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What is Cluster Analysis?

• Cluster: A collection of data objects

• similar (or related) to one another within the same group

• dissimilar (or unrelated) to the objects in other groups

• Cluster analysis (or clustering, data segmentation, …)

• Finding similarities between data according to the characteristics 

found in the data and grouping similar data objects into clusters

• Unsupervised learning: no predefined classes (i.e., learning by 
observations vs. learning by examples: supervised)

• Typical applications

• As a stand-alone tool to get insight into data distribution 

• As a preprocessing step for other algorithms
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Applications of Cluster Analysis

• Data reduction

• Summarization: Preprocessing for regression, PCA, classification, 

and association analysis

• Compression: Image processing: vector quantization

• Prediction based on groups

• Cluster & find characteristics/patterns for each group

• Finding K-nearest Neighbors

• Localizing search to one or a small number of clusters

• Outlier detection: Outliers are often viewed as those “far away” 

from any cluster
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Clustering: Application Examples

• Biology: taxonomy of living things: kingdom, phylum, class, order, 
family, genus and species

• Information retrieval: document clustering

• Land use: Identification of areas of similar land use in an earth 
observation database

• Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop 
targeted marketing programs

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location

• Earth-quake studies: Observed earth quake epicenters should 
be clustered along continent faults

• Climate: understanding earth climate, find patterns of 
atmospheric and ocean 6



Basic Steps to Develop a Clustering Task

• Feature selection

• Select info concerning the task of interest

• Minimal information redundancy

• Proximity measure

• Similarity of two feature vectors

• Clustering criterion

• Expressed via a cost function or some rules

• Clustering algorithms

• Choice of algorithms

• Validation of the results

• Validation test (also, clustering tendency test)

• Interpretation of the results

• Integration with applications
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Requirements and Challenges
• Scalability

• Clustering all the data instead of only on samples

• Ability to deal with different types of attributes

• Numerical, binary, categorical, ordinal, linked, and mixture of these 

• Constraint-based clustering

• User may give inputs on constraints

• Use domain knowledge to determine input parameters

• Interpretability and usability

• Others 

• Discovery of clusters with arbitrary shape

• Ability to deal with noisy data

• Incremental clustering and insensitivity to input order

• High dimensionality
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Partitioning Algorithms: Basic Concept

• Partitioning method: Partitioning a dataset D of n objects into a set of k

clusters, such that the sum of squared distances is minimized (where ci is 

the centroid or medoid of cluster Ci)

• Given k, find a partition of k clusters that optimizes the chosen partitioning 

criterion

• Global optimal: exhaustively enumerate all partitions

• Heuristic methods: k-means and k-medoids algorithms

• k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented by the 

center of the cluster

• k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects in the 

cluster  
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The K-MeansClustering Method

• Given k, the k-means algorithm is implemented in four steps:

• Step 0: Partition objects into k nonempty subsets

• Step 1: Compute seed points as the centroids of the clusters 

of the current partitioning (the centroid is the center, i.e., 

mean point, of the cluster)

• Step 2: Assign each object to the cluster with the nearest 

seed point  

• Step 3: Go back to Step 1, stop when the assignment does 

not change
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An Example of K-Means Clustering

K=2

Arbitrarily 
partition 
objects into 
k groups

Update the 
cluster 
centroids

Update the 
cluster 
centroids

Reassign  objectsLoop if 
needed

The initial data set

 Partition objects into k nonempty 

subsets

 Repeat

 Compute centroid (i.e., mean 

point) for each partition 

 Assign each object to the 

cluster of its nearest centroid  

 Until no change
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Comments on the K-MeansMethod

• Strength: Efficient: O(tkn), where n is # objects, k is # clusters, and t  is # 

iterations. Normally, k, t << n.

• Comment: Often terminates at a local optimal

• Weakness

• Applicable only to objects in a continuous n-dimensional space 

• Using the k-modes method for categorical data

• In comparison, k-medoids can be applied to a wide range of data

• Need to specify k, the number of clusters, in advance (there are ways to 

automatically determine the best k (see Hastie et al., 2009)

• Sensitive to noisy data and outliers

• Not suitable to discover clusters with non-convex shapes
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Variations of the K-Means Method

• Most of the variants of the k-means which differ in

• Selection of the initial k means

• Dissimilarity calculations

• Strategies to calculate cluster means

• Handling categorical data: k-modes

• Replacing means of clusters with modes

• Using new dissimilarity measures to deal with categorical objects

• Using a frequency-based method to update modes of clusters

• A mixture of categorical and numerical data: k-prototype method
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What Is the Problem of the K-Means Method?

• The k-means algorithm is sensitive to outliers !

• Since an object with an extremely large value may substantially distort the 

distribution of the data

• K-Medoids:  Instead of taking the mean value of the object in a cluster as a 

reference point, medoids can be used, which is the most centrally located

object in a cluster
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PAM: A Typical K-Medoids Algorithm
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The K-Medoid Clustering Method

• K-Medoids Clustering: Find representative objects (medoids) in clusters

• PAM (Partitioning Around Medoids, Kaufmann & Rousseeuw 1987)

• Starts from an initial set of medoids and iteratively replaces one of the 

medoids by one of the non-medoids if it improves the total distance of the 

resulting clustering

• PAM works effectively for small data sets, but does not scale well for large 

data sets (due to the computational complexity)

• Efficiency improvement on PAM

• CLARA (Kaufmann & Rousseeuw, 1990): PAM on samples

• CLARANS (Ng & Han, 1994): Randomized re-sampling
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Hierarchical Clustering

• Use distance matrix as clustering criteria.  This method does not 
require the number of clusters k as an input, but needs a 
termination condition 
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AGNES (Agglomerative Nesting)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical packages, e.g., Splus

• Use the single-link method and the dissimilarity matrix  

• Merge nodes that have the least dissimilarity

• Go on in a non-descending fashion

• Eventually all nodes belong to the same cluster
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Dendrogram: Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of 

clusters), called a dendrogram

A clustering of the data objects is obtained by cutting the dendrogram at 

the desired level, then each connected component forms a cluster
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DIANA (Divisive Analysis)

• Introduced in Kaufmann and Rousseeuw (1990)

• Implemented in statistical analysis packages, e.g., Splus

• Inverse order of AGNES

• Eventually each node forms a cluster on its own
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Distance between Clusters

• Single link:  smallest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = min(tip, tjq)

• Complete link: largest distance between an element in one cluster and an 

element in the other, i.e.,  dist(Ki, Kj) = max(tip, tjq)

• Average: avg distance between an element in one cluster and an element in 

the other, i.e.,  dist(Ki, Kj) = avg(tip, tjq)

• Centroid: distance between the centroids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Ci, Cj)

• Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Mi, Mj)

• Medoid: a chosen, centrally located object in the cluster

X X
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Centroid, Radius and Diameter of a Cluster (for numerical 
data sets)

• Centroid:  the “middle” of a cluster

• Radius: square root of average distance from any point of the 

cluster to its centroid

• Diameter: square root of average mean squared distance 

between all pairs of points in the cluster
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Example: Single Link vs. Complete Link
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Extensions to Hierarchical Clustering

• Major weakness of agglomerative clustering methods

• Can never undo what was done previously

• Do not scale well: time complexity of at least O(n2), where n is 

the number of total objects

• Integration of hierarchical & distance-based clustering

• *BIRCH (1996): uses CF-tree and incrementally adjusts the 

quality of sub-clusters

• *CHAMELEON (1999): hierarchical clustering using dynamic 

modeling

26



Matrix Data: Clustering: Part 1

• Cluster Analysis: Basic Concepts

• Partitioning Methods

• Hierarchical Methods

• Density-Based Methods

• Evaluation of Clustering

• Summary

27



Density-Based Clustering Methods

• Clustering based on density (local cluster criterion), such as 
density-connected points

• Major features:
• Discover clusters of arbitrary shape

• Handle noise

• One scan

• Need density parameters as termination condition

• Several interesting studies:

• DBSCAN: Ester, et al. (KDD’96)

• OPTICS: Ankerst, et al (SIGMOD’99).

• DENCLUE: Hinneburg & D. Keim  (KDD’98)

• CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
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DBSCAN: Basic Concepts

• Two parameters:

• Eps: Maximum radius of the neighborhood

• MinPts: Minimum number of points in an Eps-
neighborhood of that point

• NEps(q): {p belongs to D | dist(p,q) ≤ Eps}

• Directly density-reachable: A point p is directly density-
reachable from a point q w.r.t. Eps, MinPts if 

• p belongs to NEps(q)

• core point condition:

|NEps (q)| ≥ MinPts

MinPts = 5

Eps = 1 cm

p

q
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Density-Reachable and Density-Connected

• Density-reachable: 

• A point p is density-reachable from a 

point q w.r.t. Eps, MinPts if there is a 

chain of points p1, …, pn, p1 = q, pn = p

such that pi+1 is directly density-reachable 

from pi

• Density-connected

• A point p is density-connected to a point 

q w.r.t. Eps, MinPts if there is a point o 

such that both, p and q are density-

reachable from o w.r.t. Eps and MinPts

p

q
p2

p q

o
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DBSCAN: Density-Based Spatial Clustering of Applications 
with Noise

• Relies on a density-based notion of cluster:  A cluster is defined as 
a maximal set of density-connected points

• Noise: object not contained in any cluster is noise

• Discovers clusters of arbitrary shape in spatial databases with 
noise

Core

Border

Noise

Eps = 1cm

MinPts = 5
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DBSCAN: The Algorithm

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), 
where n is the number of database objects. Otherwise, the complexity is O(n2) 32



DBSCAN: Sensitive to Parameters

DBSCAN online Demo: 

http://webdocs.cs.ualberta.ca/~yaling/Cluster/Applet/Code/Cluster.html
33
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Questions about Parameters

•Fix Eps, increase MinPts, what will 
happen?

•Fix MinPts, decrease Eps, what will 
happen?
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*OPTICS:  A Cluster-Ordering Method (1999)

• OPTICS: Ordering Points To Identify the Clustering Structure

• Ankerst, Breunig, Kriegel, and Sander (SIGMOD’99)

• Produces a special order of the database wrt its density-based 

clustering structure  

• This cluster-ordering contains info equiv to the density-based 

clusterings corresponding to a broad range of parameter settings

• Good for both automatic and interactive cluster analysis, 

including finding intrinsic clustering structure

• Can be represented graphically or using visualization techniques

• Index-based time complexity:  O(N*logN)
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OPTICS: Some Extension from DBSCAN

• Core Distance of an object p: the smallest value ε’ such that the ε-
neighborhood of p has at least MinPts objects

•Let Nε(p): ε-neighborhood of p, ε is a distance 

value; card(Nε(p)): the size of set Nε(p) 

•Let MinPts-distance(p): the distance from p to its 

MinPts’ neighbor

Core-distanceε, MinPts(p) =  Undefined, if card(Nε(p)) < MinPts

MinPts-distance(p), otherwise
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• Reachability Distance of object p from core object q is the min 
radius value that makes p density-reachable from q
• Let distance(q,p) be the Euclidean distance between q and p 

Reachability-distanceε, MinPts(p, q) =

Undefined, if q is not a core object

max(core-distance(q), distance(q, p)), otherwise
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Core Distance & Reachability Distance

38
𝜺 = 𝟔𝒎𝒎, 𝑴𝒊𝒏𝑷𝒕𝒔 = 𝟓
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Output of OPTICS: cluster-ordering



Extract DBSCAN-Clusters
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Density-Based Clustering: OPTICS & Applications
demo: http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo

http://www.dbs.informatik.uni-muenchen.de/Forschung/KDD/Clustering/OPTICS/Demo


*DENCLUE: Using Statistical Density Functions

• DENsity-based CLUstEring by Hinneburg & Keim  (KDD’98)

• Using statistical density functions:

• Major features

• Solid mathematical foundation

• Good for data sets with large amounts of noise

• Allows a compact mathematical description of arbitrarily shaped clusters 

in high-dimensional data sets

• Significant faster than existing algorithm (e.g., DBSCAN)

• But needs a large number of parameters
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• Overall density of the data space can be calculated as the 
sum of the influence function of all data points
• Influence function: describes the impact of a data point within its 

neighborhood

• Clusters can be determined mathematically by identifying 
density attractors
• Density attractors are local maximal of the overall density function

• Center defined clusters: assign to each density attractor the points 

density attracted to it

• Arbitrary shaped cluster: merge density attractors that are connected 

through paths of high density (> threshold)

Denclue: Technical Essence
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Density Attractor

44

Can be detected by hill-climbing procedure of finding local maximums



Noise Threshold

•Noise Threshold 𝜉

•Avoid trivial local maximum points

•A point can be a density attractor only if 
 𝑓 𝑥 ≥ 𝜉
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Center-Defined and Arbitrary
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Measuring Clustering Quality

• Two methods: extrinsic vs. intrinsic  

• Extrinsic: supervised, i.e., the ground truth is available

• Compare a clustering against the ground truth using certain 

clustering quality measure

• Ex. Purity, BCubed precision and recall metrics, normalized 

mutual information

• Intrinsic: unsupervised, i.e., the ground truth is unavailable

• Evaluate the goodness of a clustering by considering how well 

the clusters are separated, and how compact the clusters are

• Ex. Silhouette coefficient
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Purity

• Let 𝑪 = 𝑐1, … , 𝑐𝑘 be the output clustering 
result, 𝜴 = 𝜔1, … , 𝜔𝑘 be the ground truth 
clustering result (ground truth class)

•𝑝𝑢𝑟𝑖𝑡𝑦 𝐶, Ω =
1

𝑁
 𝑘 max

𝑗
|𝑐𝑘 ∩ 𝜔𝑗|
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Normalized Mutual Information

•𝑁𝑀𝐼 Ω, 𝐶 =
𝐼(Ω,𝐶)

𝐻 Ω 𝐻(𝐶)

• 𝐼 Ω, 𝐶 =

•𝐻 Ω =

50
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Precision and Recall

•P = TP/(TP+FP)

•R = TP/(TP+FN)

•F-measure: 2P*R/(P+R)

51

Same cluster Different clusters

Same class TP FN

Different classes FP TN
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Summary
• Cluster analysis groups objects based on their similarity and has 

wide applications; Measure of similarity can be computed for 
various types of data

• K-means and K-medoids algorithms are popular partitioning-
based clustering algorithms

• AGNES and DIANA are interesting hierarchical clustering 
algorithms

• DBSCAN, OPTICS, and DENCLU are interesting density-based 
algorithms

• Clustering evaluation
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