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ABSTRACT
Friendships are dynamic. Previous studies have converged to sug-
gest that social interactions, in both online and offline social net-
works, are diagnostic reflections of friendship relations (also called
social ties). However, most existing approaches consider a social
tie as either a binary relation, or a fixed value (named tie strength).
In this paper, we investigate the dynamics of dyadic friend rela-
tionships through online social interactions, in terms of a variety
of aspects, such as reciprocity, temporality, and contextuality. In
turn, we propose a model to predict repliers and retweeters given
a particular tweet posted at a certain time in a microblog-based
social network. More specifically, we have devised a learning-
to-rank approach to train a ranker that considers elaborate user-
level and tweet-level features (like sentiment, self-disclosure, and
responsiveness) to address these dynamics. In the prediction phase,
a tweet posted by a user is deemed a query and the predicted repli-
ers/retweeters are retrieved using the learned ranker. We have col-
lected a large dataset containing 73.3 million dyadic relationships
with their interactions (replies and retweets). Extensive experimen-
tal results based on this dataset show that by incorporating the dy-
namics of friendship relations, our approach significantly outper-
forms state-of-the-art models in terms of multiple evaluation met-
rics, such as MAP, NDCG and Topmost Accuracy. In particular, the
advantage of our model is even more promising in predicting the
exact sequence of repliers/retweeters considering their orders. Fur-
thermore, the proposed approach provides emerging implications
for many high-value applications in online social networks.

Categories and Subject Descriptors
H.2.8 [Database Management]: Data mining; J.4 [Social and Be-
havioral Science]: Sociology
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1. INTRODUCTION
Social ties have been extensively studied in domains as varied as

sociology [11], psychology [30], and biology [6]. It is well recog-
nized that proximity [1, 27] and homophily [18, 23] play key roles
in the formation of friendships: People tend to be friends with oth-
ers who are close by, and/or similar to themselves in terms of age,
ethnicity, education, and even genotypes [6].

However, not all friendships are equal. The concept of tie strength
was introduced by Granovetter [11] as early as the 1970’s, where
the frequency of interaction was used as a diagnosis of the tie strength.
Until recently, however, the rapidly increasing digitalization of com-
munications provided the availability to estimate tie strength using
large-scale communication data such as emails [28, 12] and mo-
bile phone logs [26, 5]. During the past few years, the emergence
of online social networks has profoundly changed the way people
communicate and socialize: People interact with much lower com-
munication cost and greater variety of modes, (e.g., on Twitter, a
user can reply to a friend’s tweet, or retweet a tweet so as to broad-
cast it to his/her followers). Social ties and tie strength in online
social networks were also brought to attention of researchers. Sev-
eral studies have exploited rich interaction data in online social net-
works to investigate the strength between dyadic ties [35, 8, 17, 29].

Nevertheless, most existing studies consider tie strength as static:
either a category (strong/weak tie) or a fixed value. However, the
dynamics of tie strength, which have rarely been addressed, play
a non-negligible role in understanding friend relationships. First,
the strength of a tie may not be reciprocal [25]. For example, Al-
ice considers Bob her best friend, but Bob may consider Carol his
best friend. Second, tie strength can evolve over time, e.g., your
best friend during high school may not be your current best friend.
Third, given different contexts such as location, emotion, and envi-
ronment, people may perceive different feelings of closeness, i.e.,
tie strength. For instance, when you travel to another city, you may
frequently interact with some local friends (e.g., alumni) who you
have not been in touch with for a long time. Given the above dy-
namic characteristics, a static measurement of tie strength is usually
coarse-grained, and sometimes unrealistic.

In this paper, we examine dynamics of tie strength through a
microblog-based social network and on this basis we propose a
general model to predict the repliers and retweeters of a particu-
lar tweet considering friendship dynamics. Specifically, given a
tweet posted by a particular user at a certain time, we aim to pre-
dict which friends of this user will reply to/retweet this tweet. Note
that for replying and retweeting, the results may be quite different.
To tackle this problem, we convert the prediction task into an in-
formation retrieval task: Given the tweet posted by u as a query,
we retrieve a ranked list of friends of u, according to their inten-
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tions of replying to/retweeting this tweet, where the ranking model
is learned through a learning-to-rank framework.

Such prediction can enable a variety of promising applications in
online social networks, e.g., people are more likely to adopt a prod-
uct recommended by a close friend (after viewing his/her retweet
talking about the product) than a casual acquaintance. Thus an
accurate prediction of potential reactors can guide advertisers and
marketers to design better incentive mechanisms. Our approach and
findings can also help users create content to engage reactions and
increase social impact, e.g., suggesting the best time of a day to
post a tweet related to a certain topic that can trigger a discussion
among the contacts in your social circle. Meanwhile, the proposed
framework for analyzing friendship dynamics can also be applied
to online communication platforms such as Skype and WhatsApp.
For instance, creating and maintaining contact groups (or social cir-
cles) are usually tedious. However, given the precise estimation of
dynamic tie strength, we can automatically provide a list of “local
friends” a person would like to call when traveling to a given city.

To the best of our knowledge, this is the first work that predicts
both repliers and retweeters at tweet-level (i.e., the prediction con-
siders both the content of a tweet and the context of a user). Overall,
this paper offers the following contributions:

• We exploit the dynamics of social interactions in terms of reci-
procity, temporality, and contextuality, and craft a collection of fea-
tures from online social networks to measure the interaction dynam-
ics. In particular, we explicitly model the responsiveness of a user,
which captures the availability, capacity, and tendency of a user’s
interaction behaviors.

• Based on a large dataset we have collected from Sina Weibo,
we develop a learning-to-rank framework incorporating the above
features, so as to predict both repliers and retweeters based on the
content of a tweet and the context of a user. In addition, our model
can predict the sequence of repliers and retweeters for a particular
tweet, i.e., who replies/retweets the first, second, etc.

• We have conducted extensive experiments to validate the effec-
tiveness of the proposed prediction model with multiple evaluation
metrics. The results show that by considering the dynamics of
tie strength, our approach significantly outperforms state-of-the-art
models in terms of predictive power validated by multiple metrics
such as MAP, NDCG, and Topmost Accuracy.

The rest of this paper is organized as follows: Sec. 2 explores the
dynamics of social interactions in various aspects. Sec. 3 introduces
the prediction model of online social interactions. Sec. 4 presents
the experimental results based upon a large-scale dataset. Finally,
related work is reviewed in Sec. 5 and the paper is briefly concluded
in Sec. 6.

2. DYNAMICS OF SOCIAL INTERACTIONS
Given an online social network as a directed graph G = (U,F ),

where U are users, and F are the following relations ( (u, v) ∈ F
means a user u ∈ U follows v ∈ U on G), we define a friend and
an ego network as follows.

DEFINITION 1 (FRIEND). A user u ∈ U is referred to as a
friend of user v ∈ U (or u and v have a friendship relation), de-
noted by u ∼ v, if (u, v) ∈ F and (v, u) ∈ F .

DEFINITION 2 (EGO NETWORK). The neighbours of a user
u ∈ V are defined as

E̊u = {v|u ∼ v, v ∈ U}, (1)

and the ego network of u is Eu = E̊u ∪ {u}.

Sutcliffe et al. [30] suggest that interaction frequency is one of
the most reliable correlations of relationship strength in both hu-
mans and animals. In this section, exemplified with interaction data
from Sina Weibo1 (a microblog-based social network known as the
Chinese Twitter), we introduce several key aspects of friendship dy-
namics. The dataset was crawled using open APIs (refer to Sec. 3.1
for the crawling procedure and Sec. 4.2.1 for the data description).

2.1 Reciprocity
From an economic perspective, social interaction can be consid-

ered an investment for maintaining tie strength and bringing benefit
to the ego [30]. However, the investment will not necessarily equal
the benefit.

To quantify the reciprocity between two users u and v, we first
calculate the percentile rank of v in terms of outgoing interactions
from u to v, which measures the percentage of users who have re-
ceived more or as many interactions from u compared with v (the
smaller PR is, the higher rank v has), denoted by PRu(v):

PRu(v) =
‖{w|fu→w > fu→v}‖+ 0.5‖{w|fu→w = fu→v}‖

‖E̊u‖
,

(2)
where fu→w is the outgoing interaction frequency from u to w.

Then we define the Reciprocal Interaction Rank (RIR) from u to
v as follows.

RIRu→v = (PRu(v)− PRv(u))×D. (3)

Here, we scale the original difference between PRu(v) and PRv(u)
with D = 150, which is the so called Dunbar’s number. Dunbar [4]
believed that the number of stable social ties in an ego network is
approximated to be 150 on average, which is correlated with the
relative neocortex size. This number was recently validated using
Facebook and Twitter data [10]. Note that RIR is an asymmetric
measurement, which shows the degree of inequality in terms of per-
ceived tie strength to a certain extent.

We plot the distribution of reciprocal interaction ranks of 1 mil-
lion randomly sampled social ties on Sina Weibo as shown in Fig-
ure 1(a), where we only present the distribution of positive values
since the negative ones are mirror symmetric. As is shown, for a
large portion of social ties, the reciprocal interaction rank deviates
from zero, which indicates the asymmetry of tie strength.

2.2 Temporality
The tie strength between a dyadic relation may change over a

certain period of time.
For example, if we consider the friend who we reply to/retweet

the most often as the “best friend”, we can identify whether the best
friend changes over time. We randomly sampled 1 million users and
identified their best friends for each month. Then we count the num-
ber of distinct best friends for each user during about 51 months (the
range of our dataset). Figure 1(b) and Figure 1(c) present the distri-
butions of the number of distinct best friends in terms of replies and
retweets respectively. Apparently, almost all users have changed
their best friends, and most users (64% for reply and 74%) have 3
distinct best friends during this period. We note that although the
best friends based on different interaction types (e.g., replies and
retweets) may vary for an individual, the distributions look similar.

2.3 Contextuality
Given different contexts, people may perceive different degrees

of intimacy. Such contexts include locations, availability (to inter-

1http://weibo.com
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Figure 1: Dynamics of tie strength w.r.t different aspects based on Sina Weibo data
act), emotional states and other factors (we will detail them later in
Sec. 3.3).

For example, emoticons are popular in many online social net-
works, where some emoticons, such as a smiling face, represent
delightful emotions while some others convey unhappiness, which
imply the emotion of a user when posting a tweet/reply. We ran-
domly sampled 1 million users and computed the ratio of replies
that contain happy emoticons sent from u to each of u’s friends v,
denoted as Hu→v , divided by all the replies sent from u to his/her
friends (note that here we use the ratio for normalization over all
users). Meanwhile, we calculated the percentile rank (PR) for each
of the user pairs and scaled it with the Dunbar’s Number introduced
in Sec. 2.1. Then, we have a list: {(xi, yi)}Li=1, where xi is the PR
value scaled by D and yi is the ratio of happy-emoticon replies for
the ith user pair. Figure 1(d) shows the scatter plot as well as a fitted
curve of these pairs, which clearly indicates that when people reply
to a friend’s tweet, they are more likely to enclose an emoticon if
the friend is ranked higher (in terms of the PR value).

3. LEARNING TO RANK FRIENDS
Given a tweet T posted on a microblog-based social network

(such as Twitter or Sina Weibo) by user u, at time t, this section
introduces a model to rank u’s friends according to their inten-
tions of replying and retweeting T respectively. We first provide
an overview of the system in Sec. 3.1, and detail the key compo-
nents later in Sec. 3.2, 3.3, and 3.4.

3.1 Overview
As illustrated in Figure 2 and Figure 3, our model works as a typ-

ical machine-learned search engine that includes three phases: the
crawling phase, the offline training phase, and the online prediction
phase, where the training and prediction phases are two core parts
of our inference model.

• Crawling. In the crawling phase, we start from a seed user
dataset obtained through the LifeSpec system [36]. By calling the
APIs, we can retrieve all the friends of a user and recursively ex-
plore a large number of users, which is the Expanding Step of the
crawler. Later on, in order to get all the tweets and replies of the
users, we traverse their ego-networks and crawl all their tweets and
their neighbours’ tweets. This is the Shrinking Step. Note that Sina
Weibo does not provide an API to crawl the replies posted by a
user directly, so, we work around this by extracting a user’s replies
from each tweet posted by the user’s friends (since there is an API
to get the replies to a particular tweet). The Expanding Step and
the Shrinking Step, as shown on the left side of Figure 2, are per-
formed iteratively to achieve both the coverage (i.e., a large number
of users) and the effectiveness (since we need all replies posted by
these users to analyze their tie strength based on the online interac-
tion histories). As a result, for each target user2, we crawled pro-

2A target user is the user whose friends will be ranked.

files, tweets (including retweets), and replies of all the users in u’s
ego network Eu.

• Training. In the training phase shown on the right side of Fig-
ure 2, we construct a series of user-level and tweet-level features.
Here, user-level features are comprised of reciprocal rank, profile
affinity, topic affinity, and a responsiveness matrix, for each target
user. The two categories of affinity capture the homophily between
u and u’s friends. For example, the similarity of educational back-
ground is one of the features in the profile affinity. For each affin-
ity, we build a sorted list where each entry of the list is an affinity
value calculated based on a social tie (u, v), where v ∈ E̊U . Here,
the topic affinity is computed based on the named-entities extracted
from each tweet and reply posted by users in Eu. We note that for
certain languages written without spaces (e.g., Chinese), text seg-
mentation, which is a standard NLP task, should be pre-processed
to segment the sentences into component words carrying meaning-
ful units. All the affinity features are sorted in descending order
of affinity value, which could also be considered the inverted in-
dexes in a typical retrieval system. Through responsiveness analy-
sis (detailed in Sec. 3.3), the responsiveness matrix is derived from
u’s historical interaction behaviors with E̊u, which summarizes u’s
tendency, availability, and capacity to interact with his/her friends.
In our model, all these indexes and the responsive matrix are peri-
odically updated so as to keep track of users’ temporal updates of
their profile and topic affinity, as well as the responsiveness. Mean-
while, tweet-level features are extracted from each tweet and reply
posted by users in Eu, which are derived from sentiment analysis
and self-disclosure analysis. To learn a ranking model combining
all the features, we sample a set of positive and negative instances to
train the model. Given a tweet T posted by a user u at time t and the
actual repliers/retweeters, we perform supervised learning to train
a ranking model following the typical learning-to-rank framework.

• Prediction. In the prediction phase (detailed in Sec. 3.5), given
a query, i.e., a tweet T posted by a user u at time t, we first perform
query understanding to analyze the context (after named-entity recog-
nition, segmentation, sentiment and self-disclosure analysis, as in
the training phase), and feed the ranking model with all the ex-
tracted features to generate a score for each candidate, thus obtain-
ing the final ranking list.

In summary, our model is designed to address the dynamics of
tie strength and social interactions, where different components of
models reflect various aspects of the dynamics as annotated in Fig-
ure 2.

Reciprocity. We model all interactions for each dyadic relationship
as directed behaviors instead of undirected behaviors employed in
many existing approaches [8], thus non-reciprocal patterns are ex-
plicitly measured, e.g., the responsiveness analysis reveals the rela-
tive tendency to interact with each friend in the ego network.
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Temporality. Our prediction system works as a typical search en-
gine, where the indexes and responsiveness matrices are updated
periodically to ensure the freshness of the features. Meanwhile, the
tweet-level features are streaming data that is updated in real-time
to reflect the timely and subtle change in users’ sentiment and de-
gree of self-disclosure.

Contextuality. We extract rich contextual features from the tweets
and replies, which diagnose a user’s context when interacting with
friends, such as mood, opinion, availability, and even physical en-
vironment.

3.2 Affinity Calculation

3.2.1 Profile Affinity
We use the following features to build indexes representing pro-

file affinity: Gender, Age, Education, City, and CommonFriends.
We build a sorted list for each feature to index u’s friends v1, v2, . . . ∈
E̊u. Some features are binary, e.g., Gender and City respectively
indicate whether a friend of u has the same gender and lives in the
same city as u. Other features are real-valued features calculated
using affinity functions. For Education and CommonFriends, we
utilize Jaccard Similarity, e.g., given u’s school list Su (a user may
publish several schools including high school, college, etc. on her
profile page), and v’s school list Sv , Education affinity is calculated

by

Affinity(Education) =
|Su ∩ Sv|
|Su ∪ Sv|

. (4)

Similarly, CommonFriends is obtained by

Affinity(CommonFriends) =
|E̊u ∩ E̊v|
|E̊u ∪ E̊v|

. (5)

For Age, we use the following affinity measurement:

Affinity(Age) =
min(Au, Av)

max(Au, Av)
, (6)

where Au and Av are the ages of u and v.
We note that the above features are provided by most users in our

target Sina Weibo dataset (described later in Sec. 4.2.1), mainly be-
cause the system guides users to input these attributes once a user
registers the website, and as long as such information has not been
provided, the system will redirect to the page asking the user to in-
put these attributes every time the user logs in to the system. Nev-
ertheless, for the users without such attributes, we assign -1 for the
corresponding features.

3.2.2 Topic Affinity
To summarize and compare users’ topics of interest, we first iden-

tify named-entities from users’ tweets and replies, following the
method proposed in [20] (segmentation of Chinese words is pre-
processed). Next, we remove the non-named entities from the cor-
pus, and perform topic discovery and topical keyword extraction
for each user. The reason for using a filtered corpus is that unlike
formal text such as news reports, tweets are very short text strings,
with more diverse topics and many noisy or meaningless words. For
the same reason, traditional topic discovery methods designed for
formal long text such as Latent Dirichlet Allocation (LDA) does not
perform well on tweets [38]. To tackle this challenge, we employ
the topical keyphrase extraction approach introduced by Zhao et al.
[37]. In this method, a Twitter-LDA model is leveraged to discover
topics, where each word in a tweet is either assigned as a topical
word or a background word according to a Bernoulli test, then a
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PageRank-based method is utilized to identify important words in a
topic as topical key phrases.

As a result, we obtain a topic distribution θu = (θ
(1)
u ,θ

(2)
u . . .θ

(K)
u )

for each user u, where θ
(i)
u is a distribution over words, i = 1, 2, . . . ,K.

And for each topic i, we identify a list of important words through
cTPR (context-aware topical PageRank) [38], as the topical key-
words of user u. In many social networks, users self-tag several
keywords as their interests. We merge the identified keywords and
the self-tags, as the final keywords of the users, which will be used
in the online prediction phase. In addition, we compute the topic
affinity between u and v ∈ E̊u using cosine similarity as follows:

Affinity(Topic) =
θu · θv

‖θu‖‖θv‖
, (7)

and index the affinity values with a sorted list, as in the profile affin-
ity indexes.

3.3 Context Analysis
On microblog-based social networks, people may interact with

both close friends and casual acquaintances. However, as discussed
earlier, different contexts such as emotions, opinions, and level of
self-disclosure capture the rich dynamics of tie strength. We per-
form sentiment analysis and self-disclosure analysis for each tweet
(including retweets) and reply posted by users in E̊u to extract con-
text features.

3.3.1 Sentiment
We perform sentiment analysis to mine both emotions (such as

happy, sad) and polarity (positive/neutral/negative) from each tweet.
On microblogs such as Twitter and Sina Weibo, people frequently
use emoticons to express their emotions. These emoticons were
also explicitly manually labeled to different classes as shown in Fig-
ure 4. To classify the tweets and replies according to polarity, we
leverage the emoticons as noisy labels to train a SVM classifier us-
ing a linear kernel [9]. In addition to unigram and bigram features,
we also adopt other contextual features such as punctuation, hash-
tags and several target-dependent features introduced by Jiang et al.
[15] to train a classifier. For each tweet and reply, we obtain the po-
larity using the trained model and classify the emotion based on the
emoticons (if no emoticons are used, we assign it a dummy class as
the emotion).

3.3.2 Self-Disclosure Analysis
In social psychology, self-disclosure is found to be the key char-

acteristic indicating the strength of social ties [24, 31]. However,
canonical methods for measuring self-disclosure often require psy-
chological assessments based on questionnaires. Nevertheless, some
linguistic features reveal the degree of self-disclosure in online in-
teractions. We measure self-disclosure for each tweet and reply
with the following indicative linguistic features (only the first two
features are applied to replies since the latter two are not available
for replies in Sina Weibo):

• Length of tweets/replies. Although the length of tweets is lim-
ited (e.g., 140 words in Twitter and 140 Chinese characters in Sina

Weibo), when users tend to self-expose by sharing personal in-
formation, feelings, or thoughts with others, they often use more
words [14].

• Occurrence of first person words such as “I,” “me,” “my,” “mine,”
etc. Several studies have suggested that this feature is indicative of
self-disclosure in both online and offline social interactions [3].

• Geo-Tweets. On many social networks such as Twitter and Sina
Weibo, users can post geo tweets, indicating their geo-locations of
themselves when posting that tweet, which is considered a typical
behavior of self-disclosure [2]

• Client Types. We have the information of the clients (desktop
client/mobile client) when people post a tweet, which exposes (or
indicates) users’ physical status, e.g., if users tweet using mobile
clients, it is more likely that they are on the move, otherwise, i.e.,
using web client, they are probably sitting in front of their PCs at
home or at work.

3.3.3 Responsiveness Analysis
Existing methods for predicting repliers/retweeters usually as-

sume that all u’s friends have read the tweets posted by u and are
equally available to interact with u [29], which is often an unrealis-
tic assumption. In responsiveness analysis, we use historical inter-
action data to explicitly measure 1) the availability that a user has to
reply to/retweet a tweet; 2) the capacity of a user to read tweets and
interact with others; and 3) the tendency of a user to interact with a
particular friend. All these factors are time-dependent variables.

Actually, given a time bin Δ = [t1, t2], we can “reconstruct”
the timeline of a user by retrieving all the tweets and replies posted
by Eu during Δ. Let T Δ

u denote the tweets posted by u within Δ
(including retweets), and let RΔ

v,u denote the replies sent from v to
u within Δ. Then a user u’s cost of reading the tweets and replies
within Δ could be estimated by

∑

v∈E̊u

(
‖T Δ

v ‖+ ‖RΔ
v,u‖

)
. (8)

In practice, we partition a day into discrete time bins and aggre-
gate the above statistics over multiple days, to compute the average
cost for each time bin of a day. Intuitively, the more cost u spends
on reading these tweets and replies, the less available that u is to
respond (reply to/retweet) a particular tweet posted within a given
time period. Meanwhile, the capacity of u to reply to friends’ tweets
can be approximated by

∑

v∈E̊u

‖RΔ
u,v‖. (9)

Thus we formally define the Responsiveness of v in terms of reply-
ing to u’s tweets within Δ as

rΔv→u|reply =
‖RΔ

v,u‖ − 1

‖E̊v‖
∑

w∈E̊v
‖RΔ

v,w‖
1

‖E̊v‖
∑

w∈E̊v

(
‖T Δ

w ‖+ ‖RΔ
w,v‖

) , (10)

where the numerator captures both the tendency of v to reply to u,
as well as the capacity of v, and the inverse of the denominator cap-
tures the availability as discussed earlier. The responsiveness of v
in terms of retweeting u can be similarly calculated by replacing
RΔ

v,w in the numerator of Eq. (10) with RT Δ
v,w, where RT repre-

sents retweets, i.e.,

rΔv→u|retweet =
‖RT Δ

v,u‖ − 1

‖E̊v‖
∑

w∈E̊v
‖RT Δ

v,w‖
1

‖E̊v‖
∑

w∈E̊v

(
‖T Δ

w ‖+ ‖RΔ
w,v‖

) . (11)
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As a result, for each target user u, we calculate the responsive-

ness with respect to each of u’s friends, thus obtaining two respon-
sive matrices (for replies and retweets), where each row of the ma-
trix is associated with a user, and each column indicates a time bin
as shown in Figure 5.

3.4 Learning the Ranking Model
Given a tweet q posted by user u as a query, and u’s friends E̊u as

candidate documents, a feature vector x(q, v) is generated for each

query-document pair (q, v) where v ∈ E̊u. Here x(q, v) consists
of all the extracted user-level features associated with user u and v
(e.g., the profile affinity between u and v), and tweet-level features
associated with q. Suppose Y = (1, 2, . . . ,m) is the label set for
a query-document pair, where the label indicates the relevance, i.e.,
the intention to reply to/retweet a tweet. The training set is repre-
sented by S = (xi, yi)

N
i=1, where xi ∈ X is the feature vector of

the ith query-document pair and yi ∈ Y . We aim to train a ranking
model F (S) = f(x), which assigns a score for a feature vector x,
and can rank the documents for a given query.

The above setting follows the typical learning-to-rank framework
for information retrieval. We note that by using the same learning
framework, we can learn the ranking functions for different interac-
tion types, such as replies and retweets. According to whether label
set Y is binary, our prediction task has two sub-forms:

• Binary Relevance Judgment (|Y |=2). In this case, we neglect the
orders of the repliers/retweeters given a particular tweet. Assume
a tweet q posted by user u at time t. The users who reply to q are
treated as relevant instances, and users who do not reply to q are
regarded as irrelevant instances. Note that even though the label is
binary, the ranking task is not equivalent to the typical classifica-
tion/regression task since they have different optimization criteria
(a perfect ranking does not necessarily mean a perfect classifica-
tion/regression).

• Ordinal Relevance Scale (|Y |>2). In this case, we predict not
only the repliers/retweeters of a tweet, but also their orders, i.e.,
who will reply/retweet first, second, etc. This is obviously harder
than the first task, and requires finer-grained and more accurate un-
derstanding of the dynamic tie strength and users’ interaction be-
havior patterns in the online social network.

Over the past decades, various algorithms have been proposed
to learn the ranking functions, most of which convert the learning
problem into an optimization problem by minimizing a defined loss
function L(F (S)). These algorithms can be generally categorized
to point-wise approaches, pair-wise approaches, and list-wise ap-
proaches, mainly in terms of the loss function [19]. We evaluated
a number of well-adopted learning algorithms to learn the ranking
functions separately and examined their performance in our frame-
work (refer to Sec. 4.2.4 for more details). We note that the purpose
of applying different learning algorithms is for demonstrating the
applicability of our model, whereas a thorough comparison of these
learning algorithms is beyond the focus of this paper.

Table 1: Percentage of users with profile information (%)
gender city education age

100 92.9 35.03 31.89

3.5 Prediction
In the online prediction phase, given a query, i.e., tweet T posted

by u at time t, we perform query understanding to generate contex-
tual features from the query. We first extract topical keywords (refer
to Sec. 3.2.2) after the pre-processing of segmentation and named-
entity recognition. Next we perform sentiment analysis (Sec. 3.3.1)
and self-disclosure analysis (Sec. 3.3.2) using the same approach as
in the training phase. Then we feed the extracted tweet-level fea-
tures as well as the user-level features from the candidates to the
trained ranking models (different models for repliers and retweet-
ers), and finally retrieve a ranking list by sorting the candidates ac-
cording to the scores of the ranking function.

4. EVALUATION

4.1 Dataset
We collected a large dataset covering 1.116 billion tweets posted

by 1.126 million users with all their replies and retweets to their
friends, which range from Sep. 2009 to Dec. 2013. The covered
users form 73.262 million dyadic friendship relations.

The percentage of users (among all the 1.1M users) who have
different types of profile information on Sina Weibo is reported in
Table 1. Such information is leveraged when we build the profile
affinity index (Sec 3.2.1). For topic affinity calculation, we set the
number of topics K = 50 and we retrieved the top 20 keywords for
each topic. We chose these parameter settings because they gener-
ally gave coherent and meaningful topics for our dataset after our
manual validation.

4.2 Settings

4.2.1 Preliminary
To evaluate the prediction models, we removed the tweets that

had no replies/retweets) for replier/retweeter prediction, which re-
sulted in two final datasets: 1) the tweet-reply dataset containing
215.165M tweets and 446.910M replies, 2) the tweet-retweet dataset
containing 29.348M tweets and 38.152M retweets, which indicated
that these users interacted with their friends more by replying than
retweeting.

For both the replier prediction and retweeter prediction, we con-
ducted a 10-fold cross validation for all the compared models. In
each fold, we used 6 parts for training, 2 parts for validation, and
the remaining 2 parts for testing. The validation set was used to
tune the hyper-parameters of the learning algorithms, such as the
combination coefficient in RankingSVM and the number of trees
in LambdaMART, and then we fixed the parameters to train the
models using the training set. The test set was used to evaluate the
performance of the trained models. Note that all the reported results
are the average performances over the 10 trials.

Furthermore, in order to evaluate the temporal effect on the per-
formance, i.e., the temporality dynamics, we performed experiments
using a batch training mode. We equally segmented the data ac-
cording to the time that the tweet (i.e., query) was posted into 6
segments where each segment contains the data in a period of about
8.5 months. For each segment, we used the previous segment as the
training (60%) and validation (40%) set, and the current segment as
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the test set (note that the first segment was only used for burning
up).

4.2.2 Baselines
To the best of our knowledge, there is no existing model that can

predict both repliers and retweeters for a given tweet. Nonetheless,
we compared our method against the following related state-of-the-
art approaches.

• Social, Topical, and Activity features based model (STA) [29].
In this approach, a logistic regression model is trained to determine
whether a user will or will not reply to another user, using a set of
social features (such as the common friends), topical features (such
as the topical similarity of tweets), and activity features (such as the
number of previous replies). “List” related features in this model
were not available for our dataset because Sina Weibo does not have
the “List” feature that Twitter does (the comparable function in Sina
Weibo is the social “groups,” which are only visible to the users
themselves).

• Homophily-based Graphical model (HG) [35]. In this graphical
model, the tie strength between dyadic users is a latent variable
solely dependent on the similarity of user profiles. The interactions
between users (such as replies, retweets, and tags) are impacted by
the latent tie strength.

Since both STA and HG are binary classifiers that can not directly
be used for prediction, we obtained their prediction results by rank-
ing the output probabilities for each classified instance.

4.2.3 Criteria
Given a test set with m tweets q1, q2, . . . , qm (as queries), the

predicted result for qi is represented by a ranked list πi for i =
1, 2, . . . ,m. We evaluated the results for binary judgment, using
the following criteria for all the compared methods:

• Topmost Accuracy (Acc). This measures the ratio of successfully
predicted repliers/retweeters to the number of tweets, i.e.,

Acc =

‖
m∑
i=1

δ{l
π
−1
i

(1)
=1}‖

m
, (12)

where δ{·} is the indicator function and l· is the label of a user
(replier/retweeter is labeled 1 and non-replier/non-retweeter is la-
beled 0).

• Mean Average Precision (MAP). The Average Precision for tweet
qi, denoted as APi, is calculated by

APi =

m∑
k=1

P@k · δ{l
π
−1
i

(k)
=1}

Ri
, P@k =

∑
t≤k

δ{l
π
−1
i

(t)
=1}

k

where Ri is the number of actual repliers/retweeters of the tweet qi.
MAP is the average over all APi for i = 1, 2, . . . ,m.

• Normalized Discounted Cumulative Gain (NDCG). This is a widely-
adopted measurement for evaluating ranking quality. The Discounted
Cumulative Gain (DCG) at position k for a query with ranked result
π is given by

DCG@k =

k∑
j=1

G(lπ−1(j))

log(1 + j)
, (13)

where G(·) is the gain function (we set G(x) = 2x − 1 in our ex-
periments). Then NDCG@k is calculated by normalizing DCG@k

with its maximum value (i.e., replacing π with the ideal ranking in
Eq. (13)).

For evaluating the sequence of repliers/retweeters (ordinal rele-
vance scale), we also employed the NDCG metric, where we la-
beled the first replier/retweeter with 3, the second replier/retweeter
with 2, the third and latter repliers/retweeters with 1, and non-
repliers/non-retweeters were still labeled 0. Furthermore, we re-
place l

π−1
i (1)

= 1 in Eq. (12) with l
π−1
i (1)

= 3 (which is a stricter

metric) to evaluate whether a model was able to identify the actual
first replier/retweeter in Sec. 4.3.2.

4.2.4 Ranking Functions
We evaluated the following models for training the ranker (Sec. 3.4).

LogisticRegression is a widely used model for binary classifica-
tion that can also be considered a pointwise approach in the learning-
to-rank framework [19]. The ranking function is defined as follows:

f(x) = Pr(y = 1|x) = 1

1 + e−c−〈w,x〉 , (14)

where w is the weight vector for the feature vector x, which is esti-
mated using maximum likelihood estimation.

RankingSVM [16] is a pairwise approach that applies the SVM on
pairwise training instances, so as to learn a linear ranking function
f(x) = 〈w,x〉, where the weight feature w is trained by minimiz-
ing the regularized hingle loss function, given by

1

2
‖w‖2 + C

∑
(i,j)∈P

[〈w,xi − xj〉]+, (15)

where [x]+ = max(0, 1− x), and (i, j) ∈ P means candidate i is
preferred over candidate j.

LambdaMART [34] is a listwise approach, which learns a combi-
nation of regression trees as the ranking function, denoted as

f(x) =

T∑
i=1

αifi(x), (16)

where each fi(x) is a regression tree over the features. Lamb-
daMart is trained by empirically optimizing IR measures such as
NDCG directly, which has shown excellent performance on several
real-world ranking problems including the 2010 Yahoo! Learning-
to-Rank Challenge.

In the evaluation, we label the results of our model by consider-
ing the dynamic tie strength using the above ranking functions as
DTS1, DTS2, and DTS3, respectively.

4.3 Results

4.3.1 Predicting the Replier/Retweeter
Figure 6 presents the NDCG over k for replier/retweeter predic-

tions in terms of binary judgment, i.e., actual repliers and retweeters
were all considered relevant documents regardless of their order.
According to the evaluation results, our method significantly out-
performs the baseline methods, with the STA method performing
better than the HG method. For example, as depicted in Figure 6(a),
even the worst ranking function of our method DTS1 improves the
NDCG@1 of STA with 0.15. Note that both DTS1 and STA em-
ploy Logistic Regression. However, DTS1 considers more dynamic
features such as reciprocal rank, sentiment, self-disclosure, and re-
sponsiveness. Furthermore, we found that the DTS3 model, which
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Figure 6: NDCG@k in terms of binary judgment
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Figure 7: Acc in terms of binary judgment
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Figure 8: MAP in terms of binary judgment

is a listwise learning algorithm achieving the highest performance
in terms of NDCG@k for k = 1, 2, . . . , 6.

Figure 6(b) similarly presents the corresponding results for retweeter
prediction. Overall, we observe that all algorithms show better per-
formance compared with replier prediction, while the dynamic fea-
tures demonstrate the advantage again. As mentioned earlier in
Sec. 4.2.1, users retweet their friends less often than they reply.
This finding is also in coherence with previous studies, which sug-
gest that retweeting is more driven by the content while replying is
more related to social relationships [21, 29].

Figure 7 and Figure 8 show the Topmost Accuracy and MAP in
the batch training mode. The results show that our methods that
consider the dynamic tie strength between dyadic relations reveal
higher predictive power for both replier and retweeter. Furthermore,
the results of our method (for all the ranking functions) are more
stable than competing approaches. For ACC and MAP, the three
ranking functions achieve similar performances.

We further conducted greedy forward selection to investigate the
contribution of different features in our model using the best per-
former, DTS3. As presented in Table 2 (NDCG@1 and NDCG@3
are presented as examples while the results for k = 1, 2, . . . , 6
show similar patters), every type of feature improves the NDCG
measurement. The responsiveness shows critical improvement for
replier prediction and topic affinity shows the most important im-
provement for retweeter prediction. As more and more dynamic
features are incorporated, the NDCG is monotonically increased.

4.3.2 Predicting the Replier/Retweeter Sequence
Figure 9 shows the evaluation results of NDCG and Acc respec-

tively in terms of ordinal relevance scale. It is clear that the NDCG
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Figure 9: NDCG@k in terms of ordinal relevance scale
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Figure 10: Acc in terms of ordinal relevance scale

results of all the compared models are lower than the previous re-
sults, which indicates that predicting the order of repliers and retweet-
ers is much more challenging. For example, NDCG@1 of both
STA and DTS3 are about 0.15 lower than the binary judgment case.
However, the dynamic models still perform better than the base-
lines, suggesting that the subtle dynamics of tie strength are faith-
fully reflected in users’ online interaction behaviors. Besides this,
we found that the advantage of DTS3 over the other two ranking
functions is more significant when the order of replying/retweeting
is considered. On average, DTS3 improves the NDCG with 0.16
gain for replier prediction and 0.19 gain for retweeter prediction
over STA.

Figure 10 presents the Topmost Accuracy for replier and retweeter
prediction. Note that, the Topmost Accuracy here is stricter than
the previous Acc measurement, since the prediction for a query is
considered correct only if a model output the actual first replier or
retweeter, while the Acc in the binary judgment case considers all
repliers as correct. According to the results, DTS3 model achieves
the best performance with an Acc higher than 0.6, and the gap be-
tween DTS3 with other methods (including other ranking functions)
are much more prominent than in the previous binary judgment set-
ting. The contributions of different features were also studied us-
ing DTS3 and reported in Table 3. Similar patterns are shown as
the previous for replier prediction, which suggest the difference be-
tween users’ replying and retweeting behaviors and reveal the pre-
dictive power of tie strength dynamics on predicting repliers and
retweeters.

5. RELATED WORK

5.1 Estimation of Tie Strength
The strength of social ties has been studied for decades in so-

cial science. In 1973, Granovetter [11] explicitly defined the tie
strength as the “combination of amount of time, the emotional in-
tensity, the intimacy, and the reciprocal services which character-
ize the tie,” and suggested using the frequency of interaction to es-
timate tie strength, which was later adopted by many subsequent
studies [30, 22].

The proliferation of digital communications brought the oppor-
tunity to estimate tie strength with large-scale communication data.
For example, using mobile phone logs, Onnela et al. [26] studied
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Table 2: NDCG w.r.t features in terms of binary relevance
P: profile affinity, T: topic affinity, R: reciprocity
r: responsiveness, S: sentiment, D: self-disclosure

replier retweeter

Method NDCG@1 NDCG@3 Method NDCG@1 NDCG@3

P 0.786 0.735 P 0.858 0.808
Pr 0.832 0.781 PT 0.908 0.881
PrR 0.854 0.819 PTR 0.934 0.921
PrRT 0.886 0.842 PTRr 0.948 0.933
PrRTD 0.905 0.855 PTRrD 0.960 0.945
PrRTDS 0.919 0.866 PTRrDS 0.969 0.950

Table 3: NDCG w.r.t features in terms of relevance scale
P: profile affinity, T: topic affinity, R: reciprocity
r: responsiveness, S: sentiment, D: self-disclosure

replier retweeter

Method NDCG@1 NDCG@3 Method NDCG@1 NDCG@3

P 0.623 0.693 P 0.626 0.677
Pr 0.664 0.740 PT 0.679 0.730
PrR 0.703 0.764 PTR 0.710 0.772
PrRT 0.736 0.785 PTRr 0.739 0.795
PrRTD 0.750 0.799 PTRrD 0.758 0.809
PrRTDS 0.761 0.808 PTRrDS 0.769 0.821

the local and global structure of a society-wide communication net-
work and identified that social networks are robust to the removal
of strong ties but fall apart after a phase transition if the weak ties
are removed. Roth et al. [28] proposed a measurement termed “In-
teraction Rank” to model the group-level tie strength, where the
interactions were weighted by recency to measure the tie strength,
and outflowing interactions were considered to be more indicative
than inflowing interactions.

Recently, online social networks has rapidly developed. There
has been increasing interest in measuring the tie strength in online
social networks [8, 35, 13, 17]. Gilbert and Karahalios [8] proposed
a set of variables to classify strong ties and weak ties using Face-
book data. Later, Gilbert [7] applied similar approaches to Twitter
data and found that the Facebook tie strength model can generally
be applied to Twitter. With Linkedin data, Xiang et al. [35] pro-
posed a graphical model to learn the tie strength of a dyadic rela-
tionship. In this model, the tie strength is a latent variable directly
determined by profile similarity and the interaction behaviors are
conditionally independent given the tie strength. Wiese et al. [33]
studied the sharing behaviors of online social networks and found
that frequency of communication can predict both tie strength and
willingness to share. Jones et al. [17] identified strong ties using
Facebook interaction data, and compared with the ground truth ob-
tained from users’ self-reported data, where they found that interac-
tion frequency is more indicative than profile attributes for estimat-
ing tie strength, regardless of whether the interactions are public or
private.

Our work differs from existing approaches in the following ways:
1) We focus on mining the dynamics of tie strength from social in-
teraction data in terms of various aspects such as temporality, con-
textuality, and reciprocity; 2) We have developed a learning-to-rank
approach to predict interaction behaviors in online social networks
by considering the dynamics of tie strength.

5.2 Prediction of Online Social Interactions
Wang and Huberman [32] addressed the predictability of online

social interactions by measuring conditional entropy and mutual in-
formation with data from Epinions (a consumer review site) and

Whrrl (a location-based social network), and suggested that strong
deterministic components were embedded in social interactions.

Recently, a number of models have been proposed to predict var-
ious types of social interactions in online networks. Xiang et al.
[35] proposed a generative model to estimate the occurrence of cer-
tain interactions such as posting on Facebook Walls. Macskassy
and Michelson [21] investigated the motifs of users’ retweeting be-
haviors on Twitter and proposed different models: general model,
content model, homophily model, and recency model, where the
content-based propagation was found to be better at explaining retweet-
ing behavior. Replying behavior was also studied in several litera-
tures [13, 29]. In contrast to retweeting behavior, replying is found
to be more driven by tie strength and homophily, e.g., Schantl et al.
[29] proposed a regression model combining a set of topical and
social factors. Using this model, they found that social features are
more indicative of user replying behavior. However, this model is
only capable of classifying whether a user will reply to another user
without considering the effect of current tweet, i.e., the prediction
results are identical for different tweets posted by a user.

In this work, we aim to predict multiple types of interactions (re-
ply/retweet) with a general framework, and we focus on the pre-
dictions at a finer granularity. First, a key difference between our
model and previous ones (such as STA and HG) is that unlike ex-
isting ones which provide predictions at user-level, our model is at
tweet-level, i.e., previous models will generate the same prediction
for different tweets posted by a user while our model incorporates
dynamic features such as the content of a tweet and the context of a
user, which are crucial because users’ replying and retweeting be-
haviors are typically affected by these factors.

Second, almost all existing models [35, 21, 29] assume that the
user reads all tweets posted by her friends (shown on the user’s own
timeline) and is equally available to interact with others, which is
unrealistic. Instead, by reconstructing users’ timelines and analyz-
ing their historical interaction behavior, we propose the responsive-
ness measure to explicitly consider a user’s availability, tendencies
and capacity to consume a tweet and respond to their friends. Fi-
nally, in contrast to previous approaches that consider only binary
situations (replier/non-replier, retweeter/non-retweeter), our model
is able to predict the order of repliers/retweeters by employing a
learning-to-rank framework.

6. CONCLUSION
In this paper, we have addressed the dynamics of tie strength and

social interactions from multiple aspects, and developed a compre-
hensive framework to predict repliers and retweeters given a tweet
posted by a user at a certain time. Extensive evaluations were per-
formed to validate the effectiveness of our method. As a result, the
proposed model considering a variety of dynamic features signif-
icantly outperforms state-of-the-art methods. While the dynamics
of tie strength show compelling predictive power for online social
interactions, we have also been concerned with some potential limi-
tations in this work, e.g., the sampling bias of the dataset. However,
we believe that the friendship dynamics in online social networks
will bring more and more attention in both industry and academia,
and have a profound impact on many high-value applications, such
as online communication, social recommendation, and viral mar-
keting.
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