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Chapter 10. Cluster Analysis: Basic Concepts
and Methods

- Beyond K-Means @

K-means
EM-algorithm

Kernel K-means

«  Clustering Graphs and Network Data

*  Summary



Recall K-Means

- Objective function
] =251 Y= 11X — ¢l1?

» "T'otal within-cluster variance

- Re-arrange the objective function
— \'k 2
] = Zj:1ZiWij||xi — ¢
- Where w;; = 1,if x; belongs to cluster j;w;; = 0, otherwise
- Looking for:
* The best assignment w;;

* The best center Cj



Solution of K-Means

* Iterations
- Step 1: Fix centers ¢;, find assignment w;; that mimimizes J

- =>wy; = 1,if ||x; — ¢;||* is the smallest

- Step 2: Fix assignment w;j, find centers that mmimmize |

« => first derivative of ] =0

.=>6_C]_ 22 1ZiWij(xi_Cj)=0
. =>c. ZiWijxi
T Ewy

* Note }}; w;; is the total number of objects in cluster j
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Limitations of K-Means

- K-means has problems when clusters are of differing
* Sizes
« Densities

- Non-Spherical Shapes
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Limitations of K-Means: Different

Original Points
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Limitations of K-Means: Non-Spherical
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Fuzzy Set and Fuzzy Cluster

» Clustering methods discussed so far
- Every data object 1s assigned to exactly one cluster

- Some applications may need for fuzzy or soft cluster
assignment

- Ex. An e-game could belong to both entertainment
and software

- Methods: fuzzy clusters and probabilistic model-based
clusters

* Fuzzy cluster: A fuzzysetS: F.: X > [0, 1] (value
between 0 and 1)

14



Probabilistic Model-Based Clustering

- Cluster analysis is to find hidden categories.

- A hidden category (i.e., probabilistic cluster) is a distribution over the data
space, which can be mathematically represented using a probability density
function (or distribution function).

Prob* Consumer line Professional line

= EX. categories for digital cameras sold
= consumer line vs. professional line
= density functions f, f, for C;, C,

1
I
|
1 .
>
1000 Price

= oObtained by probabilistic clustering

= A mixture model assumes that a set of observed objects is a mixture
of instances from multiple probabilistic clusters, and conceptually
each observed object is generated independently

= Our task: infer a set of k probabillistic clusters that is mostly likely to
generate D using the above data generation process
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Mixture Model-Based Clustering

* A set C of k probabilistic clusters C,, ...,C, with probability density functions f,,
.., fio respectively, and their probabilities w,, ..., w,.

- Probability of an object o generated by cluster C; is P(o|C;) = u,J fi(o)
- Probability of o generated by the set of cluster Cis P(o|C) = Z“’ffJ

= Since objects are assumed to be generated
independently, for a data set D = {o,, ..., 0.}, we have,

n k
P(D|C) = HP03|C szjfj(ai)

i=14=1

= Task: Find a set C of k probabilistic clusters s.t. P(D|C) is maximized
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The EM (Expectation Maximization)
Algorithm

- The (EM) algorithm: A framework to approach maximum likelihood
or maximum a posteriori estimates of parameters in statistical
models.

- E~step assigns objects to clusters according to the current fuzzy
clustering or parameters of probabilistic clusters

- wi; = p(z; = j|6],x;) < p(x:|CF, 6 )p(C))
« M-step finds the new clustering or parameters that minimize the sum
of squared error (SSE) or the expected likelihood
* Under uni-variant normal distribution assumptions:

t
41 _ SiWixi | o _ iV |x‘ ||

CH T TRWE S T T ;p(GF) o< Zywy;

ivij

- More about mixture model and EM algorithms:
http://www.stat.cmmu.edu/~cshalizi/350/lectures/29/lectu
re-29.pdf
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K-Means: Special Case of Gaussian

Mixture Model

- When each Gaussian component with covariance
matrix g1

« Soft K-means

-Wheno? - 0

* Soft assignment becomes hard assignment
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Advantages and Disadvantages of
Mixture Models

- Strength
« Mixture models are more general than partiioning
¢ Clusters can be characterized by a small number of parameters
 The results may satisty the statistical assumptions of the generative models
- Weakness
- Converge to local optimal (overcome: run multi-imes w. random
mitialization)
- Computationally expensive 1f the number of distributions 1s large, or the
data set contains very few observed data points
- Need large data sets

« Hard to estimate the number of clusters
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Kernel K-Means

- How to cluster the following data?

- A non-linear map: ¢p: R" - F
- Map a data point into a higher/infinite dimensional space

X = ¢p(x)

» Dot product matrix K;;
- Kij =< ¢d(xp), d(x;) >
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Solution of Kernel K-Means

- Objective function under new feature space:
J =X Tiwillo () — |2
- Algorithm
» By fixing assignment w;;
© ¢ = X wij P(x;)/ X wij
- In the assignment step, assign the data points to the closest

center
2 d(xir) ’
ir WirjPXxis .
’ d(xi'cj) = H¢(xl) - >, ‘J/Vi,j ‘ —
g wir b)) Xy Zywyr jwijo(xyr)-d(xr)
¢(xi) . (p(Xl) —2 Zil Wi'j + (Zil Wilj)/\2

Do not really need to know ¢ (x), but only K;;
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Advatanges and Disadvantages of
Kernel K-Means

- Advantages

* Algorithm 1s able to 1dentify the non-linear structures.

- Disadvantages

- Number of cluster centers need to be predefined.

* Algorithm 1s complex 1n nature and time complexity 1s large.

- References

« Kernel k-means and Spectral Clustering by Max Welling.

« Kernel k-means, Spectral Clustering and Normalized Cut by
Indemt S. Dhillon, Yuqiang Guan and Brian Kulis.

- An Introduction to kernel methods by Colin Campbell.
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and Methods

Beyond K-Means

K-means
EM-algorithm for Mixture Models

Kernel K-means

Clustering Graphs and Network Data @

Summary
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Clustering Graphs and Network Data

- Applications

 Bi-partite graphs, e.g., customers and products, authors and
conferences

- Web search engines, e.g., click through graphs and Web
graphs

- Social networks, friendship/coauthor graphs

Clustering books about politics [Newman, 2006]
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Algorithms

- Graph clustering methods
 Density-based clustering: SCAN (Xu et al., KDID’2007)

 Spectral clustering
- Modularity-based approach
 Probabilistic approach

- Nonnegative matrix factorization
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SCAN: Density-Based Clustering of
Networks

- How many clusters? 2

« What size should they be?

4
_—

R
/

- What is the best partitioning? /

\

 Should some points be segregated? |® . / - .

An Example Network

13

= Application: Given simply information of who associates with whom,
could one identify clusters of individuals with common interests or

special relationships (families, cliques, terrorist cells)?
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A Social Network Model

- Cliques, hubs and outliers

- Individuals in a tight social group, or clique, know many of the same
people, regardless of the size of the group

« Individuals who are hubs know many people in different groups but belong
to no single group. Politicians, for example bridge multiple groups

- Individuals who are outliers reside at the margins of society. Hermits, for
example, know few people and belong to no group

- The Neighborhood of a Vertex

= Define I'(v) as the immediate
neighborhood of a vertex (i.e. the set
of people that an individual knows )
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Structure Similarity

- The desired features tend to be captured by a measure we
call Structural Similarity

IT(vV)NT(W)]|
JTW) [ T(w)]

o(V,W) =

- Structural similarity is large for members of a cligue and sma
for hubs and outliers
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Structural Connectivity [1]

- &-Neighborhood: N (v)={wel(v)|o(v,w)=¢&}
- Core: CORE, ,(v) <N, (V) [z 1
» Direct structure reachable:

DIrRECH, ,(v,w) < CORE, , (V) Awe N, (v)

- Structure reachable: transitive closure of direct structure
reachability

- Structure connected:

CONNECT, ,(v,w) < 3JueV :RECH,  (u,v)ARECH,  (u,w)

[1] M. Ester, H. P. Kriegel, J. Sander, & X. Xu (KDD'96) “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
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Structure-Connected Clusters

» Structure-connected cluster C

« Connectivity: vv,we C:CONNECT, ,(v,w)

* Maximality:  vv,weV:veCAREACH, ,(v,w)=weC

* Hubs:

- Not belong to any cluster

- Bridge to many clusters

» Qutliers:

- Not belong to any cluster

« Connect to less clusters

outlier
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Running Time

« Running time = O(| E|)
- For sparse networks = O(| V])

3500
3000

——This algorithm /
2500 ,

——Fast Modularity [2] /
2000 7
1500

1000 /

Running Time (Sec.)

500
0 +————————s --=a*—~r-*7"‘“”7#’f/-====r-7—-*

Num. of Vertices
[2] A. Clauset, M. E. J. Newman, & C. Moore, Phys. Rev. E 70, 066111 (2004).




Spectral Clustering

- Reference: ICDM’09 Tutorial by Chris Ding
- Example:

« Clustering supreme court justices according to their voting
behavior

Number of times (%) two Justices voted in agreement

Ste Bre Gin Som O'Co lKen Heh Seq 1T'ho
Stevens (2 GG (3 33 30 25 14 15
Brever (2 T2 71 55 i 13 25 24
Ginsberg, 66 T2 TH 47 49 43 28 26
Souter (3 71 TS — 55 50 44 31 29
O 'Connor J3 HH 47 Hh G7 71 %! o4
hennedy 36 47 49 50 67 — 7T h8 59
Rehnguist 25 43 43 44 71 TT - G it
Scalia 25 25 al 54 ite §{§! 79
Thomas L5 24 20 29 54 59 68 70 —

Table 1: From the voting record of Justices 1995 Term — 2004 Term, the number of times two

justices voted in agreement (in percentage). (Data source: from July 2, 2005 New York Times.
Originally from Legal Affairs; Harvard Law Review)



Example: Continue

~ __ f i f 4
C =q2q95 + 9393
g3 O > 5o B
Q'Conner § E g 5 g 'g § © é
%) L v c 3 U § § 8§ 2
g B &8 6 & © £ & & E
% gKennady
i “— Stevens - =i - EEEE= =
S i Breyer |l H ® B = - u|[H B
()}
5 Gnsberg |l @ I B H BN = =
S "
O Souer Souter |}l W Bl W W W H N B
CGinsbarg o'Conrer ([l = I m . EEEN
O,
Stevens Kennedy ([Jll = I W . H Emm
EST"UIMS Rehnquist | = Il W | = W .
cala
Scalia |1 i m m | = ..
- i g | |
2 liberal = » conservative mes | Ml m ml =

« Three groups in the Supreme Court:

- Left leaning group, center-right group, right leaning group.

46



Spectral Graph Partition

* Min-Cut

- Minimize the # of cut of edges
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Objective Function

2-way Spectral Graph Partitioning

B | o 1 ified
Partition membership indicator: ¢; = 1 ifich
e ] 2 .
J = CutSize = ZZU wilg; — ;]
1 2, 2 _ | )
- Z ijj Wff[qf + q4; — 2(}5(];] B EZf,j qf[dfbff Wy ]qf
==q (D-Tq

Relax indicators ¢g; from discrete values to continuous values,

the solution for min J(g) 1s given by the eigenvectors of

([) — W)q — l(] (Fiedler, 1973, 1975)

(Pothen. Simon, Liou, 1990) 48



Minimum Cut with Constraints

minimize cutsize without explicit size constraints

But where to cut ?

Need to balance sizes
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New Objective Functions

S(AB)=> "> w,

e Ratio Cut (Hangen & Kahng, 1992) iy
. s(4,B) s(4,B)
Jo. (A,B) = +
Reut! ) ‘A| |B‘
e Normalized Cut (shi & Malik, 2000) d,=>d,
Ju (AB) - s(4.B) | s(4.B) =
Newt \<*» dA dg

s(4,B) . s(4.B)
s(4,4)+s(A.B) s(B.B)+s(A.B)
e Min-Max-Cut (Ding et al, 2001)

s(A4,B) N s(4,B)
s(4,4) s(B,B)

Jvpc(4A,B) =

50



Other References

- A Tutorial on Spectral Clustering by U. Luxburg
http://www.kyb.mpg.de/fileadmin/user upload/files/
publications/attachments/Luxburg07 tutorial 4488%
5B0%5D.pdf
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Summary

- Generalizing K-Means
« Mixture Model; EM-Algorithm; Kernel K-Means

» Clustering Graph and Networked Data
« SCAN: density-based algorithm

- Spectral clustering
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Announcement

- HW #3 due tomorrow

- Course project due next week
- Submut final report, data, code (with readme), evaluation forms

- Make appoimntment with me to explain your project
- | will ask questions according to your report

* Final Exam
- 4/22, 3 hours 1n class, cover the whole semester with different

weights
* You can bring two A4 cheating sheets, one for content before
midterm, and the other for content after midterm

* Interested in research?
« My research area: Information/social network mining
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