mining Applications

• Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen. Efficient Discovery of

Functional and Approximate Dependencies Using Partitions. ICDE’98.

• H. V. Jagadish, J. Madar, and R. Ng. Semantic Compression and Pattern

Extraction with Fascicles. VLDB'99.

• T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining

Database Structure; or How to Build a Data Quality Browser. SIGMOD'02.

• K. Wang, S. Zhou, J. Han. Profit Mining: From Patterns to Actions.

EDBT’02.

71

