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Recall K-Means

• Objective function

• 𝐽 =  𝑗=1
𝑘  𝐶 𝑖 =𝑗 ||𝑥𝑖 − 𝑐𝑗||

2

• Total within-cluster variance

• Re-arrange the objective function

• 𝐽 =  𝑗=1
𝑘  𝑖𝑤𝑖𝑗||𝑥𝑖 − 𝑐𝑗||

2

• 𝑤𝑖𝑗 ∈ {0,1}

• 𝑤𝑖𝑗 = 1, 𝑖𝑓 𝑥𝑖 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑗; 𝑤𝑖𝑗 =
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Looking for:

• The best assignment 𝑤𝑖𝑗
• The best center 𝑐𝑗
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Solution of K-Means

• Iterations
• Step 1: Fix centers 𝑐𝑗, find assignment 𝑤𝑖𝑗 that 
minimizes 𝐽
• => 𝑤𝑖𝑗 = 1, 𝑖𝑓 ||𝑥𝑖 − 𝑐𝑗||

2 is the smallest

• Step 2: Fix assignment 𝑤𝑖𝑗, find centers that 
minimize 𝐽
• => first derivative of 𝐽 = 0

• => 
𝜕𝐽

𝜕𝑐𝑗
= −2 𝑖𝑤𝑖𝑗(𝑥𝑖 − 𝑐𝑗) =0

• =>𝑐𝑗 =
 𝑖𝑤𝑖𝑗𝑥𝑖

 𝑖𝑤𝑖𝑗
• Note  𝑖𝑤𝑖𝑗 is the total number of objects in cluster j
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Converges! Why?



Limitations of K-Means

•K-means has problems when clusters are 
of differing

• Sizes

• Densities

• Non-Spherical Shapes
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Limitations of K-Means: Different 
Density  and Size
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Limitations of K-Means: Non-Spherical 
Shapes
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Demo

•http://webdocs.cs.ualberta.ca/~yaling/Clu
ster/Applet/Code/Cluster.html
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Connections of K-means to Other 
Methods
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Fuzzy Set and Fuzzy Cluster

•Clustering methods discussed so far
• Every data object is assigned to exactly one cluster

•Some applications may need for fuzzy or 
soft cluster assignment 
• Ex. An e-game could belong to both entertainment 

and software

•Methods: fuzzy clusters and probabilistic 
model-based clusters

•Fuzzy cluster:  A fuzzy set S: FS : X → [0, 1] 
(value between 0 and 1)
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Probabilistic Model-Based Clustering

• Cluster analysis is to find hidden categories.

• A hidden category (i.e., probabilistic cluster) is a distribution over the data 
space, which can be mathematically represented using a probability density 
function (or distribution function).

 Ex. categories for digital cameras sold

 consumer line vs. professional line

 density functions f1, f2 for C1, C2

 obtained by probabilistic clustering

 A mixture model assumes that a set of observed objects is a mixture 

of instances from multiple probabilistic clusters, and conceptually 

each observed object is generated independently

 Our task: infer a set of k probabilistic clusters that is mostly likely to 

generate D using the above data generation process
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Mixture Model-Based Clustering

•A set C of k probabilistic clusters C1, …,Ck

with probability density functions f1, …, fk, 

respectively, and their probabilities w1, …, 

wk,  𝑗𝑤𝑗 = 1

•Probability of an object i generated by 

cluster Cj is: 𝑃(𝑥𝑖 , 𝑧𝑖 = 𝐶𝑗) = 𝑤𝑗𝑓𝑗(𝑥𝑖)

•Probability of i generated by the set of 

cluster C is: 𝑃 𝑥𝑖 =  𝑗𝑤𝑗𝑓𝑗(𝑥𝑖)
20



Maximum Likelihood Estimation

•Since objects are assumed to be 

generated independently, for a data 

set D = {x1, …, xn}, we have,

𝑃 𝐷 = 

𝑖

𝑃 𝑥𝑖 = 

𝑖

 

𝑗

𝑤𝑗𝑓𝑗(𝑥𝑖)

•Task: Find a set C of k probabilistic 

clusters s.t. P(D) is maximized
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The EM (Expectation Maximization) 
Algorithm

• The (EM) algorithm: A framework to approach maximum 
likelihood or maximum a posteriori estimates of parameters in 
statistical models.

• E-step assigns objects to clusters according to 

the current fuzzy clustering or parameters of 

probabilistic clusters

•𝑤𝑖𝑗
𝑡 = 𝑝 𝑧𝑖 = 𝑗 𝜃𝑗

𝑡 , 𝑥𝑖 ∝ 𝑝 𝑥𝑖 𝐶𝑗
𝑡 , 𝜃𝑗
𝑡 𝑝(𝐶𝑗

𝑡)

• M-step finds the new clustering or parameters 

that maximize the expected likelihood
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Case 1: Gaussian Mixture Model

•Generative model

• For each object:

• Pick its distribution component: 
𝑍~𝑀𝑢𝑙𝑡𝑖 𝑤1, … , 𝑤𝑘

• Sample a value from the selected distribution: 
𝑋~𝑁 𝜇𝑍, 𝜎𝑍

2

•Overall likelihood function

•𝐿 𝐷| 𝜃 =  𝑖 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)

• Q: What is 𝜃 here?
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Estimating Parameters

•𝐿 𝐷; 𝜃 =  𝑖 log 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗 , 𝜎𝑗
2)

• Considering the first derivative of 𝜇𝑗:

•
𝜕𝐿

𝜕𝑢𝑗
=  𝑖

𝑤𝑗

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗

• =  𝑖
𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

1

𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝜇𝑗

• =  𝑖
𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗

2)

 𝑗𝑤𝑗𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑙𝑜𝑔𝑝(𝑥𝑖|𝜇𝑗,𝜎𝑗
2)

𝜕𝑢𝑗

24𝑤𝑖𝑗 = 𝑃(𝑍 = 𝑗|𝑋 = 𝑥𝑖 , 𝜃) 𝜕𝑙(𝑥𝑖)/𝜕𝜇𝑗

Intractable!

Like weighted 
likelihood 
estimation;
But the weight is 
determined by 
the parameters!



Apply EM algorithm

• An iterative algorithm (at iteration t+1)
• E(expectation)-step

• Evaluate the weight 𝑤𝑖𝑗 when 𝜇𝑗 , 𝜎𝑗 , 𝑤𝑗are given

• 𝑤𝑖𝑗
𝑡 =

𝑤𝑗
𝑡𝑝(𝑥𝑖|𝜇𝑗

𝑡,(𝜎𝑗
2)𝑡)

 𝑗𝑤𝑗
𝑡𝑝(𝑥𝑖|𝜇𝑗

𝑡,(𝜎𝑗
2)𝑡)

• M(maximization)-step

• Evaluate 𝜇𝑗 , 𝜎𝑗 , 𝜔𝑗 when 𝑤𝑖𝑗’s are given that maximize the 
weighted likelihood

• It is equivalent to Gaussian distribution parameter 
estimation when each point has a weight belonging to 
each distribution

• 𝜇𝑗
𝑡+1 =

 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖

 𝑖𝑤𝑖𝑗
𝑡 ; (𝜎𝑗

2)𝑡+1 =
 𝑖𝑤𝑖𝑗
𝑡 𝑥𝑖−𝜇𝑗

𝑡
2

 𝑖𝑤𝑖𝑗
𝑡 ; 𝑤𝑗

𝑡+1 ∝  𝑖𝑤𝑖𝑗
𝑡
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K-Means: A Special Case of Gaussian 
Mixture Model

•When each Gaussian component with 
covariance matrix 𝜎2𝐼

• Soft K-means

•𝑝 𝑥𝑖 𝜇𝑗 , 𝜎
2 ∝ exp{− 𝑥𝑖 − 𝜇𝑗

2
/𝜎2}

•When 𝜎2 → 0

• Soft assignment becomes hard assignment

•𝑤𝑖𝑗 → 1, 𝑖𝑓 𝑥𝑖 is closest to 𝜇𝑗 (why?)

26
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Case 2: Multinomial Mixture Model

•Generative model
• For each object:

• Pick its distribution component: 
𝑍~𝑀𝑢𝑙𝑡𝑖 𝑤1, … , 𝑤𝑘

• Sample a value from the selected distribution: 
𝑋~𝑀𝑢𝑙𝑡𝑖 𝛽𝑍1, 𝛽𝑍2, … , 𝛽𝑍𝑚

•Overall likelihood function

•𝐿 𝐷| 𝜃 =  𝑖 𝑗𝑤𝑗𝑝(𝒙𝑖|𝜷𝑗)

• 𝑗𝑤𝑗 = 1; 𝑙 𝛽𝑗𝑙 = 1

• Q: What is 𝜃 here?
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Application: Document Clustering

•A vocabulary containing m words

•Each document i:

• A m-dimensional vector: 𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑚
• 𝑐𝑖𝑙 is the number of occurrence of word l 

appearing in document i

• Under unigram assumption

• 𝑝 𝒙𝑖 𝜷𝑗 =
( 𝑚 𝑐𝑖𝑙)!

𝑐𝑖1!…𝑐𝑖𝑚!
𝛽𝑗1
𝑐𝑖1 …𝛽𝑗𝑚

𝑐𝑖𝑚

28

Length of document

Constant to all parameters



Example
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Estimating Parameters

• 𝑙 𝐷; 𝜃 =  𝑖 log 𝑗𝜔𝑗  𝑙 𝑐𝑖𝑙𝑙𝑜𝑔𝛽𝑗𝑙

•Apply EM algorithm

• E-step: 

•w𝑖𝑗 =
𝑤𝑗𝑝(𝒙𝑖|𝜷𝑗)

 𝑗𝑤𝑗𝑝(𝒙𝑖|𝜷𝑗)

• M-step: maximize weighted likelihood 

 𝑖𝑤𝑖𝑗  𝑙 𝑐𝑖𝑙𝑙𝑜𝑔𝛽𝑗𝑙

• 𝛽𝑗𝑙 =
 𝑖𝑤𝑖𝑗𝑐𝑖𝑙

 
𝑙′
 𝑖𝑤𝑖𝑗𝑐𝑖𝑙′

; 𝜔𝑗 ∝  𝑖𝑤𝑖𝑗

30
Weighted percentage of word l in cluster j



Better Way for Topic Modeling

• Topic: a word distribution

• Unigram multinomial mixture model
• Once the topic of a document is decided, all its 
words are generated from that topic

• PLSA (probabilistic latent semantic analysis)
• Every word of a document can be sampled from 
different topics

• LDA (Latent Dirichlet Allocation)
• Assume priors on word distribution and/or 
document cluster distribution
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Why EM Works?

• E-Step: computing a tight lower bound f of the 

original objective function at 𝜃𝑜𝑙𝑑
• M-Step: find 𝜃𝑛𝑒𝑤 to maximize the lower bound

• 𝑙 𝜃𝑛𝑒𝑤 ≥ 𝑓 𝜃𝑛𝑒𝑤 ≥ 𝑓(𝜃𝑜𝑙𝑑) = 𝑙(𝜃𝑜𝑙𝑑)
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*How to Find Tight Lower Bound?

•

• Jensen’s inequality

•

• When “=” holds to get a tight lower bound?

• 𝑞 ℎ = 𝑝(ℎ|𝑑, 𝜃) (why?)

33

𝑞 ℎ : 𝑡ℎ𝑒 𝑡𝑖𝑔ℎ𝑡 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
𝑤𝑒 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑔𝑒𝑡



Advantages and Disadvantages of 
Mixture Models

• Strength

• Mixture models are more general than partitioning

• Clusters can be characterized by a small number of parameters

• The results may satisfy the statistical assumptions of the generative 

models

• Weakness

• Converge to local optimal (overcome: run multi-times w. random 

initialization)

• Computationally expensive if the number of distributions is large, 

or the data set contains very few observed data points

• Need large data sets

• Hard to estimate the number of clusters 34
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Kernel K-Means
• How to cluster the following data?

• A non-linear map: 𝜙:𝑅𝑛 → 𝐹
• Map a data point into a higher/infinite dimensional space

• 𝑥 → 𝜙 𝑥

• Dot product matrix 𝐾𝑖𝑗
• 𝐾𝑖𝑗 =< 𝜙 𝑥𝑖 , 𝜙(𝑥𝑗) >
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Typical Kernel Functions

•Recall kernel SVM:
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Solution of Kernel K-Means

• Objective function under new feature space:

• 𝐽 =  𝑗=1
𝑘  𝑖𝑤𝑖𝑗||𝜙(𝑥𝑖) − 𝑐𝑗||

2

• Algorithm 
• By fixing assignment 𝑤𝑖𝑗

• 𝑐𝑗 =  𝑖𝑤𝑖𝑗 𝜙(𝑥𝑖)/ 𝑖𝑤𝑖𝑗

• In the assignment step, assign the data points to the 
closest center

• 𝑑 𝑥𝑖 , 𝑐𝑗 = 𝜙 𝑥𝑖 −
 𝑖′𝑤𝑖′𝑗𝜙 𝑥𝑖′

 𝑖′𝑤𝑖′𝑗

2

= 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑖 −

2
 
𝑖′
𝑤
𝑖′𝑗
𝜙 𝑥𝑖 ⋅𝜙 𝑥𝑖′

 
𝑖′
𝑤𝑖′𝑗

+
 
𝑖′
 𝑙𝑤𝑖′𝑗𝑤𝑙𝑗𝜙 𝑥𝑖′ ⋅𝜙 𝑥𝑙

( 
𝑖′
𝑤𝑖′𝑗)^2

38Do not really need to know 𝝓 𝒙 , 𝒃𝒖𝒕 𝒐𝒏𝒍𝒚 𝑲𝒊𝒋



Advantages and Disadvantages of 
Kernel K-Means

• Advantages
• Algorithm is able to identify the non-linear structures.

• Disadvantages
• Number of cluster centers need to be predefined.

• Algorithm is complex in nature and time complexity is 
large.

• References
• Kernel k-means and Spectral Clustering by Max 

Welling.

• Kernel k-means, Spectral Clustering and Normalized 
Cut by Inderjit S. Dhillon, Yuqiang Guan and Brian 
Kulis.

• An Introduction to kernel methods by Colin Campbell.
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Summary

•Revisit k-means

• Derivative

•Mixture models

• Gaussian mixture model; multinomial mixture 

model; EM algorithm; Connection to k-means

•Kernel k-means

• Objective function; solution; connection to k-

means
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