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Bayesian Classification: Why?

- A statistical classifier: performs probabilistic prediction, i.e.,
predicts class membership probabilities

- Foundation: Based on Bayes’ Theorem.

- Performance: A simple Bayesian classifier, naive Bayesian
classifier, has comparable performance with decision tree and
selected neural network classifiers

- Incremental: Each training example can incrementally
increase/decrease the probability that a hypothesis is correct —
prior knowledge can be combined with observed data

- Standard: Even when Bayesian methods are computationally
intractable, they can provide a standard of optimal decision
making against which other methods can be measured




Basic Probability Review

- Have two dices h; and h,

- The probability of rolling an i given die h, is denoted
P(i|h,). This is a conditional probability

» Pick a die at random with probability P(h;), j=1 or 2. The
probability for picking die h; and rolling an i with it is called
joint probability and is P(i, h))=P(h;)P(i| h;).

* If we know P(i| h)), then the so-called marginal probability
P(i) can be computed as: P(i) = 2.; P(i, ;)

- For any X and Y, P(X,Y)=P(X|Y)P(Y)



Bayes’ Theorem: Basics

- Bayes’ Theorem: P(h|X)= P(>|<:>|(h>)(|)3(h)

* Let X be a data sample (“ewvidence”)

 Let h be a Aypothesis that X belongs to class C

« P(h) (prior probability): the mtial probability

 E.g., X will buy computer, regardless of age, income, ...

- P(X | h) (likelihood): the probability of observing the
sample X, given that the hypothesis holds

- E.g., Given that X will buy computer, the prob. that X is 31..40,
medium income

« P(X): marginal probability that sample data 1s observed
- P(X) = %, P(XIR) P(h)

- P(h|X), (.e., posterior probability): the probability that
the hypothesis holds given the observed data sample X




Classification: Choosing Hypotheses

- Maximum Likelihood (maximize the likelihood):

h,, =argmaxP(X | h)
heH

- Maximum a posteriori (maximize the posterior):

 Usetul observation: it does not depend on the denominator P(X)

hy.» =argmaxP(h| x)=argmaxP( X|h)P(h)

heH heH



Classification by Maximum A Posteriori

- Let D be a training set of tuples and their associated class labels,
and each tuple is represented by an p-D attribute vector X = (x,,
Xy, «e) xp)

» Suppose there are m classes YE{C,, C,, ..., C..}

- Classification is to derive the maximum posteriori, i.e., the
maximal P(Y=C|X) XY PG

» This can be derived from Bayes’ theorem Pp(=c;x)= P

- Since P(X) is constant for all classes, only p(y,X)=P(X|y)P(y)
needs to be maximized



Example: Cancer Diagnosis

- A patient takes a lab test with two possible results
(+ve, -ve), and the result comes back positive. It is
known that the test returns

- a correct positive result mn only 98% of the cases (true
positive);

- a correct negative result in only 97% of the cases (true
negative).

» Furthermore, only 0.008 of the entire population has this
disease.

1. W
2. W

hat 1s t
hat 1s t

3. W]

he probabi

ity that this patient has cancer?

he probabi

hat 1s t

ity that he does not have cancer?

he diagnosis?



Solution

P(cancer) =.008 P(— cancer) =.992
P(+ve|cancer) =.98 P(-ve|cancer)=.02
P(+ve| — cancer) = .03 P(-ve| — cancer) = .97

Using Bayes Formula:

P(cancer|+ve) = P(+ve|cancer)xP(cancer) / P(+ve)

= 0.98 x 0.008/ P(+ve) = .00784 / P(+ve)

P(— cancer|+ve) = P(+ve| — cancer)xP(— cancer) / P(+ve)
= 0.03 x 0.992/P(+ve) = .0298 / P(+ve)

So, the patient most likely does not have cancer.
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Naive Bayes Classifier

- Let D be a training set of tuples and their
associated class labels, and each tuple is
represented by an p-D attribute vector X = (x,,

Xy, eer xp)
» Suppose there are m classes YE{C,, C,, ..., C_ }

»Goal: Find Y
max P(Y|X) = P(Y,X)/P(X) «x P(X|Y)P(Y)

- A simplified assumption: attributes are
conditionally independent given the class
(class conditional independency):

p
P(XICj)=kH P(x, 1Cj)=Plx ICj)xP(x,IC j)x..xP(x IC})
=1
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Estimate Parameters by MLE

- Given a dataset D = {(X, Y;)}, the goal is to

» Find the best estimators P(C;) and P(Xy, = xi|C;), for
everyj=1,....,mand k=1, ...,p

- that maximizes the likelihood of observing D:

L= [poxvd =] [Poivpen)

BB EEDLG
ik
- Estimators of Parameters:
+ P(C;) = |Cip|/IDI(|C; p|= # of tuples of C, in D) (why?)
. P(X K = xk‘C j): X can be either discrete or numerical
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Discrete and Continuous Attributes

- If X}, is discrete, with IV possible values

* P(x, | C) is the # of tuples in C; having value x,_for
X, divided by |C, p]

If Xp, is contmuous with observations of real

values

P(x; | C) is usually computed based on Gaussian
dlstrlbutlon with a mean U and standard deviation

0

- Estimate (u, o 2) according to the observed X in
the category of C,
» Sample mean and sample variance

* P(x | G 1s then  P(x, =x,|c J) = 0% 4,1 0,)

Gaussian density function
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Naive Bayes Classifier: Training Dataset

age | income studentredit_rating comj

Class:
Cl:buys computer = ‘yes’
C2:buys_computer = ‘no’

Data to be classified:
X = (age <=30,
Income = medium,
Student = yes
Credit_rating = Fair)
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Naive Bayes Classifier: An Example

age | income studentredit_ratin

g com

<=30 high no [fair

<=30 high no |excellent

no

31...40 |high no |fair

yes

yes

. P(CI) P(buys_computer = ”yes”) = 9/14 =0.643 >40 _ |medium| no |fair

>40 low yes |fair

yes

no

P(buys_computer = “no”) =5/14=0.357 5120 flow | yes |excelont

yes

<=30 medium| no |fair

no

yes

- Compute P(X|C,) for each class ~2o"Imedum] ves Jrai

yes

<=30 medium| yes |excellent

yes

P(age = “<=30” | buys_computer = “yes”) = 2/9 = (.222 31...40 [medium|_no_lexcellent

yes

31...40 |high yes |[fair

yes

no

P(age = “<= 30" | buys_computer = “no”) = 3/5 = 0.6 =0 imediimine el
P(income = “medium” | buys_computer = “yes”) = 4/9 = (.444
P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4
- X =(age <= 30, income = medium, student = yes, credit_rating = fair)
P(X|C.) : P(X|buys_computer = “yes”) =0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys computer = “no”)=0.6x0.4x0.2x0.4=0.019
P(X]|C,)*P(C,) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore, X belongs to class (“buys_computer = yes”)
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Avoiding the Zero-Probability Problem

- Naive Bayesian prediction requires each conditional prob. be non-zero.
Otherwise, the predicted prob. will be zero

P
P(X[|Cj) = II P(xklCj)

k=1 :
- Use Laplacian correction (or Laplacian smoothing)

- Adding 1 to each case

« P = v|C)) = |7Zj.k'v|:1v where . 4, is # of tuples in C, having value

X, =V, Vis the total number of values that can be taken

* Ex. Suppose a training dataset with 1000 tuples, for category
“buys _computer = yes”, income=low (0), income= medium
(990), and income = high (10)

Prob(income = low|buys _computer = “yes”) = 1/1003
Prob(income = medium|buys_computer = “yes”) =991/1003
Prob(income = high|buys_computer = “yes”) =11/1003

- The “corrected” prob. estimates are close to their “uncorrected”
counterparts
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*Smoothing and Prior on Attribute

* Discrete distribution: X |C;~ 6
- P(X, =v|C;,0) =6,
* Put priorto 0
- In discrete case, the prior can be chosen as symmetric Dirichlet
distribution: @~Dir(a), i.e.,P(0) « [],0%1
- posterior distribution:
. P(9|X1k, oo Xnor Cj) o< P(X1x, ...,Xnk|C-, 6)P(8), another Dirichlet
distribution, with new parameter (¢ + ¢4, ..., a + ¢, ..., @ + ¢cy)
* ¢, is the number of observations taking value v
» Inference: P(Xk = v|X1k, ey Xk Cj) = [ P(X, =
v|0)P(0|X1k, ..., Xng, C;)dO
c, + a
N, +Va
 Equivalent to adding a to each observation value v




*Notes on Parameter Learning

-Why the probability of P(Xk‘Cj) IS
estimated in this way?

- htty
. htt’

40-

b://www.cs.columbia.edu/ mcollins/em.pdf

b://www.cs.ubc.ca/ murphyk/Teaching/CS3
FallO6/reading/NB.pdt
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Naive Bayes Classifier: Comments

- Advantages

- Fasy to implement

« Good results obtained 1n most of the cases
- Disadvantages

- Assumption: class conditional independence, therefore loss of
accuracy

« Practically, dependencies exist among variables
* E.g., hospitals: patients: Profile: age, family history,
etc.
Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
» Dependencies among these cannot be modeled by
Naive Bayes Classifier
- How to deal with these dependencies? Bayesian Belief Networks
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Bayesian Belief Networks (BNs)

- Bayesian belief network (also known as Bayesian network, probabilistic
network): allows class conditional independencies between subsets of variables

- Two components: (1) A directed acyclic graph (called a structure) and (2) a set
of conditional probability tables (CPTs)

- A (directed acyclic) graphical model of causal influence relationships

- Represents dependency among the variables

- Gives a specification of joint probability distribution

\' A Nodes: random variables
O Links: dependency

d XandyY are the parents of Z, and Y is the
parent of P

O No dependency between Z and P conditional
onY

A Has no cycles 22>



A Bayesian Network and Some of Its CPTs

CPT: Conditional Probability Tables

S .90 .01

=S .10 .99

e T hr | B ket
A .5 .99 .85 .0001
—-A .95 .01 .15 .9999

CPT shows the conditional probability for
each possible combination of its parents

Derivation of the probability of a n
particular combination of values of P (X.,....X,) = T1 P(xj| Parents(x;))
X, from CPT (joint probability): 1=1
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Inference in Bayesian Networks

- Infer the probability of values of some
variable given the observations of other
variables

- E.g., P(Fire = True | Report = True, Smoke =
T'rue)?
-Computation
- EExact computation by enumeration

- In general, the problem 1s NP hard

- *Approximation algorithms are needed
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Inference by enumeration

- To compute posterior marginal P(X. | E=e)

» Add all of the terms (atomic event
probabilities) from the full joint distribution

[t E are the evidence (observed) variables and

Y are the other (unobserved) variables, then:
P(X|e)=a P(X,E)=a P(X, E, Y)

- Fach P(X, E, Y) term can be computed using
the chain rule

-Computationally expensive!
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Example: Enumeration

N
T

P (d|le)=a Z,s:P(a, b, c,d,e)
=a 2,5.P(a) P(b|a) P(c|a) P(d]|b,c) P(e]|c)
- With simple iteration to compute this
expression, there’s going to be a lot of
repetition (e.g., P(e|c) has to be recomputed
every time we iterate over C=true)

« *A solution: variable elimmation
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*How Are Bayesian Networks Constructed?

- Subjective construction: Identification of (direct) causal structure

« People are quite good at identitying direct causes from a given set of variables &
whether the set contains all relevant direct causes

« Markovian assumption: Each variable becomes independent of its non-effects
once 1ts direct causes are known

- Eg,S—F— A <T, path S—A 1s blocked once we know F—A
- Synthesis from other specifications
- E.g., from a formal system design: block diagrams & info flow
- Learning from data
-+ E.g., from medical records or student admission record
 Learn parameters give its structure or learn both structure and parms

« Maximum likelihood principle: favors Bayesian networks that maximize the
probability of observing the given data set

27



*Learning Bayesian Networks: Several
Scenarios

« Scenario 1: Given both the network structure and all variables observable:
compute only the CPT entries (Easiest case!)

- Scenario 2: Network structure known, some variables hidden: gradient descent
(greedy hill-climbing) method, i.e., search for a solution along the steepest
descent of a criterion function

« Weights are mmitialized to random probability values

« At each 1teration, 1t moves towards what appears to be the best solution at the
moment, w.o. backtracking
« Weights are updated at each 1iteration & converge to local optimum

- Scenario 3: Network structure unknown, all variables observable: search
through the model space to reconstruct network topology

« Scenario 4: Unknown structure, all hidden variables: No good algorithms
known for this purpose

- D. Heckerman. A Tutorial on Learning with Bayesian Networks. In Learning in
Graphical Models, M. Jordan, ed. MIT Press, 1999.

28
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Linear Regression VS. Logistic Regression

- Linear Regression
Y: continuous value (—oo, +00)

Y=x"B =By +x:181 + %82 + -+ x5
Y|x, B~N(xT B, 52)

* Logistic Regression

*Y:discrete value from m classes
p(Y = Cj) € (0,1) and Z]-p(Y = Cj) =1
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Logistic Function

1

- Logistic Function: f(x) = g
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Modeling Probabilities of Two Classes

B B 1 __exp{X"B}
P =11X8) = ooims = TrexpxT5)

B _ exp{-XxTp} 1
P(Y =0|X,8) = 1+exp{—XTB} ~ 1+exp{xTp)

o
By

Pp

lB:

* In other words

1

. y|X,,8~Bernoulli(1+exp{_XTﬁ}

)
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Parameter Estimation

- MLE estimation
- Given a dataset D, with n data points

- For a single data object with attributes x;, class label
Yi
"Letp(x; B) = p; = N
P(Y = 1|x;,B),the prob.of iinclass 1

- The probability of observing y; would be
* Ify; = 1,then p;
* Ify; = 0,then 1 — p;
 Combing the two cases: piyi(l —p)t Vi

L =prl(1_ .)1_yi —
() ()
i 1+exp{XT B}

1+exp{XT B}
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Optimization

- Equivalent to maximize log likelihood

'L =Y, yixi B —log(1 + exp{x; B})
-Newton-Raphson update

. —1 . .
ynew __ gold rjz‘ll—("]]) L}‘;—('j)
‘ 03037 Bk,

L1

- where derivatives at evaluated at §°19
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First Derivative

OL(3)

r
-




Second Derivative

*Itis a (p+1) by (p+1) matrix, Hessian
Matrix, with jth row and nth column as

IL(3)

_ ZN: (14 %) eB Xix;xin — (&8 %) 2x; i,
- (14 eB7x)2

- Z XiiXinP(Xi; F) — XijXinp(Xi; ”.]])2

- —Zxﬂxmp(x; 5)(1 = p(xi; B)) -

36



What about Multiclass Classification?

- It is easy to handle under logistic
regression, say M classes

eXp{XT,B]}
+Z eXp{XT.Bm}

P(Y =jIX) =
1,..,M—1
‘P(Y = M|X) = -

,forj =

1
+Z eXp{XT,Bm}
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Summary

- Bayesian Learning
- Bayes theorem

- Naive Bayes, class conditional independence

- Bayesian Beliet Network, DAG, conditional
probability table

» Logistic Regression

- Logistic tunction, two-class logistic regression,
MLLE estimation, Newton-Raphson update,

multiclass classification under logistic regression
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