
CS6220: DATA MINING TECHNIQUES

Instructor: Yizhou Sun
yzsun@ccs.neu.edu

March 18, 2013

Chapter 8&9: Classification: Part 4

mailto:sun22@illinois.edu

Chapter 8&9. Classification: Part 4

• Frequent Pattern-based Classification

• Ensemble Methods

• Other Topics

• Summary

2

Associative Classification

• Associative classification: Major steps

• Mine data to find strong associations between frequent patterns

(conjunctions of attribute-value pairs) and class labels

• Association rules are generated in the form of

P1 ^ p2 … ^ pl  “Aclass = C” (conf, sup)

• Organize the rules to form a rule-based classifier

• Why effective?

• It explores highly confident associations among multiple attributes and may

overcome some constraints introduced by decision-tree induction, which

considers only one attribute at a time

• Associative classification has been found to be often more accurate than

some traditional classification methods, such as C4.5

 3

General Framework for Associative
Classification

• Step 1:

• Mine frequent itemsets in the data, which are typically

attribute-value pairs

• E.g., age = youth

• Step 2:

• Analyze the frequent itemsets to generate association rules per

class

• Step 3:

• Organize the rules to form a rule-based classifier

4

5

Typical Associative Classification Methods

• CBA (Classification Based on Associations: Liu, Hsu & Ma, KDD’98)

• Mine possible association rules in the form of

• Cond-set (a set of attribute-value pairs)  class label

• Build classifier: Organize rules according to decreasing precedence based on

confidence and then support

• CMAR (Classification based on Multiple Association Rules: Li, Han, Pei, ICDM’01)

• Classification: Statistical analysis on multiple rules

• CPAR (Classification based on Predictive Association Rules: Yin & Han, SDM’03)

• Generation of predictive rules (FOIL-like analysis) but allow covered rules to

retain with reduced weight

• Prediction using best k rules

• High efficiency, accuracy similar to CMAR

Discriminative Frequent Pattern-Based
Classification

• H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative
Frequent Pattern Analysis for Effective Classification”, ICDE'07

• Use combined features instead of single features

• E.g., age = youth and credit = OK

• Accuracy issue

• Increase the discriminative power

• Increase the expressive power of the feature space

• Scalability issue

• It is computationally infeasible to generate all feature
combinations and filter them with an information gain
threshold

• Efficient method (DDPMine: FPtree pruning): H. Cheng, X.
Yan, J. Han, and P. S. Yu, "Direct Discriminative Pattern
Mining for Effective Classification", ICDE'08

 6

http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf

7

Discriminative Frequent Pattern-Based Classification

• H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative Frequent
Pattern Analysis for Effective Classification”, ICDE'07

• Accuracy issue

• Increase the discriminative power

• Increase the expressive power of the feature space

• Scalability issue

• It is computationally infeasible to generate all feature
combinations and filter them with an information gain
threshold

• Efficient method (DDPMine: FPtree pruning): H. Cheng, X. Yan, J.
Han, and P. S. Yu, "Direct Discriminative Pattern Mining for
Effective Classification", ICDE'08

http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf
http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf

8

Frequent Pattern vs. Single Feature

(a) Austral (c) Sonar (b) Cleve

Fig. 1. Information Gain vs. Pattern Length

The discriminative power of some frequent patterns is
higher than that of single features.

9

Empirical Results

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

InfoGain
IG_UpperBnd

Support

In
fo

rm
a
ti

o
n

 G
a
in

(a) Austral (c) Sonar (b) Breast

Fig. 2. Information Gain vs. Pattern Frequency

10

Feature Selection

• Given a set of frequent patterns, both non-discriminative and

redundant patterns exist, which can cause overfitting

• We want to single out the discriminative patterns and remove

redundant ones

• The notion of Maximal Marginal Relevance (MMR) is borrowed

• A document has high marginal relevance if it is both relevant

to the query and contains minimal marginal similarity to

previously selected documents

General Framework for Discriminative
Frequent Pattern-based Classification

• Step 1:

• Find the frequent patterns for the data set D, which are

considered as feature candidates

• Step 2:

• Select the best set of features by feature selection, and prepare

the transformed data set D’ with new features

• Step 3:

• Build classification models based on the transformed data set

11

12

Experimental Results

12

13

Scalability Tests

Chapter 8&9. Classification: Part 4

• Frequent Pattern-based classification

• Ensemble Methods

• Other Topics

• Summary

14

Ensemble Methods: Increasing the Accuracy

• Ensemble methods

• Use a combination of models to increase accuracy

• Combine a series of k learned models, M1, M2, …, Mk, with the

aim of creating an improved model M*

• Popular ensemble methods

• Bagging: averaging the prediction over a collection of classifiers

• Boosting: weighted vote with a collection of classifiers

15

Bagging: Boostrap Aggregation

• Analogy: Diagnosis based on multiple doctors’ majority vote

• Training

• Given a set D of d tuples, at each iteration i, a training set Di of d

tuples is sampled with replacement from D (i.e., bootstrap)

• A classifier model Mi is learned for each training set Di

• Classification: classify an unknown sample X

• Each classifier Mi returns its class prediction

• The bagged classifier M* counts the votes and assigns the class

with the most votes to X

• Prediction: can be applied to the prediction of continuous values
by taking the average value of each prediction for a given test
tuple

16

Performance of Bagging
• Accuracy

• Often significantly better than a single classifier derived from D

• For noise data: not considerably worse, more robust

• Proved improved accuracy in prediction

• Example
• Suppose we have 5 completely independent classifiers…

• If accuracy is 70% for each
• The final prediction is correct, if at least 3 classifiers make the correct

prediction

• 3 are correct: 5
3
× (.7^3)(.3^2)

• 4 are correct: 5
4
× (.7^4)(.3^1)

• 5 are correct: 5
5
× (.7^5)(.3^0)

• In all, 10 (.7^3)(.3^2)+5(.7^4)(.3)+(.7^5)
• 83.7% majority vote accuracy

• 101 Such classifiers
• 99.9% majority vote accuracy

17

Boosting

• Analogy: Consult several doctors, based on a combination of
weighted diagnoses—weight assigned based on the previous
diagnosis accuracy

• How boosting works?
• Weights are assigned to each training tuple

• A series of k classifiers is iteratively learned

• After a classifier Mt is learned, the weights are updated to allow
the subsequent classifier, Mt+1, to pay more attention to the
training tuples that were misclassified by Mt

• The final M* combines the votes of each individual classifier,
where the weight of each classifier's vote is a function of its
accuracy

• Boosting algorithm can be extended for numeric prediction
• Comparing with bagging: Boosting tends to have greater accuracy,

but it also risks overfitting the model to misclassified data

18

Adaboost (Freund and Schapire, 1997)

• Given a set of d class-labeled tuples, (X1, y1), …, (Xd, yd)

• Initially, all the weights of tuples are set the same (1/d)

• Generate k classifiers in k rounds. At round t,

• Tuples from D are sampled (with replacement) to form a
training set Dt of the same size based on its weight

• A classification model Mt is derived from Dt

• If a tuple is misclassified, its weight is increased, o.w. it is
decreased

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp −𝛼𝑡 if j is correctly classified

• 𝑤𝑡+1,𝑗 ∝ 𝑤𝑡,𝑗 × exp 𝛼𝑡 if j is incorrectly classified

19

𝛼𝑡: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 𝑡 , 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑒 𝑏𝑒𝑡𝑡𝑒𝑟

AdaBoost

• Error rate: err(Xj) is the misclassification error of
tuple Xj. Classifier Mt error rate (𝜖𝑡 = error(Mt)) is
the sum of the weights of the misclassified tuples:

• The weight of classifier Mt’s vote is

𝛼𝑡 =
1

2
log
1 − 𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)

𝑒𝑟𝑟𝑜𝑟(𝑀𝑡)

• Final classifier M*

𝑀∗ 𝑥 = 𝑠𝑖𝑔𝑛(𝛼𝑡𝑀𝑡(𝑥)

𝑡

)

20

 
d

j
tjtjt errwMerror)()(X

AdaBoost Example

• From “A Tutorial on Boosting”

• By Yoav Freund and Rob Schapire

• Note they use ℎ𝑡 to represent classifier instead of 𝑀𝑡

21

Round 1

22

Round 2

23

Round 3

24

Final Model

25

𝑀∗

Random Forest (Breiman 2001)

• Random Forest:

• Each classifier in the ensemble is a decision tree classifier and is generated

using a random selection of attributes at each node to determine the split

• During classification, each tree votes and the most popular class is returned

• Two Methods to construct Random Forest:

• Forest-RI (random input selection): Randomly select, at each node, F

attributes as candidates for the split at the node. The CART methodology is

used to grow the trees to maximum size

• Forest-RC (random linear combinations): Creates new attributes (or features)

that are a linear combination of the existing attributes (reduces the correlation

between individual classifiers)

• Comparable in accuracy to Adaboost, but more robust to errors and outliers

• Insensitive to the number of attributes selected for consideration at each
split, and faster than bagging or boosting

26

Chapter 8&9. Classification: Part 4

• Frequent Pattern-based classification

• Ensemble Methods

• Other Topics

• Summary

27

Classification of Class-Imbalanced Data Sets

• Class-imbalance problem: Rare positive example but numerous
negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

• Traditional methods assume a balanced distribution of classes and
equal error costs: not suitable for class-imbalanced data

• Typical methods for imbalance data in 2-class classification:

• Oversampling: re-sampling of data from positive class

• Under-sampling: randomly eliminate tuples from negative class

• Threshold-moving: moves the decision threshold, t, so that the
rare class tuples are easier to classify, and hence, less chance of
costly false negative errors

• Ensemble techniques: Ensemble multiple classifiers introduced
above

• Still difficult for class imbalance problem on multiclass tasks

28

Multiclass Classification

• Classification involving more than two classes (i.e., > 2 Classes)

• Method 1. One-vs.-all (OVA): Learn a classifier one at a time

• Given m classes, train m classifiers: one for each class

• Classifier j: treat tuples in class j as positive & all others as negative

• To classify a tuple X, the set of classifiers vote as an ensemble

• Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes

• Given m classes, construct m(m-1)/2 binary classifiers

• A classifier is trained using tuples of the two classes

• To classify a tuple X, each classifier votes. X is assigned to the class with

maximal vote

• Comparison

• All-vs.-all tends to be superior to one-vs.-all

• Problem: Binary classifier is sensitive to errors, and errors affect vote count

29

Semi-Supervised Classification

• Semi-supervised: Uses labeled and unlabeled data to build a classifier

• Self-training:

• Build a classifier using the labeled data

• Use it to label the unlabeled data, and those with the most confident label

prediction are added to the set of labeled data

• Repeat the above process

• Adv: easy to understand; disadv: may reinforce errors

• Co-training: Use two or more classifiers to teach each other

• Each learner uses a mutually independent set of features of each tuple to train a

good classifier, say f1

• Then f1 and f2 are used to predict the class label for unlabeled data X

• Teach each other: The tuple having the most confident prediction from f1 is

added to the set of labeled data for f2, & vice versa

• Other methods, e.g., joint probability distribution of features and labels

31

+

̶

unlabeled labeled

Active Learning

• Class labels are expensive to obtain

• Active learner: query human (oracle) for labels

• Pool-based approach: Uses a pool of unlabeled data

• L: a small subset of D is labeled, U: a pool of unlabeled data in D

• Use a query function to carefully select one or more tuples from U and
request labels from an oracle (a human annotator)

• The newly labeled samples are added to L, and learn a model

• Goal: Achieve high accuracy using as few labeled data as possible

• Evaluated using learning curves: Accuracy as a function of the number of
instances queried (# of tuples to be queried should be small)

• Research issue: How to choose the data tuples to be queried?

• Uncertainty sampling: choose the least certain ones

• Reduce version space, the subset of hypotheses consistent w. the training
data

• Reduce expected entropy over U: Find the greatest reduction in the total
number of incorrect predictions

32

Transfer Learning: Conceptual Framework

• Transfer learning: Extract knowledge from one or more source tasks and apply

the knowledge to a target task

• Traditional learning: Build a new classifier for each new task

• Transfer learning: Build new classifier by applying existing knowledge learned

from source tasks

33

Traditional Learning Framework Transfer Learning Framework

Transfer Learning: Methods and Applications

• Applications: Especially useful when data is outdated or distribution changes, e.g.,
Web document classification, e-mail spam filtering

• Instance-based transfer learning: Reweight some of the data from source tasks
and use it to learn the target task

• TrAdaBoost (Transfer AdaBoost)

• Assume source and target data each described by the same set of attributes
(features) & class labels, but rather diff. distributions

• Require only labeling a small amount of target data

• Use source data in training: When a source tuple is misclassified, reduce the
weight of such tupels so that they will have less effect on the subsequent classifier

• Research issues

• Negative transfer: When it performs worse than no transfer at all

• Heterogeneous transfer learning: Transfer knowledge from different feature
space or multiple source domains

• Large-scale transfer learning

34

Chapter 8&9. Classification: Part 4

• Frequent Pattern-based classification

• Ensemble Methods

• Other Topics

• Summary

35

Summary

• Frequent Pattern-based classification

• Associative classification

• Discriminative frequent pattern-based classification

• Ensemble Methods

• Bagging; Boosting; AdaBoost

• Other Topics

• Class imbalanced data; multi-class classification; semi-

supervised learning; active learning; transfer learning

36

