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Supervised vs. Unsupervised Learning

• Supervised learning (classification)

• Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels indicating 

the class of the observations

• New data is classified based on the training set

• Unsupervised learning (clustering)

• The class labels of training data is unknown

• Given a set of measurements, observations, etc. with the 

aim of establishing the existence of classes or clusters in 

the data
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Prediction Problems: Classification vs. 
Numeric Prediction

• Classification

• predicts categorical class labels

• classifies data (constructs a model) based on the 
training set and the values (class labels) in a classifying 
attribute and uses it in classifying new data

• Numeric Prediction  

• models continuous-valued functions, i.e., predicts 
unknown or missing values 

• Typical applications

• Credit/loan approval:

• Medical diagnosis: if a tumor is cancerous or benign

• Fraud detection: if a transaction is fraudulent

• Web page categorization: which category it is
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Classification—A Two-Step Process (1)

• Model construction: describing a set of predetermined classes

• Each tuple/sample is assumed to belong to a 

predefined class, as determined by the class label 

attribute

• For data point i: < 𝒙𝒊, 𝑦𝑖 >

• Features: 𝒙𝒊; class label: 𝑦𝑖

• The model is represented as classification rules, 

decision trees, or mathematical formulae

• Also called classifier

• The set of tuples used for model construction is 

training set
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Classification—A Two-Step Process (2)

• Model usage: for classifying future or unknown objects

• Estimate accuracy of the model

• The known label of test sample is compared with the 
classified result from the model

• Test set is independent of training set (otherwise 
overfitting) 

• Accuracy rate is the percentage of test set samples that are 
correctly classified by the model

• Most used for binary classes

• If the accuracy is acceptable, use the model to classify 
new data

• Note: If the test set is used to select models, it is called 
validation (test) set
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Process (1): Model Construction
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Training

Data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Classification

Algorithms

IF rank = ‘professor’

OR years > 6

THEN tenured = ‘yes’ 

Classifier

(Model)



Process (2): Using the Model in Prediction 
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Classifier

Testing

Data

NAME RANK YEARS TENURED

Tom Assistant Prof 2 no

Merlisa Associate Prof 7 no

George Professor 5 yes

Joseph Assistant Prof 7 yes

Unseen Data

(Jeff, Professor, 4)

Tenured?



Classification Methods Overview

•Part 1
• Decision Tree

• Model Evaluation

•Part 2
• Bayesian Learning: Naïve Bayes, Bayesian belief 

network

• Logistic Regression

•Part 3
• SVM

• kNN

• Other Topics
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Decision Tree Induction: An Example
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age?

overcast

student? credit rating?

<=30 >40

no yes yes

yes

31..40

fairexcellentyesno

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

 Training data set: Buys_computer
 The data set follows an example of 

Quinlan’s ID3 (Playing Tennis)
 Resulting tree:



Algorithm for Decision Tree Induction

• Basic algorithm (a greedy algorithm)
• Tree is constructed in a top-down recursive divide-and-conquer 

manner
• At start, all the training examples are at the root
• Attributes are categorical (if continuous-valued, they are discretized 

in advance)
• Examples are partitioned recursively based on selected attributes
• Test attributes are selected on the basis of a heuristic or statistical 

measure (e.g., information gain)

• Conditions for stopping partitioning
• All samples for a given node belong to the same class
• There are no remaining attributes for further partitioning –

majority voting is employed for classifying the leaf
• There are no samples left – use majority voting in the parent 

partition
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Brief Review of Entropy

• Entropy (Information Theory)
• A measure of uncertainty (impurity) associated with a 

random variable

• Calculation: For a discrete random variable Y taking 

m distinct values {𝑦1, … , 𝑦𝑚},
• 𝐻 𝑌 = − 𝑖=1

𝑚 𝑝𝑖log(𝑝𝑖) , where 𝑝𝑖 = 𝑃(𝑌 = 𝑦𝑖)

• Interpretation:

• Higher entropy => higher uncertainty

• Lower entropy => lower uncertainty

•Conditional Entropy

•𝐻 𝑌 𝑋 =  𝑥 𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥)
m = 2
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Attribute Selection Measure: 
Information Gain (ID3/C4.5)

 Select the attribute with the highest information gain

 Let pi be the probability that an arbitrary tuple in D belongs to 

class Ci, estimated by |Ci, D|/|D|

 Expected information (entropy) needed to classify a tuple in D:

 Information needed (after using A to split D into v partitions) to 

classify D:

 Information gained by branching on attribute A
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Attribute Selection: Information Gain

Class P: buys_computer = “yes”

Class N: buys_computer = “no”

means “age <=30” has 5 out of 

14 samples, with 2 yes’es  and 3 

no’s.   Hence

Similarly,
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age pi ni I(pi, ni)

<=30 2 3 0.971

31…40 4 0 0

>40 3 2 0.971
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age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no
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Attribute Selection for a Branch

•
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age?

overcast

? ?

<=30 >40

yes

31..40

Which attribute next?

age income student credit_rating buys_computer

<=30 high no fair no

<=30 high no excellent no

<=30 medium no fair no

<=30 low yes fair yes

<=30 medium yes excellent yes

𝐷𝑎𝑔𝑒≤30

• 𝐼𝑛𝑓𝑜 𝐷𝑎𝑔𝑒≤30 = −
2

5
log2

2

5
−
3

5
log2

3

5
= 0.971

• 𝐺𝑎𝑖𝑛𝑎𝑔𝑒≤30 𝑖𝑛𝑐𝑜𝑚𝑒

= 𝐼𝑛𝑓𝑜 𝐷𝑎𝑔𝑒≤30 − 𝐼𝑛𝑓𝑜𝑖𝑛𝑐𝑜𝑚𝑒 𝐷𝑎𝑔𝑒≤30 = 0.571

• 𝐺𝑎𝑖𝑛𝑎𝑔𝑒≤30 𝑠𝑡𝑢𝑑𝑒𝑛𝑡 = 0.971

• 𝐺𝑎𝑖𝑛𝑎𝑔𝑒≤30 𝑐𝑟𝑒𝑑𝑖𝑡_𝑟𝑎𝑡𝑖𝑛𝑔 = 0.02
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<=30 >40
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Computing Information-Gain for 
Continuous-Valued Attributes

• Let attribute A be a continuous-valued attribute

• Must determine the best split point for A

• Sort the value A in increasing order

• Typically, the midpoint between each pair of adjacent values is 

considered as a possible split point

• (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

• The point with the minimum expected information requirement

for A is selected as the split-point for A

• Split:

• D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the 

set of tuples in D satisfying A > split-point
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Gain Ratio for Attribute Selection (C4.5)

• Information gain measure is biased towards attributes with a 
large number of values

• C4.5 (a successor of ID3) uses gain ratio to overcome the problem 
(normalization to information gain)

• GainRatio(A) = Gain(A)/SplitInfo(A)

• Ex.

• gain_ratio(income) = 0.029/1.557 = 0.019

• The attribute with the maximum gain ratio is selected as the 
splitting attribute
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Gini Index (CART, IBM IntelligentMiner)

• If a data set D contains examples from n classes, gini index, gini(D) 
is defined as

where pj is the relative frequency of class j in D

• If a data set D is split on A into two subsets D1 and D2, the gini
index gini(D) is defined as

• Reduction in Impurity:

• The attribute provides the smallest ginisplit(D) (or the largest 
reduction in impurity) is chosen to split the node (need to 
enumerate all the possible splitting points for each attribute)
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Computation of Gini Index 

• Ex.  D has 9 tuples in buys_computer = “yes” and 5 in “no”

• Suppose the attribute income partitions D into 10 in D1: {low, 
medium} and 4 in D2

Gini{low,high} is 0.458; Gini{medium,high} is 0.450.  Thus, split on the 
{low,medium} (and {high}) since it has the lowest Gini index
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Comparing Attribute Selection Measures

• The three measures, in general, return good 

results but

• Information gain: 

• biased towards multivalued attributes

• Gain ratio: 

• tends to prefer unbalanced splits in which one partition is 

much smaller than the others (why?)

• Gini index: 

• biased to multivalued attributes
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*Other Attribute Selection Measures

• CHAID: a popular decision tree algorithm, measure based on χ2 test for 

independence

• C-SEP: performs better than info. gain and gini index in certain cases

• G-statistic: has a close approximation to χ2 distribution 

• MDL (Minimal Description Length) principle (i.e., the simplest solution is 

preferred): 

• The best tree as the one that requires the fewest # of bits to both (1) encode 

the tree, and (2) encode the exceptions to the tree

• Multivariate splits (partition based on multiple variable combinations)

• CART: finds multivariate splits based on a linear comb. of attrs.

• Which attribute selection measure is the best?

• Most give good results, none is significantly superior than others
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Overfitting and Tree Pruning

• Overfitting:  An induced tree may overfit the training data 

• Too many branches, some may reflect anomalies due to noise or 
outliers

• Poor accuracy for unseen samples

• Two approaches to avoid overfitting 

• Prepruning: Halt tree construction early ̵ do not split a node if 
this would result in the goodness measure falling below a 
threshold

• Difficult to choose an appropriate threshold

• Postpruning: Remove branches from a “fully grown” tree—get a 
sequence of progressively pruned trees

• Use a set of data different from the training data to decide 
which is the “best pruned tree”
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Enhancements to Basic Decision Tree Induction

• Allow for continuous-valued attributes

• Dynamically define new discrete-valued attributes that partition 

the continuous attribute value into a discrete set of intervals

• Handle missing attribute values

• Assign the most common value of the attribute

• Assign probability to each of the possible values

• Attribute construction

• Create new attributes based on existing ones that are sparsely 

represented

• This reduces fragmentation, repetition, and replication
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Model Evaluation and Selection

• Evaluation metrics: How can we measure accuracy?  Other 

metrics to consider?

• Use validation test set of class-labeled tuples instead of 

training set when assessing accuracy

• Methods for estimating a classifier’s accuracy: 

• Holdout method, random subsampling

• Cross-validation

• Comparing classifiers:

• Confidence intervals

• Cost-benefit analysis and ROC Curves
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Classifier Evaluation Metrics: Confusion Matrix

Actual class\Predicted 
class

buy_computer 
=  yes

buy_computer 
= no

Total

buy_computer = yes 6954 46 7000

buy_computer = no 412 2588 3000

Total 7366 2634 10000

• Given m classes, an entry, CMi,j in a confusion matrix indicates # 
of tuples in class i that were labeled by the classifier as class j

• May have extra rows/columns to provide totals

Confusion Matrix:

Actual class\Predicted class C1 ¬ C1

C1 True Positives (TP) False Negatives (FN)

¬ C1 False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:
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Classifier Evaluation Metrics: Accuracy, 
Error Rate, Sensitivity and Specificity

• Classifier Accuracy, or recognition 
rate: percentage of test set tuples 
that are correctly classified

Accuracy = (TP + TN)/All

• Error rate: 1 – accuracy, or

Error rate = (FP + FN)/All

28

 Class Imbalance Problem: 

 One class may be rare, e.g. 
fraud, or HIV-positive

 Significant majority of the 
negative class and minority of 
the positive class

 Sensitivity: True Positive 
recognition rate

 Sensitivity = TP/P

 Specificity: True Negative 
recognition rate

 Specificity = TN/N

A\P C ¬C

C TP FN P

¬C FP TN N

P’ N’ All



Classifier Evaluation Metrics: 
Precision and Recall, and F-measures

• Precision: exactness – what % of tuples that the classifier labeled 
as positive are actually positive

• Recall: completeness – what % of positive tuples did the 
classifier label as positive?

• Perfect score is 1.0
• Inverse relationship between precision & recall
• F measure (F1 or F-score): harmonic mean of precision and 

recall,

• Fß:  weighted measure of precision and recall
• assigns ß times as much weight to recall as to precision
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Classifier Evaluation Metrics: Example

• Precision = 90/230 = 39.13%             Recall = 90/300 = 30.00%

Actual Class\Predicted class cancer = yes cancer = no Total Recognition(%)

cancer = yes 90 210 300 30.00 (sensitivity)

cancer = no 140 9560 9700 98.56 (specificity)

Total 230 9770 10000 96.40 (accuracy)
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Evaluating Classifier Accuracy:
Holdout & Cross-Validation Methods

• Holdout method
• Given data is randomly partitioned into two independent sets
• Training set (e.g., 2/3) for model construction
• Test set (e.g., 1/3) for accuracy estimation

• Random sampling: a variation of holdout
• Repeat holdout k times, accuracy = avg. of the accuracies 

obtained

• Cross-validation (k-fold, where k = 10 is most popular)
• Randomly partition the data into k mutually exclusive subsets, each 

approximately equal size
• At i-th iteration, use Di as test set and others as training set
• Leave-one-out: k folds where k = # of tuples, for small sized data
• *Stratified cross-validation*: folds are stratified so that class dist. in 

each fold is approx. the same as that in the initial data
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Estimating Confidence Intervals:
Classifier Models M1 vs. M2

• Suppose we have 2 classifiers, M1 and M2, which one is better?

• Use 10-fold cross-validation to obtain                     and

• These mean error rates are just point estimates of error on the 

true population of future data cases

• What if the difference between the 2 error rates is just 

attributed to chance?

• Use a test of statistical significance

• Obtain confidence limits for our error estimates
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Estimating Confidence Intervals:
Null Hypothesis

• Perform 10-fold cross-validation of two models: M1 & M2

• Assume samples follow normal distribution

• Use two sample t-test (or Student’s t-test)

• Null Hypothesis: M1 & M2 are the same (means are equal)

• If we can reject null hypothesis, then 

• we conclude that the difference between M1 & M2 is 

statistically significant

• Chose model with lower error rate
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Model Selection: ROC Curves

• ROC (Receiver Operating 
Characteristics) curves: for visual 
comparison of classification models

• Originated from signal detection theory
• Shows the trade-off between the true 

positive rate and the false positive rate
• The area under the ROC curve is a 

measure of the accuracy of the model
• Rank the test tuples in decreasing 

order: the one that is most likely to 
belong to the positive class appears at 
the top of the list

• Area under the curve: the closer to the 
diagonal line (i.e., the closer the area is 
to 0.5), the less accurate is the model

 Vertical axis 
represents the true 
positive rate

 Horizontal axis rep. 
the false positive rate

 The plot also shows a 
diagonal line

 A model with perfect 
accuracy will have an 
area of 1.0



Plotting an ROC Curve

• True positive rate: 𝑇𝑃𝑅 = 𝑇𝑃/𝑃 (sensitivity)

• False positive rate: 𝐹𝑃𝑅 = 𝐹𝑃/𝑁 (1-specificity)

•Rank tuples according to how likely they will be 
a positive tuple

• Idea: when we include more tuples in, we are more 

likely to make mistakes, that is the trade-off!

• Nice property: not threshold (cut-off) need to be 

specified, only rank matters
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Example



Issues Affecting Model Selection

• Accuracy

• classifier accuracy: predicting class label

• Speed

• time to construct the model (training time)

• time to use the model (classification/prediction time)

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability

• understanding and insight provided by the model

• Other measures, e.g., goodness of rules, such as decision tree 
size or compactness of classification rules
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Summary

• Classification is a form of data analysis that extracts models

describing important data classes. 

• decision tree induction 

• Evaluation

• Evaluation metrics include: accuracy, sensitivity, specificity, precision, recall, F

measure, and Fß measure.

• k-fold cross-validation is recommended for accuracy estimation.

• Significance tests and ROC curves are useful for model selection.
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•Course project sign-up will be due this Sunday
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