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• Mining Multi-Level Association 
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Mining Multiple-Level Association Rules 

• Items often form hierarchies 

• Flexible support settings  

• Items at the lower level are expected to have lower support 

• Exploration of shared multi-level mining (Agrawal & 
Srikant@VLB’95, Han & Fu@VLDB’95) 
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uniform support 

Milk 

[support = 10%] 

2% Milk  

[support = 6%] 

Skim Milk  

[support = 4%] 

Level 1 

min_sup = 5% 

Level 2 

min_sup = 5% 

Level 1 

min_sup = 5% 

Level 2 

min_sup = 3% 

reduced support 



Multi-level Association: Flexible Support and 
Redundancy filtering 

• Flexible min-support thresholds: Some items are more valuable but less 

frequent 

• Use non-uniform, group-based min-support 

• E.g., {diamond, watch, camera}: 0.05%; {bread, milk}: 5%; … 

• Redundancy Filtering: Some rules may be redundant due to “ancestor” 

relationships between items 

• milk  wheat bread  [support = 8%, confidence = 70%] 

• 2% milk  wheat bread [support = 2%, confidence = 72%] 

The first rule is an ancestor of the second rule 

• A rule is redundant if its support is close to the “expected” value, based on 

the rule’s ancestor 
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Mining Multi-Dimensional Association 

• Single-dimensional rules: 

buys(X, “milk”)  buys(X, “bread”) 

• Multi-dimensional rules:  2 dimensions or predicates 

• Inter-dimension assoc. rules (no repeated predicates) 

age(X,”19-25”)  occupation(X,“student”)  buys(X, “coke”) 

• hybrid-dimension assoc. rules (repeated predicates) 

age(X,”19-25”)   buys(X, “popcorn”)  buys(X, “coke”) 

• Categorical Attributes: finite number of possible values, no 

ordering among values 

• Quantitative Attributes: Numeric, implicit ordering among values 
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Mining Quantitative Associations 

Techniques can be categorized by how numerical attributes, such 
as age or salary are treated 

1. Static discretization based on predefined concept hierarchies 

(data cube methods) 

2. Dynamic discretization based on data distribution 

(quantitative rules, e.g., Agrawal & Srikant@SIGMOD96)  

3. Clustering: Distance-based association (e.g., Yang & 

Miller@SIGMOD97)  

• One dimensional clustering then association 

4. Statistical test: 

Sex = female   =>   Wage: mean=$7/hr (overall mean = $9) 
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Negative and Rare Patterns 

• Rare patterns: Very low support but interesting 

• E.g., buying Rolex watches 

• Mining: Setting individual-based or special group-based support 

threshold for valuable items 

• Negative patterns 

• Since it is unlikely that one buys Ford Expedition (an SUV car) 

and Toyota Prius (a hybrid car) together, Ford Expedition and 

Toyota Prius are likely negatively correlated patterns 

• Negatively correlated patterns that are infrequent tend to be 

more interesting than those that are frequent 
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Defining Negative Correlated Patterns (I) 

• support-based definition 

• If itemsets X and Y are both frequent but rarely occur together, i.e.,  

sup(X U Y) < sup (X) * sup(Y) 

• Then X and Y are negatively correlated 

• Problem: A sewing store sold 100 needle package A and 100 needle package B, 

only one transaction containing both A and B. 

• When there are in total 200 transactions, we have  

s(A U B) = 0.005, s(A) * s(B) = 0.25, s(A U B) < s(A) * s(B) 

• When there are 105 transactions, we have 

s(A U B) = 1/105, s(A) * s(B) = 1/103 * 1/103, s(A U B) > s(A) * s(B) 

• Where is the problem? —Null transactions, i.e., the support-based definition 

is not null-invariant! 
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Defining Negative Correlated Patterns (II) 

• Kulzynski measure-based definition 

• If itemsets X and Y are frequent, but (P(X|Y) + P(Y|X))/2 < є, where є is a negative 

pattern threshold, then X and Y are negatively correlated. 

• Ex. For the same needle package problem, when no matter there 

are 200 or 105 transactions, if є = 0.02, we have 

(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < є 
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Constraint-based (Query-Directed) Mining 

• Finding all the patterns in a database autonomously? — unrealistic! 

• The patterns could be too many but not focused! 

• Data mining should be an interactive process  

• User directs what to be mined using a data mining query language (or a 

graphical user interface) 

• Constraint-based mining 

• User flexibility: provides constraints on what to be mined 

• Optimization: explores such constraints for efficient mining — constraint-

based mining: constraint-pushing, similar to push selection first in DB query 

processing 

• Note: still find all the answers satisfying constraints, not finding some answers 

in “heuristic search” 
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Constraints in Data Mining 

• Knowledge type constraint:  

• classification, association, etc. 

• Data constraint — using SQL-like queries  

• find product pairs sold together in stores in Chicago this year 

• Dimension/level constraint 

• in relevance to region, price, brand, customer category 

• Interestingness constraint 

• strong rules: min_support  3%, min_confidence   60% 

• Rule (or pattern) constraint 

• small sales (price < $10) triggers big sales (sum > $200) 
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Meta-Rule Guided Mining 

• Meta-rule can be in the rule form with partially instantiated 
predicates and constants  

P1(X, Y) ^ P2(X, W) => buys(X, “iPad”) 

• The resulting rule derived can be 

age(X, “15-25”) ^ profession(X, “student”) => buys(X, “iPad”) 

• In general, it can be in the form of  

P1 ^ P2 ^ … ^ Pl => Q1 ^ Q2 ^ … ^ Qr  
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Method to Find Rules Matching 
Metarules 

• Find frequent (l+r) predicates (based on min-support 
threshold) 

• Calculate the support for P1 ^ P2 ^ … ^ Pl, to calculate 
the confidence 

• Push constraints deeply when possible into the mining 
process (see the remaining discussions on constraint-
push techniques) 
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Constraint-Based Frequent Pattern Mining 

• Pattern space pruning constraints 

• Anti-monotonic: If constraint c is violated, its further mining can be 

terminated 

• Monotonic: If c is satisfied, no need to check c again 

• Succinct: c must be satisfied, so one can start with the data sets satisfying c 

• Convertible: c is not monotonic nor anti-monotonic, but it can be converted 

into it if items in the transaction can be properly ordered 

• Data space pruning constraint 

• Data succinct: Data space can be pruned at the initial pattern mining process 

• Data anti-monotonic: If a transaction t does not satisfy c, t can be pruned 

from its further mining 
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Pattern Space Pruning with Anti-Monotonicity Constraints 

• A constraint C is anti-monotone if the super 

pattern satisfies C, all of its sub-patterns do so 

too 

• In other words, anti-monotonicity: If an 

itemset S violates the constraint, so does any 

of its superset  

• Ex. 1. sum(S.price)  v  is anti-monotone 

• Ex. 2. range(S.profit)  15 is anti-monotone 

• Itemset ab violates C 

• So does every superset of ab 

• Ex. 3. sum(S.Price)  v  is not anti-monotone 

• Ex. 4. support count  is anti-monotone: core 

property used in Apriori 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 18 



Apriori + Constraint  

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:  

Sum{S.price} < 5 
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Pattern Space Pruning with Monotonicity Constraints 

• A constraint C is monotone if the pattern 

satisfies C, we do not need to check C in 

subsequent mining 

• Alternatively, monotonicity: If an itemset S 

satisfies the constraint, so does any of its 

superset  

• Ex. 1. sum(S.Price)  v  is monotone 

• Ex. 2. min(S.Price)  v  is monotone 

• Ex. 3. C: range(S.profit)  15 

• Itemset ab satisfies C 

• So does every superset of ab 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 20 



Pattern Space Pruning with Succinctness 

• Succinctness: 

• Given A1, the set of items satisfying a succinctness constraint 

C, then any set S satisfying C is based on A1  

• The set of items satisfying a succinctness constraint C  can be derived 

• Idea: Without looking at the transaction database, whether an 

itemset S satisfies constraint C can be determined based on 

the selection of items   

• min(S.Price)  v  is succinct 

• sum(S.Price)  v  is not succinct 

• Optimization: If C is succinct, C is pre-counting pushable 
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Constrained Apriori : Push a Succinct Constraint Deep  

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D 

C1 

L1 

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2 

C2 C2 

Scan D 

C3 L3 itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint:  

min{S.price } <= 1 

not immediately  
to be used 
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Constrained FP-Growth: Push a Succinct Constraint Deep  

Constraint:  

min{S.price } <= 1 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

TID Items

100 1 3

200 2 3 5

300 1 2 3 5

400 2 5

Remove  
infrequent 
length 1 

FP-Tree 

TID Items

100 3 4

300 2 3 5

1-Projected DB 

No Need to project on 2, 3, or 5 
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Convertible Constraints: Ordering Data in Transactions 

• Convert tough constraints into anti-

monotone or monotone by properly 

ordering items 

• Examine C: avg(S.profit)  25 

• Order items in value-descending 

order 

• <a, f, g, d, b, h, c, e> 

• If an itemset afb violates C 

• So does afbh, afb* 

• It becomes anti-monotone! 

TID Transaction 

10 a, b, c, d, f 

20 b, c, d, f, g, h 

30 a, c, d, e, f 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 
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Strongly Convertible Constraints 

• avg(X)  25 is convertible anti-monotone w.r.t. item 
value descending order R: <a, f, g, d, b, h, c, e> 

• If an itemset af violates a constraint C, so does every 
itemset with af as prefix, such as afd  

• avg(X)  25 is convertible monotone w.r.t. item value 
ascending order R-1: <e, c, h, b, d, g, f, a> 

• If an itemset d satisfies a constraint C, so does 
itemsets df and dfa, which having d as a prefix 

• Thus, avg(X)  25 is strongly convertible 

Item Profit 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 
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Data Space Pruning with Data-Succinct 

• Constrains are data-succinct if they can be used at the 
beginning of a pattern mining process to prune data 

• E.g., x ∈ 𝑆, digital camera must be contained in the pattern 
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Constrained FP-Growth: Push a Data Succinct 

Constraint Deep  

Constraint:  

min{S.price } <= 1 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

TID Items

100 1 3

300 1 3 
FP-Tree 

Single branch, we are done 

Remove from data 
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Data Space Pruning with Data Anti-monotonicity 

• A constraint c is data anti-monotone if for a 

pattern p cannot satisfy a transaction t under c, 

p’s superset cannot satisfy t under c either 

• The key for data anti-monotone is recursive data 

reduction 

• Ex. 1. sum(S.Price)  v  is data anti-monotone 

• Ex. 2. min(S.Price)  v  is data anti-monotone 

• Ex. 3. C: range(S.profit)  25 is data anti-

monotone 

• Itemset {b, c}’s projected DB:   

• T10’: {d, f, h},  T20’: {d, f, g, h}, T30’: {d, f, g} 

• since C cannot satisfy T10’, T10’ can be pruned 

TID Transaction 

10 a, b, c, d, f, h 

20 b, c, d, f, g, h 

30 b, c, d, f, g 

40 c, e, f, g 

TDB (min_sup=2) 

Item Profit 

a 40 

b 0 

c -20 

d -15 

e -30 

f -10 

g 20 

h -5 28 



Constrained FP-Growth: Push a Data Anti-
monotonic Constraint Deep 

Constraint:  

range{S.price } > 25 

min_sup >= 2 

FP-Tree 

TID Transaction 

10 a, c, d, f, h 

20 c, d, f, g, h 

30 c, d, f, g 

B-Projected DB 

B 
FP-Tree 

TID Transaction 

10 a, b, c, d, f, h 

20 b, c, d, f, g, h 

30 b, c, d, f, g 

40 a, c, e, f, g 

TID Transaction 

10 a, b, c, d, f, h 

20 b, c, d, f, g, h 

30 b, c, d, f, g 

40 a, c, e, f, g 

Item Profit 

a 40 

b 0 

c -20 

d -15 

e -30 

f -10 

g 20 

h -5 

Recursive 
Data  

Pruning 

Single branch: 

bcdfg: 2 

29 



Constraint-Based Mining — A General Picture 

Constraint Anti-monotone Monotone Succinct 

v  S no yes yes 

S  V no yes yes 

S  V yes no yes 

min(S)  v no yes yes 

min(S)  v yes no yes 

max(S)  v yes no yes 

max(S)  v no yes yes 

count(S)  v yes  no weakly 

count(S)  v no yes weakly 

sum(S)  v ( a    S, a  0 ) yes no no 

sum(S)  v ( a    S, a  0 ) no yes no 

range(S)  v yes no no 

range(S)  v no yes no 

avg(S)  v,   { ,  ,   } convertible convertible no 

support(S)     yes no no 

support(S)      no yes no 
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What Constraints Are Convertible? 

Constraint 
Convertible anti-

monotone 
Convertible 
monotone 

Strongly 
convertible 

avg(S)  ,  v Yes Yes Yes 

median(S)  ,  v Yes Yes Yes 

sum(S)  v (items could be of any value, 
v  0) 

Yes No No 

sum(S)  v (items could be of any value, 
v  0) 

No Yes No 

sum(S)  v (items could be of any value, 
v  0) 

No Yes No 

sum(S)  v (items could be of any value, 
v  0) 

Yes No No 

…… 

31 

• E.g., Sum(X)  -20, where x∈ 𝑋 can be any value? 
• Ascending order: <-10, -9, -8, -7, 8, 10>, not monotone, not anti-

monotone  
• Descending order: <10, 8, -7, -8, -9, -10>, not monotone,  anti-

monotone 
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Mining Colossal Frequent Patterns 

• We have many algorithms, but can we mine large (i.e., colossal) 

patterns? ― such as just size around 50 to 100?  Unfortunately, not! 

• Why not? ― the curse of “downward closure” of frequent patterns 

• The Apriori property 

• Any sub-pattern of a frequent pattern is frequent. 

• Example.  If (a1, a2, …, a100) is frequent, then a1, a2, …, a100, (a1, a2), 

(a1, a3), …, (a1, a100), (a1, a2, a3), … are all frequent!  There are 

about 2100 such frequent itemsets!  

• No matter using breadth-first search (e.g., Apriori) or depth-first 

search (FPgrowth), we have to examine so many patterns 

• Thus the Apriori property leads to explosion! 

 

33 



Closed/maximal patterns may 

partially alleviate the problem but not 

really solve it: We often need to mine 

scattered large patterns! 

Let the minimum support threshold 

σ= 20 

There are        frequent patterns of 

size 20 

Each is closed and maximal  

# patterns = 

 

The size of the answer set is 

exponential to n 

Colossal Patterns: A Motivating Example 

T1 = 1 2 3 4 ….. 39 40 
T2 = 1 2 3 4 ….. 39 40 
:              . 
:                  . 
:                       . 
:                            . 
T40=1 2 3 4 ….. 39 40 
 









20

40

T1 = 2 3 4 ….. 39 40 

T2 = 1 3 4 ….. 39 40 

:             . 

:                 . 

:                      . 

:                           . 

T40=1 2 3 4 ……  39  

 

nn

n n2
/2

2/










Then delete the items on the diagonal 

Let’s make a set of 40 transactions 
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Let the min-support threshold σ= 20 

Then there are         closed/maximal 

frequent patterns of size 20 

However, there is only one with size 

greater than 20, (i.e., colossal): 

α= {41,42,…,79} of size 39 

Alas, A Show of Colossal Pattern Mining! 










20

40T1 = 2 3 4 …..  39 40 

T2 = 1 3 4 …..  39 40 

:             . 

:                 . 

:                      . 

:                           . 

T40=1 2 3 4 ……   39  

 T41= 41 42 43 ….. 79  

T42= 41 42 43 ….. 79  

:             . 

:                 . 

T60= 41 42 43  …  79  

 

The existing fastest mining algorithms 

(e.g., FPClose, LCM) fail to complete 

running 
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Colossal Pattern Set: Small but Interesting 

• It is often the case that only 

a small number of patterns 

are colossal, i.e., of large 

size 

 

• Colossal patterns are usually 

attached with greater 

importance than those of 

small pattern sizes 
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Mining Colossal Patterns: Motivation and Philosophy 

• Motivation: Many real-world tasks need mining colossal patterns 

• Micro-array analysis in bioinformatics (when support is low) 

• Biological sequence patterns 

• Biological/sociological/information graph pattern mining 

• No hope for completeness 

• If the mining of mid-sized patterns is explosive in size, there is no hope to 
find colossal patterns efficiently by insisting “complete set” mining 
philosophy 

• Jumping out of the swamp of the mid-sized results 

• What we may develop is a philosophy that may jump out of the swamp of 
mid-sized results that are explosive in size and jump to reach colossal 
patterns 

• Striving for mining almost complete colossal patterns 

• The key is to develop a mechanism that may quickly reach colossal patterns 
and discover most of them 

37 



Methodology of Pattern-Fusion Strategy 

• Pattern-Fusion traverses the tree in a bounded-breadth way 

• Always pushes down a frontier of a bounded-size candidate pool  

• Only a fixed number of patterns in the current candidate pool will 

be used as the starting nodes to go down in the pattern tree ― 

thus avoids the exponential search space 

• Pattern-Fusion identifies “shortcuts” whenever possible 

• Pattern growth is not performed by single-item addition but by 

leaps and bounded: agglomeration of multiple patterns in the pool 

• These shortcuts will direct the search down the tree much more 

rapidly towards the colossal patterns 
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Observation: Colossal Patterns and Core Patterns 

A colossal pattern α 
D 

Dα 

α1 

Transaction Database D 

Dα1 

Dα2 

α2 

α 

αk 

Dαk 

Subpatterns α1 to αk cluster tightly around the colossal pattern α by 

sharing a similar support.  We call such subpatterns core patterns of α 

39 



Robustness of Colossal Patterns 

• Core Patterns 

    Intuitively, for a frequent pattern α, a subpattern β is a τ-core pattern 

of α if β shares a similar support set with α, i.e.,  

 

 

where τ is called the core ratio 

• Robustness of Colossal Patterns 

    A colossal pattern is robust in the sense that it tends to have much 

more core patterns than small patterns 




 
||

||

D

D
10 
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Example: Core Patterns 

• A colossal pattern has far more core patterns than a small-sized pattern 

• A colossal pattern has far more core descendants of a smaller size c 

• A random draw from a complete set of pattern of size c would more likely to pick 
a core descendant of a colossal pattern 

• A colossal pattern can be generated by merging a set of core patterns 

Transaction (# of Ts) Core Patterns (τ = 0.5) 

(abe) (100) (abe), (ab), (be), (ae), (e) 

(bcf) (100) (bcf), (bc), (bf) 

(acf) (100) (acf), (ac), (af) 

(abcef) (100) (ab), (ac), (af), (ae), (bc), (bf), (be) (ce), (fe), (e), 
(abc), (abf), (abe), (ace), (acf), (afe), (bcf), (bce), 
(bfe), (cfe), (abcf), (abce), (bcfe), (acfe), (abfe), (abcef) 

41 



Colossal Patterns Correspond to Dense Balls 

• Due to their robustness, colossal 

patterns correspond to dense balls 

• Ω( 2^d) in population 

• A random draw in the pattern 

space will hit somewhere in the ball 

with high probability 
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Pattern-Fusion: The Algorithm 

• Initialization (Initial pool): Use an existing algorithm to mine all 
frequent patterns up to a small size, e.g., 3 

• Iteration (Iterative Pattern Fusion): 

• At each iteration, k seed patterns are randomly picked from the 

current pattern pool 

• For each seed pattern thus picked, we find all the patterns 

within a bounding ball centered at the seed pattern 

• All these patterns found are fused together to generate a set of 

super-patterns.  All the super-patterns thus generated form a 

new pool for the next iteration 

• Termination: when the current pool contains no more than K 
patterns at the beginning of an iteration 
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Why Is Pattern-Fusion Efficient? 

• A bounded-breadth pattern tree 
traversal 

• It avoids explosion in mining 

mid-sized ones 

• Randomness comes to help to 

stay on the right path 

• Ability to identify “short-cuts” and 
take “leaps” 

• merge small patterns together in 

one step to generate new 

patterns of significant sizes 

• Efficiency  

45 



Pattern-Fusion Leads to Good Approximation 

• Gearing toward colossal patterns 

• The larger the pattern, the greater the chance it will be 

generated 

• Catching outliers 

• The more distinct the pattern, the greater the chance it will be 

generated 
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Mining Compressed Patterns: δ-clustering  

• Why compressed patterns? 

• too many, but less meaningful 

• Pattern distance measure 

 

 

• δ-clustering: For each pattern P, find 
all patterns which can be expressed 
by P and their distance to P are within 
δ (δ-cover) 

• All patterns in the cluster can be 
represented by P 

• Xin et al., “Mining Compressed 
Frequent-Pattern Sets”, VLDB’05 

ID Item-Sets Support 

P1 {38,16,18,12} 205227 

P2 {38,16,18,12,17} 205211 

P3 {39,38,16,18,12,17} 101758 

P4 {39,16,18,12,17} 161563 

P5 {39,16,18,12} 161576 

 Closed frequent pattern  

 Report P1, P2, P3, P4, P5 

 Emphasize too much on 
support 

 no compression 

 Max-pattern, P3: info loss 

 A desirable output: P2, P3, P4 

 

48 



Redundancy-Award Top-k Patterns 

• Why redundancy-aware top-k patterns? 

 Desired patterns: high 
significance & low redundancy 

 Propose the MMS (Maximal 
Marginal Significance) for 
measuring the combined 
significance of a pattern set  

 Xin et al., Extracting 
Redundancy-Aware Top-K 
Patterns, KDD’06 
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Summary 

• Roadmap: Many aspects & extensions on pattern mining  

• Mining patterns in multi-level, multi dimensional space, 

Mining rare and negative patterns 

• Constraint-based pattern mining 

• Specialized methods for mining colossal patterns 

• Mining compressed or approximate patterns  
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Can Apriori Handle Convertible Constraints? 

• A convertible, not monotone nor anti-monotone nor 

succinct constraint cannot be pushed deep into the an 

Apriori mining algorithm 

• Within the level wise framework, no direct pruning 

based on the constraint can be made 

• Itemset df violates constraint C: avg(X) >= 25 

• Since adf satisfies C, Apriori needs df to assemble 

adf, df cannot be pruned 

• But it can be pushed into frequent-pattern growth 

framework! 

Item Value 

a 40 

b 0 

c -20 

d 10 

e -30 

f 30 

g 20 

h -10 
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Pattern Space Pruning w. Convertible Constraints 

• C: avg(X) >= 25, min_sup=2 

• List items in every transaction in value descending 
order R: <a, f, g, d, b, h, c, e> 

• C is convertible anti-monotone w.r.t. R 

• Scan TDB once 

• remove infrequent items 

• Item h is dropped 

• Itemsets a and f are good, … 

• Projection-based mining 

• Imposing an appropriate order on item projection 

• Many tough constraints can be converted into (anti)-

monotone 

TID Transaction 

10 a, f, d, b, c 

20 f, g, d, b, c 

30  a, f, d, c, e 

40  f, g, h, c, e 

TDB (min_sup=2) 

Item Value 

a 40 

f 30 

g 20 

d 10 

b 0 

h -10 

c -20 

e -30 
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Handling Multiple Constraints 

• Different constraints may require different or even conflicting 

item-ordering 

• If there exists an order R s.t. both C1 and C2 are convertible 

w.r.t. R, then there is no conflict between the two convertible 

constraints 

• If there exists conflict on order of items 

• Try to satisfy one constraint first 

• Then using the order for the other constraint to mine 

frequent itemsets in the corresponding projected database 

63 


