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Types of Data Sets

+  Record

« Graph and network

Relational records

Data matrix, e.g., numerical matrix,
crosstabs

Document data: text documents: term-
frequency vector
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Transaction data

World Wide Web

Social or information networks

Molecular Structures

« Ordered

Video data: sequence of images
Temporal data: time-series
Sequential Data: transaction sequences

Genetic sequence data

- Spatial, image and multimedia:

Spatial data: maps
Image data:
Video data:

Document 1 3 0 5 0 2 6 0 2 0 2
Document 2 0 7 0 2 1 0 0 3 0 0
Document 3 0 1 0 0 1 2 2 0 3 0

TID Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Beer, Coke, Diaper, Milk

4 Beer, Bread, Diaper, Milk

5 Coke, Diaper, Milk




Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
» Examples:
« sales database: customers, store items, sales
- medical database: patients, treatments
- university database: students, professors, courses

- Also called samples, examples, instances, data points, objects,
tuples.

- Data objects are described by attributes.

- Database rows -> data objects; columns ->attributes.



Attributes

- Attribute (or dimensions, features, variables): a data
field, representing a characteristic or feature of a data
object.

« I.g., customer ID, name, address
 Types:

« Nomuinal

* Binary

* Ordinal

« Numeric: quantitative
* Interval-scaled
» Ratio-scaled



Attribute Types

- Nominal: categories, states, or “names of things”
o  Har color ={auburn, black, blond, brown, grey, red, white}
« marital status, occupation, ID numbers, zip codes
- Binary
»  Nominal attribute with only 2 states (0 and 1)
«  Symmetric biary: both outcomes equally important
- e.g. gender
«  Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)

«  Convention: assign 1 to most important outcome (e.g., HIV
positive)

* Ordinal

«  Values have a meaningful order (ranking) but magnitude between
successive values 1s not known.

o Size ={small, medium, large}, grades, army rankings



Numeric Attribute Types

- Quantity (integer or real-valued)

* Interval
« Measured on a scale of equal-sized units
»  Values have order

* E.g., temperature in C’or F°, calendar dates

* No true zero-point

« We can evaluate the difference of two values, but one value
cannot be a multiple of another

* Inherent zero-point
»  We can speak of values as being an order of magnitude larger than
the unit of measurement (10 K” is twice as high as 5 K°).
° e.g., temperature in Kelvin, length, counts,
monetary quantities



Discrete vs. Continuous Attributes

- Discrete Attribute

« Has only a finite or countably infinite set of values

* E.g., zip codes, profession, or the set of words in a collection of
documents

» Sometimes, represented as integer variables
« Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute
« Has real numbers as attribute values
 E.g., temperature, height, or weight

* Practically, real values can only be measured and represented
using a finite number of digits

- Continuous attributes are typically represented as tloating-point
variables
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Basic Statistical Descriptions of Data

« Central Tendency

 Dispersion of the Data

- Graphic Displays
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Measuring the Central Tendency

- Mean (algebraic measure) (sample vs. population): X = i ; X
Note: n is sample size and N is population size. p i=1
- Weighted arithmetic mean: Z W, X;
- Trimmed mean: chopping extreme values X = .:n

- Median: Zwi

- Middle value if odd number of values, or average of the

ﬂ:

2%
N

frequency

middle two values otherwise age
- Estimated by interpolation (for grouped data): 1-5
. n/2—(> freq)l. . 6-15
median =L, +( (Z k )width 16-20
° MOde freqmedian 21*50
- Value that occurs most frequently in the data 51-80
81-110

- Unimodal, bimodal, trimodal

- Empirical formula:  mean — mode = 3 x (mean — median)

200
450
300
1500
700
44
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Symmetric vs. Skewed Data

« Median, mean and mode of

: _ symmetric
symmetric, positively and

Mean

negatively skewed data

Mode Mean Mean Mode
1 1 1 1 1 1

positively skewed negatively skewed

" Median
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Measuring the Dispersion of Data

- Quartiles, outliers and boxplots

- Quartiles: Q, (25" percentile), Q; (75t percentile)

Inter-quartile range: IQR = Q;—Q,

Five number summary: min, Q;, median, Q;, max

Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot

outliers individually

Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: o)

- Variance: (algebraic, scalable computation)
1 &, o, 1.8, 19 > 1S 1,2 2
SZZ—Z(Xi_X)ZZ—[ZXi __(in)z] o :_Z(Xi_ﬂ) :_zxi —H
n-13 n—-1"%3 N =3 N i
- Standard deviation s (or o) is the square root of variance s?(or 0?
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Lower Upper
Lower Quartile Quartile Upper
Extreme Median Extreme

Boxplot Analysis

——

1 1 1 1 1 1 1 . 1 1
| M r 1 r Vi 1 rvrirrvrirrTri1rri
10 20 20 40 S0 G0 F0oogd 99 100

» Five-number summary of a distribution
 Minimum, Q1, Median, Q3, Maximum

- Boxplot | -
- Data is represented with a box '

1 et W]

« The ends of the box are at the first and third
quartiles, i.e., the height of the box is IQR

|

« The median is marked by a line within the box =

« Whiskers: two lines outside the box extended to

bl

Minimum and Maximum

 QOutliers: points beyond a specified outlier threshold,
plotted individually
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3-D Boxplots

ispersion

Visualization of Data D

J



Properties of Normal Distribution Curve

» The normal (distribution) curve

e From p—o to p+o: contains about 68% of the measurements (u:
mean, o: standard deviation)

e From p—20 to u+20: contains about 95% of it
e From p—30 to p+30: contains about 99.7% of it

68% 95%
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Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- Histogram: x-axis are values, y-axis repres. frequencies

- Quantile plot: each value x; is paired with f; indicating that

approximately 100 f; % of data are <x;

- Quantile-quantile (g-q) plot: graphs the quantiles of one
univariant distribution against the corresponding quantiles of

another

- Scatter plot: each pair of values is a pair of coordinates and

plotted as points in the plane
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Histogram Analysis

 Histogram: Graph display of tabulated
frequencies, shown as bars

- It shows what proportion of cases fall
into each of several categories

- Differs from a bar chart in that it is the
area of the bar that denotes the value,
not the height as in bar charts, a crucial
distinction when the categories are not
of uniform width

- The categories are usually specified as
non-overlapping intervals of some
variable. The categories (bars) must be
adjacent

90000

10000 30000 50000 70000
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Histograms Often Tell More than Boxplots

= The two histograms
shown In the left may
have the same boxplot
representation

= The same values
. for: min, Q1,
median, Q3, max

\

= But they have rather
different data
distributions

\/
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Quantile Plot

- Displays all of the data (allowing the user to assess both the
overall behavior and unusual occurrences)

- Plots quantile information

* For a data x; data sorted 1n increasing order, 7, indicates that
approximately 100 7% of the data are below or equal to the
value x;

140 -

Unit price ($)

0.000 0.250 0.500 0.750 1.000

Data Mining: Concep f-value 20



Quantile-Quantile (Q-Q) Plot

» Graphs the quantiles of one univariate distribution against the corresponding
qguantiles of another

- View: Is there is a shift in going from one distribution to another?

- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each
qguantile. Unit prices of items sold at Branch 1 tend to be lower than those at
Branch 2.

Branch 2 (unit price $)

40 T T T T T T T |
40 50 60 70 80 90 100 110 120

Branch 1 (unit price $)
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Scatter plot

- Provides a first look at bivariate data to see clusters of points,

outliers, etc

- Each pair of values is treated as a pair of coordinates and plotted
as points in the plane

Items sold

700 -
600 - o Y00 .
500 - . : o st
* % $o
400 *
300 X ¢ »°
AR .
200 -
100 -
0 | 1 | | 1 | |
0 20 40 60 80 100 120

Unit price ($)

140
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Positively and Negatively Correlated Data
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» The left half fragment is positively

correlated

- The right half is negative correlated
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Uncorrelated Data
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Data Visualization

- Why data visualization?

 Gain msight ito an information space by mapping data onto

eraphical primitives
» Provide qualitative overview of large data sets

 Search for patterns, trends, structure, irregularities, relationships

among data

« Help hind interesting regions and suitable parameters for further

quantitative analysis

« Provide a visual prool of computer representations derived
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Direct Data Visualization
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data courtesy of NCSA, University of lllinois at Urbona—Champaign



catter Plot
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vall

long,

|| depth

Scatterplot Matrices

+HOT0—

Used by_ermission of M. Ward, Worcester Polytechnic Institute

Matrix of scatterplots (x-y-diagrams) of the k-dim. data [total of (k2/2-k) scatterplots]
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Landscapes

news articles
visualized as
a landscape

Used by permission of B. Wright, Visible Decisions Inc.

Pacific Northwest Laboratory

- Visualization of the data as perspective landscape

- The data needs to be transformed into a (possibly artificial) 2D spatial
representation which preserves the characteristics of the data
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Parallel Coordinates

- n equidistant axes which are parallel to one of the screen axes and correspond
to the attributes

» The axes are scaled to the [minimum, maximum]: range of the corresponding
attribute

- Every data item corresponds to a polygonal line which intersects each of the
axes at the point which corresponds to the value for the attribute

—

Attr. 1 Attr. 2 Attr. 3 Attr. k
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Parallel Coordinates of a Data Set




Visualizing Text Data

= The importance of

tag Is represented
by font size/color

Pentag
on
Denies
Desec
ation

Senate nears

battle on
Bush
nominees

Troops,
Militants
Battle In
Mosul

Neutral
mediation is
needed on
North Korea

Tuesday May 17, ¢

- Tag cloud: visualizing user-generated tags
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Visualizing Social/Information Networks
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Similarity and Dissimilarity

- Similarity
» Numerical measure of how alike two data objects are
 Value 1s higher when objects are more alike
 Often falls 1in the range 0,1]
- Dissimilarity (e.g., distance)
« Numerical measure of how different two data objects are
» Lower when objects are more alike
e Minimum dissimilarity 1s often 0
« Upper limit varies

- Proximity refers to a similarity or dissimilarity

36



Data Matrix and Dissimilarity Matrix

e Data matrix

¢ n data poimts with p (Xqq o XQf e le_
dimensions
° TWO modes Xll XI.I: le
_an T an_

e Dissimilarity matrix )

 n data points, but registers

only the distance d(2,1) 0

e A triangular matrix d(3_'1) d (?-’,2) 0

oSlnglemOdG _d(n,l) d(n,Z) .. ... 0



Proximity Measure for Nominal Attributes

- Can take 2 or more states, e.g., red, yellow, blue, green
(generalization of a binary attribute)

- Method 1: Simple matching

. # of matches, p: total # of variables
d(i, j)=F5

- Method 2: Use a large number of binary attributes

e creating a new binary attribute for each of the A nominal states

38



Proximity Measure for Binary Attributes

Object
- A contingency table for binary data ! 0 Pk
Object / 1 1 J S
J 0 8 t s+t
: - sum q+s r<t P
- Distance measure for symmetric binary
r S
variables: d(i? j) - L
, o g4+r-+-8+1
- Distance measure for asymmetric binary
variables: d(i, 7) = rra
. o q+7r-—+Ss
« Jaccard coefficient (similarity measure q
for asymmetric binary variables): S?:mjaccard(?:, j) ==
q+71—+Ss
= Note: Jaccard coefficient is the same as “coherence”:
sup(%, j) q

coherence(, J) = sup() + sup(j) — sup(i,§) . (a+7)+(a+5s)—q
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Dissimilarity between Binary Variables

- Example
Name | Gender | Fever |Cough |Test-1 |Test-2 | Test-3 | Test-4
Jack |M Y N P N N N
Mary |F Y N P N P N
Jm |M Y P N N N N

« Gender 1s a symmetric attribute

* The remaining attributes are asymmetric bmary

e Let the values Y and P be 1, and the value N 0

] O+1
d( jack, mar == = 0.33
(J Y) 24+0+1
] .. 1+1
d(jack, jim) = = 0.67
(J ] ) 1+1+1
d(jim,mary)=—1%2 _0.75

14+142
40



Standardizing Numeric Data
X_
. Z-score: L= T,U

» X: raw score to be standardized, p: mean of the population, o: standard
deviation

- the distance between the raw score and the population mean in units of
the standard deviation

- negative when the raw score is below the mean, “+” when above
- An alternative way: Calculate the mean absolute deviation
_1 _ _ .
S, =X, =M [+[X,, —m |+.+[X —m_]|)
where _ 1
m, = ﬁ(xlf +X, +ot X )

- standardized measure (z-score): L Sf

» Using mean absolute deviation is more robust than using standard deviation
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Example:

Data Matrix
point | attributel | attribute?2
X1 1 2
X2 3 5
X3 2 0
X4 4 5

Dissimilarity Matrix

(with Euclidean Distance)

x1 X2 X3 x4
x1 0
X2 3.61 0
X3 2.24 51 0
x4 4.24 1 5.39 0
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Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

i, j) = {/lffﬂ -z [* 4 [z = sl + o+ [ -
where 1= (x, Xy, ..., ) and j = (x}, Xy, ..., X ) are two p-

dimensional data objects, and /1 1s the order (the distance so
defined 1s also called 1.-/4 norm)

Properties

« d(@,) >01t1#], and d(, 1) = 0 (Positive definiteness)
- d@, ) =d(@ 1) (Symmetry)

- d@,) <d@, k) +d(k,j) (Trangle Inequality)

A distance that satisfies these properties is a metric
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Special Cases of Minkowski Distance

- h =1: Manhattan (city block, L, norm) distance

- E.g., the Hamming distance: the number of bits that are different
between two binary vectors

d(, j):|xi1—xj1|+|xi2—xj2|+...+|xip—xJIO

- h=2: (L, norm) Euclidean distance

Cony B 2 . 2 B 2
d(l,j)—\/(|xil X 4, = Pt = 1)

« h — 0. “supremum” (L, norm, L_norm) distance.

- This is the maximum difference between any component
(attribute) of the vectors

P n
. . P
d(i, j) = lim ( > iy — ﬂfjfh’) = 111?X|$-if — ]
. L / f:l
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point |attribute 1 |attribute 2
X1 1 2
X2 3 5
X3 2 0
x4 4 5

Manhattan (L)

Example: Minkowski Distance

L x1 X2 X3 x4

x1 0

X2 5 0

X3 3 6 0

X4 6 1 7 0
Euclidean (L,)

L2 x1 X2 x3 x4

x1 0

X2 3.61 0

X3 2.24 51 0

x4 4.24 1 5.39

Supremum

Ly x1 X2 X3 X4

x1 0

X2 3 0

X3 2 5 0

x4 3 1 5
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Ordinal Variables

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
- replace x; by their rank I e{L....M f}

- map the range of each variable onto [0, 1] by replacing £th object
in the £th varnable by

r. —1
‘it T M, —1

T

- compute the dissimilarity using methods for interval-scaled

variables
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Attributes of Mixed Type

- A database may contain all attribute types

* Nominal, symmetric binary, asymmetric binary, numeric,
ordinal

- One may use a weighted formula to combine their effects

oo X 5hd )
d(, J)= fz_pl ”5(1‘;1

f =1%%j

* f is binary or nominal:

d;' =0 if x;= x;, or d;!"' = 1 otherwise
« f is numeric: use the normalized distance
* f is ordinal

» Compute ranks r; and r -1

- Treat z; as interval-scaled £ = M. 1
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Cosine Similarity

- A document can be represented by thousands of attributes, each recording the
frequency of a particular word (such as keywords) or phrase in the document.

Document  teamcoach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0
Document2 3 0 2 0 1 1 0 1 0 1
Document3 0 7 0 2 1 0 0 3 0 0
Document4 0 1 0 0 1 2 2 0 3 0

» Other vector objects: gene features in micro-arrays, ...

- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...

- Cosine measure: If d, and d, are two vectors (e.g., term-frequency vectors), then
cos(d, d,) = (d;ed,) /| |d,[| |1d,]],

where o indicates vector dot product, | | d| |: the length of vector d



Example: Cosine Similarity

 cos(d,, d,) = (dy e d,) /11d,11 11d,11,

where o indicates vector dot product, | | d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

d,= 5,0,3,0,2,0,0,2,0,0)
d,= (3,0,2,0,1,1,0,1,0,1)

ded,=5"3+070+3"2+070+2* [+0" 1+0* 1+2* [+0"0+0" 1 = 25

|| d,| |= (G75+070+373+0*0+2*2+0* 0+0 * 0+2* 2+0* 0+0*0)92=(42)0> = 6.481

|| dy| |= (873+070+272+0*0+1 " 1+1* 1+0*0+1* 1+0*0+1*1)%9=(17)0° =4.12
cos(d,, d,) = 0.94
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Summary

Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-scaled
Many types of data sets, e.g., numerical, text, graph, Web, image.
Gain insight into the data by:

 Basic statistical data description: central tendency, dispersion, graphical
displays

 Data visualization: map data onto graphical primitives

» Measure data similarity

Above steps are the beginning of data preprocessing.

Many methods have been developed but still an active area of research.
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