
Proactive Threshold Wallets
With Offline Devices

Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, Omer Shlomovits

This Work

This Work

• We study proactive security where dishonest majority speaks during
refresh, rest stay offline and “catch up” later

This Work

• We study proactive security where dishonest majority speaks during
refresh, rest stay offline and “catch up” later

• Formalize notion of unanimous erasure

This Work

• We study proactive security where dishonest majority speaks during
refresh, rest stay offline and “catch up” later

• Formalize notion of unanimous erasure

• (2,n) setting: novel protocol native to mode of operation for wallets,
shown practical via implementation

This Work

• We study proactive security where dishonest majority speaks during
refresh, rest stay offline and “catch up” later

• Formalize notion of unanimous erasure

• (2,n) setting: novel protocol native to mode of operation for wallets,
shown practical via implementation

• (t,n) setting: prove it’s impossible to achieve unanimous erasure in
standard model (even given trusted setup, ledger)

𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄 𝗌𝗄′

Multi-Sig

𝗉𝗄𝖠, 𝗌𝗄𝖠

𝗉𝗄𝖡, 𝗌𝗄𝖡

𝗉𝗄𝖢, 𝗌𝗄𝖢

Disadvantages

Disadvantages

• No Anonymity (org structure revealed)

• Size is linear in party count

• Not drop-in replacement

𝗌𝗄𝖠𝗌𝗄𝖢

Threshold Signature

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)

𝗌𝗄𝖠 𝗌𝗄𝖢

Threshold Signature

𝗌𝗄𝖡

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)

𝗌𝗄𝖠 𝗌𝗄𝖢

Threshold Signature

𝗌𝗄𝖡

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)

𝗌𝗄𝖠 𝗌𝗄𝖢

Threshold Signature

𝗌𝗄𝖡

𝗉𝗄

{𝗌𝗄𝖠, 𝗌𝗄𝖡, 𝗌𝗄C} ← Share(𝗌𝗄)

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

𝗉𝗄

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

𝗉𝗄

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

𝗉𝗄

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

𝗉𝗄

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗌𝗄𝖥

𝗉𝗄

3-of-n Signature Scheme

𝗌𝗄𝖡

𝗌𝗄𝖠

𝗌𝗄𝖢

𝗌𝗄𝖣

𝗌𝗄𝖤

𝗉𝗄

𝗌𝗄 𝗌𝗄′

𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄′ 𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON

𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE

𝗌𝗄𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE
𝗌𝗄

𝗌𝗄′

WED

𝗌𝗄𝗌𝗄

𝗌𝗄′

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE
𝗌𝗄

𝗌𝗄′

WED

𝗌𝗄

𝗌𝗄′

𝗌𝗄′ 𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE
𝗌𝗄

𝗌𝗄′

WED

𝗌𝗄′

𝗌𝗄′ 𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE
𝗌𝗄

𝗌𝗄′

WED

𝗌𝗄′

𝗌𝗄′ 𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄

𝗌𝗄′

MON
𝗌𝗄

𝗌𝗄′

TUE
𝗌𝗄

𝗌𝗄′

WED

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄′ T

𝗌𝗄T

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄′ T

𝗌𝗄T

𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄′ T

𝗌𝗄T

𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

𝗌𝗄′ W

WED
𝗌𝗄W

𝗌𝗄′ W+𝗌𝗄W= 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄′ T

𝗌𝗄T

𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

𝗌𝗄′ W

WED
𝗌𝗄W

𝗌𝗄′ W+𝗌𝗄W= 𝗑

𝗌𝗄

𝗌𝗄′

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑

𝗌𝗄′ T

𝗌𝗄T

𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

𝗌𝗄′ W

WED
𝗌𝗄W

𝗌𝗄′ W+𝗌𝗄W= 𝗑

𝗌𝗄W

𝗌𝗄W𝗌𝗄W

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑 𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

WED

𝗌𝗄′ W+𝗌𝗄W= 𝗑𝗌𝗄W𝗌𝗄W

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑 𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

WED

𝗌𝗄′ W+𝗌𝗄W= 𝗑𝗌𝗄W𝗌𝗄W ? ?? ?

𝗌𝗄

𝗌𝗄′

MON TUE

𝗌𝗄+𝗌𝗄′ = 𝗑 𝗌𝗄T 𝗌𝗄′ T+ = 𝗑

WED

𝗌𝗄′ W+𝗌𝗄W= 𝗑𝗌𝗄W𝗌𝗄W ? ?? ?

2 Equations in 3 variables
???

Proactive Security

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

- Asynchronous networks [CKLS02]

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

- Asynchronous networks [CKLS02]

- Threshold signatures [HJJKY97, ADN06]

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

- Asynchronous networks [CKLS02]

- Threshold signatures [HJJKY97, ADN06]

- Dishonest majority [EOPY18, CMP20]

Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

- Asynchronous networks [CKLS02]

- Threshold signatures [HJJKY97, ADN06]

- Dishonest majority [EOPY18, CMP20]

- Dynamic committees [MZWLZJS19]

What Gap Do We Address?

What Gap Do We Address?
• In order to progress, in all prior works:

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online }Not ideal for (t,n) wallets

➡ t to sign but 2t to refresh

➡ Inconvenient

➡ More correlated risk

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online

• We study: refresh where dishonest majority speaks

}Not ideal for (t,n) wallets

➡ t to sign but 2t to refresh

➡ Inconvenient

➡ More correlated risk

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online

• We study: refresh where dishonest majority speaks

}Not ideal for (t,n) wallets

➡ t to sign but 2t to refresh

➡ Inconvenient

➡ More correlated risk

- Correct definition is subtle

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online

• We study: refresh where dishonest majority speaks

}Not ideal for (t,n) wallets

➡ t to sign but 2t to refresh

➡ Inconvenient

➡ More correlated risk

- (2,n) setting: Efficient new protocol native to wallets

- Correct definition is subtle

What Gap Do We Address?
• In order to progress, in all prior works:

- Either honest majority must speak

- Or everyone comes online

• We study: refresh where dishonest majority speaks

}Not ideal for (t,n) wallets

➡ t to sign but 2t to refresh

➡ Inconvenient

➡ More correlated risk

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

- Correct definition is subtle

This Work

- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

This Work

- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

This Work

- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

This Work

- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

Defining Offline Refresh

Defining Offline Refresh

f ← ℤq[x]
Degree 1

Defining Offline Refresh

f0

f ← ℤq[x]
Degree 1

Defining Offline Refresh

f0
f1

f ← ℤq[x]
Degree 1

1

Defining Offline Refresh

f0
f1

f2

f ← ℤq[x]
Degree 1

1 2

Defining Offline Refresh

f0
f1

f2 f3

f ← ℤq[x]
Degree 1

1 2 3

Defining Offline Refresh

f0

f1 f2

f3

Defining Offline Refresh

f0

f1 f2

f3

𝗌𝗄 = f0

Defining Offline Refresh

f0

f1 f2

f3

𝗌𝗄 = f0
Enough information to:

- Sign with two online

- Recover from a crash

Defining Offline Refresh

f0

f1
f2

f3

𝗌𝗄 = f0

Defining Offline Refresh

f0

f1
f2

f3

𝗌𝗄 = f0

MON

Defining Offline Refresh

f0

f1
f2

f3

𝗌𝗄 = f0

h1

h2

h3TUEMON

Defining Offline Refresh

f0

f1
f2

f3

𝗌𝗄 = f0 𝗌𝗄 = h0 = f0

h1

h2

h3TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3

h1

h2

TUEMON

Defining Offline Refresh

f1
f2

f3

h1

h2

TUEMON

Defining Offline Refresh

f1
f2

f3

h1

h2

h3TUEMON

Defining Offline Refresh

f1
f2

f3

h1

h2

h3TUEMON

SUCCESS

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

FAIL

Defining Offline Refresh

f1
f2

f3

f1
f2

TUEMON

FAIL

Defining Offline Refresh

f1
f2

f3

f1
f2

TUEMON

FAIL

Defining Offline Refresh

f1
f2

f3

f1
f2

f3TUEMON

FAIL

Defining Offline Refresh

h1

h2

h3T

SUCCESS

f1
f2

f3T

FAIL

Defining Offline Refresh

h1

h2

h3T

SUCCESS

f1
f2

f3T

FAIL

Defining Offline Refresh

h1

h2

h3T

SUCCESS

f1
f2

f3T

FAILHMMMMMM

Defining Offline Refresh

f1
f2

f3 TUEMON

Defining Offline Refresh

f1
f2

f3 TUEMON

FAIL

Defining Offline Refresh

f1
f2

f3 TUEMON

FAIL

f2
f1

FAIL

Defining Offline Refresh

f1
f2

f3 TUEMON

FAIL

f2
f1

FAIL

Defining Offline Refresh

f1
f2

f3 TUEMON

FAIL

f2
f1

FAIL

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL

SUCCESS

f2
f1

FAIL

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL

SUCCESS

f2
f1

FAIL

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL

SUCCESS

f1
FAIL

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL

SUCCESS

f1
FAIL

Secret key lost forever

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL f1
FAIL

FAIL

FAILAgree to

Defining Offline Refresh

f1
f2

f3 h3TUEMON

FAIL f1
FAIL

FAIL

FAILAgree to
i.e. Unanimous Erasure

This Work
- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

• We formulate unanimous erasure

This Work
- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

• We formulate unanimous erasure

Challenge: 2PC is Unfair

f1
f2

f3

Challenge: 2PC is Unfair

f1
f2

f3

Challenge: 2PC is Unfair

f1
f2

f3

Challenge: 2PC is Unfair

f1
f2

f3

Challenge: 2PC is Unfair

f1
f2

f3

Challenge: 2PC is Unfair

f1
f2

f3

δ2δ1

Challenge: 2PC is Unfair

f1
f2

f3

δ2δ1

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2δ1

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2δ1

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

SUCCESS (unanimous erasure)

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

SUCCESS (unanimous erasure)

Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

SUCCESS

Challenge: 2PC is Unfair

f1
f2

f3

δ2

SUCCESS (unanimous erasure)

Lesson: must be sufficientδ2
(Equivalently)δ1

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

FAIL

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2

Challenge: 2PC is Unfair

f1
f2

f3

δ2

Lesson: must be sufficientδ2

FAIL

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2

Challenge: 2PC is Unfair

f1
f2

f3

δ2

Lesson: must be sufficientδ2

FAIL

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2

Challenge: 2PC is Unfair

f1
f2

f3

δ2

Lesson: must be sufficientδ2

FAIL

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2Will
on waking up?

SUCCEED

Challenge: 2PC is Unfair

f1
f2

f3
Lesson: must be sufficientδ2

FAIL

2 party computation
(2PC) protocol 

with outputs , .δ1 δ2
2PC is UNFAIR

is delivered before δ1δ2Will
on waking up?

FAIL

Towards a Solution

f1
f2

f3

Towards a Solution

f1
f2

f3

LEDGER

Towards a Solution

f1
f2

f3

LEDGER
δ1 δ2

Towards a Solution

f1
f2

f3

LEDGER
δ1 δ2

No ambiguity about
what will see on

waking up

Towards a Solution

f1
f2

f3

LEDGER
δ1 δ2

No ambiguity about
what will see on

waking up

Solves unanimous erasure,
but kills privacy

General Problem Flavour

General Problem Flavour
• P2P channels convey information privately, but

can’t be verified

General Problem Flavour
• P2P channels convey information privately, but

can’t be verified
• Public channels can be verified but can’t convey

private information

General Problem Flavour
• P2P channels convey information privately, but

can’t be verified
• Public channels can be verified but can’t convey

private information
• Our approach: use P2P channels to convey

and ledger to achieve consensus on whether or not
to use them.

δ1, δ2

General Problem Flavour
• P2P channels convey information privately, but

can’t be verified
• Public channels can be verified but can’t convey

private information
• Our approach: use P2P channels to convey

and ledger to achieve consensus on whether or not
to use them.

• Public and private values are linked via nonces of
sigs created by interleaved threshold signing

δ1, δ2

ECDSA / Schnorr

ECDSA / Schnorr

Discrete logarithm based signatures

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

𝔾

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

𝔾 ℤq

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

Signatures: (R, σ)
𝔾 ℤq

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

Signatures: (R, σ)
𝔾 ℤq

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

Signatures: (R, σ)
𝔾 ℤq

ECDSA / Schnorr

Discrete logarithm based signatures

X = x ⋅ GPublic key:

Signatures: (R, σ)
𝔾 ℤq

Random

Threshold ECDSA/Schnorr

Threshold ECDSA/Schnorr

Threshold ECDSA/Schnorr

Threshold ECDSA/Schnorr

Threshold ECDSA/Schnorr

R

Threshold ECDSA/Schnorr

R

Threshold ECDSA/Schnorr

R

Threshold ECDSA/Schnorr

R

σ

1

Threshold ECDSA/Schnorr

R

σ

1

2

Threshold ECDSA/Schnorr

R

σ

1

2

Threshold ECDSA/Schnorr

R

σ

1

Threshold ECDSA/Schnorr

R

1

Threshold ECDSA/Schnorr

R
FAIL

1

Threshold ECDSA/Schnorr

R
FAIL

Signatures: (R, σ)

1

Threshold ECDSA/Schnorr

R
FAIL

Signatures: (R, σ)σ

1

Threshold ECDSA/Schnorr

R
FAIL

Signatures: (R, σ)σ

No advantage in
computing this

1

Threshold ECDSA/Schnorr

R
FAIL

Signatures: (R, σ)σ

No advantage in
computing this

Achieved by most
natural thresh Schnorr
and ECDSA schemes

[DKLs19, GG18,
LNR18, GJKR07]

1

2

Threshold ECDSA/Schnorr

R

σ

1

2

Interleaved Threshold Signing

R

σ

1

2

Interleaved Threshold Signing

R

σ

δδ

1

2

Interleaved Threshold Signing

R

σ

δδ

𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

1

2

Interleaved Threshold Signing

R

σ

δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

2 σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,

SUCCESS
(after tx,R appears

on LEDGER)

SUCCESS
(after tx,R appears

on LEDGER)

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,

SUCCESS
(after tx,R appears

on LEDGER)

SUCCESS
(after tx,R appears

on LEDGER)

LEDGER

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,

SUCCESS
(after tx,R appears

on LEDGER)

SUCCESS
(after tx,R appears

on LEDGER)

LEDGER

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,

SUCCESS
(after tx,R appears

on LEDGER)

SUCCESS
(after tx,R appears

on LEDGER)

LEDGER

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,
SUCCESS

SUCCESS
(after tx,R appears

on LEDGER)

SUCCESS
(after tx,R appears

on LEDGER)

LEDGER

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R𝗌𝗂𝗀δ,R

f3

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,
SUCCESS

SUCCESS
(after tx,R appears

on LEDGER)

Native: this was going
on the ledger anyway

SUCCESS
(after tx,R appears

on LEDGER)

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ
𝗍𝗑, R, σ

δ
𝗌𝗂𝗀δ,R

δ
𝗌𝗂𝗀δ,RR, R,

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ
𝗍𝗑, R, σ

δ
𝗌𝗂𝗀δ,R

δ
𝗌𝗂𝗀δ,RR, R,

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ

δ
𝗌𝗂𝗀δ,R

δ
𝗌𝗂𝗀δ,RR, R,

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

δ
𝗌𝗂𝗀δ,R

δ
𝗌𝗂𝗀δ,RR, R,

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

δ
𝗌𝗂𝗀δ,RR,

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

δ
𝗌𝗂𝗀δ,RR,

LEDGER will never
receive valid

signature under R
(Phase 2 never run)

Reuse negligibly likely

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

δ
𝗌𝗂𝗀δ,RR,

LEDGER will never
receive valid

signature under R
(Phase 2 never run)

Reuse negligibly likely

Useless

1

Interleaved Threshold Signing

R
δ 𝗌𝗂𝗀δ,R

f3

LEDGER

δ
𝗌𝗂𝗀δ,RR,

LEDGER will never
receive valid

signature under R
(Phase 2 never run)

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

2 σ
𝗍𝗑, R, σδ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R

R, R,

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

Case 1:
never posts

𝗍𝗑, R, σ to ledger

Never used

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

Case 1:
never posts

𝗍𝗑, R, σ to ledger

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

Case 2:
does post

𝗍𝗑, R, σ to ledger𝗍𝗑, R, σ

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

Case 2:
does post

𝗍𝗑, R, σ to ledger𝗍𝗑, R, σ

SUCCESS

SUCCESS

1

Interleaved Threshold Signing

R
δδ 𝗌𝗂𝗀δ,R

f3

LEDGER

σ

δ δ𝗌𝗂𝗀δ,R 𝗌𝗂𝗀δ,R
R, R,

Case 2:
does post

𝗍𝗑, R, σ to ledger𝗍𝗑, R, σ

SUCCESS

SUCCESS

Unanimous
erasure

Implementation

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

Thanks Jack Doerner!

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

Thanks Jack Doerner!

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

• ECDSA on secp256k1 (Bitcoin’s curve) including
novel OT Multiplier state refresh

Thanks Jack Doerner!

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

• ECDSA on secp256k1 (Bitcoin’s curve) including
novel OT Multiplier state refresh

• Experiments on Amazon’s AWS EC2 using t3.small

Thanks Jack Doerner!

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

• ECDSA on secp256k1 (Bitcoin’s curve) including
novel OT Multiplier state refresh

• Experiments on Amazon’s AWS EC2 using t3.small

• Computation overhead: <25%

Thanks Jack Doerner!

Implementation
• Augmented existing implementations of (2,n) ECDSA

[DKLs19, GG18]

• ECDSA on secp256k1 (Bitcoin’s curve) including
novel OT Multiplier state refresh

• Experiments on Amazon’s AWS EC2 using t3.small

• Computation overhead: <25%

• Communication: 200 bytes, no extra rounds

This Work
- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

• We formulate unanimous erasure

• New interleaved threshold sig technique

• Offline parties can miss arbitrary number of epochs

• Implementation shows practicality

This Work
- Correct definition is subtle

- (2,n) setting: Efficient new protocol native to wallets

- (t,n) setting: Impossible!

• Guaranteed progress is impossible

• We formulate unanimous erasure

• New interleaved threshold sig technique

• Offline parties can miss arbitrary number of epochs

• Implementation shows practicality

Background

Background
• Usually VSS/DKG in a given setting translates to

equivalent proactive secret sharing

Background
• Usually VSS/DKG in a given setting translates to

equivalent proactive secret sharing

• VSS/DKG where only t parties speak (with t-1
corrupt) is known to be feasible [GMW91]

Background
• Usually VSS/DKG in a given setting translates to

equivalent proactive secret sharing

• VSS/DKG where only t parties speak (with t-1
corrupt) is known to be feasible [GMW91]

• Indicates intuition that (t,n) proactivization with
offline refresh should be solvable with heavy tools

Background
• Usually VSS/DKG in a given setting translates to

equivalent proactive secret sharing

• VSS/DKG where only t parties speak (with t-1
corrupt) is known to be feasible [GMW91]

• Indicates intuition that (t,n) proactivization with
offline refresh should be solvable with heavy tools

• Intuition turns out to be wrong!

Intuition: (3,4) case

Intuition: (3,4) case

Intuition: (3,4) case

Intuition: (3,4) case

TUEMON

Intuition: (3,4) case

MON

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

View
indistinguishable
from honest case

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

View
indistinguishable
from honest case

SUCCESS

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case

MON

Assumption:
secure against corruption
of two parties

View
indistinguishable
from honest case

SUCCESS

SUCCESS
By unanimous

erasure

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case
Assumption:
secure against corruption
of two parties

MON

Claim:
View of has enough info
for to refresh

Intuition: (3,4) case
Assumption:
secure against corruption
of two parties

MON

Corollary:
Corrupting on

Gives secrets of on

MON

TUE

Claim:
View of has enough info
for to refresh

Even after uncorruption

Intuition: (3,4) case
Assumption:
secure against corruption
of two parties

MON

Corollary:
Corrupting on

Gives secrets of on

MON

TUE

Claim:
View of has enough info
for to refresh

General Attack Strategy

MON

General Attack Strategy

MON
TUE

General Attack Strategy

MON
TUE

Can derive state of on TUE even after refresh

General Attack Strategy

MON
TUE

Two corrupt parties + 1 derived state = (3,4) broken
Can derive state of on TUE even after refresh

See the paper for…

See the paper for…

• Refreshing Multiplier/OT Extension state for
ECDSA signing (hint: Beaver’s OT correlation trick)

See the paper for…

• Refreshing Multiplier/OT Extension state for
ECDSA signing (hint: Beaver’s OT correlation trick)

• Benchmarks of overhead added by (2,n) refresh to
existing ECDSA implementation Thanks Jack Doerner!

See the paper for…

• Refreshing Multiplier/OT Extension state for
ECDSA signing (hint: Beaver’s OT correlation trick)

• Benchmarks of overhead added by (2,n) refresh to
existing ECDSA implementation

• Discussions of definition, full proofs

Thanks Jack Doerner!

Thanks!
eprint.iacr.org/2019/1328

(email me for most recent version)
ykondi@ccs.neu.edu

Thanks Eysa Lee for

mailto:ykondi@ccs.neu.edu
mailto:ykondi@ccs.neu.edu
Yashvanth Kondi

Yashvanth Kondi

