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• We study proactive security where dishonest majority speaks during 
refresh, rest stay offline and “catch up” later

• Formalize notion of unanimous erasure

• (2,n) setting: novel protocol native to mode of operation for wallets, 
shown practical via implementation

• (t,n) setting: prove it’s impossible to achieve unanimous erasure in 
standard model (even given trusted setup, ledger)
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Proactive Security
• Conceived by Ostrovsky & Yung (PODC ’91)

• Many follow-ups for a variety of scenarios

- Asynchronous networks [CKLS02]

- Threshold signatures [HJJKY97, ADN06]

- Dishonest majority [EOPY18, CMP20]

- Dynamic committees [MZWLZJS19]
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Enough information to:

- Sign with two online

- Recover from a crash
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f3

LEDGER
δ1 δ2

No ambiguity about 
what       will see on 

waking up

Solves unanimous erasure, 
but kills privacy
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General Problem Flavour
• P2P channels convey information privately, but 

can’t be verified
• Public channels can be verified but can’t convey 

private information
• Our approach: use P2P channels to convey          

and ledger to achieve consensus on whether or not 
to use them.

• Public and private values are linked via nonces of 
sigs created by interleaved threshold signing

δ1, δ2
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Discrete logarithm based signatures

X = x ⋅ GPublic key:

Signatures: (R, σ)
𝔾 ℤq

Random
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Threshold ECDSA/Schnorr

R
FAIL

Signatures: (R, σ)σ

No advantage in 
computing this

Achieved by most 
natural thresh Schnorr 
and ECDSA schemes

[DKLs19, GG18, 
LNR18, GJKR07]
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[DKLs19, GG18]

• ECDSA on secp256k1 (Bitcoin’s curve) including 
novel OT Multiplier state refresh

• Experiments on Amazon’s AWS EC2 using t3.small

• Computation overhead: <25%

• Communication: 200 bytes, no extra rounds
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Background
• Usually VSS/DKG in a given setting translates to 

equivalent proactive secret sharing

• VSS/DKG where only t parties speak (with t-1 
corrupt) is known to be feasible [GMW91]

• Indicates intuition that (t,n) proactivization with 
offline refresh should be solvable with heavy tools

• Intuition turns out to be wrong!
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MON
TUE

Two corrupt parties + 1 derived state = (3,4) broken
Can derive state of        on TUE even after refresh
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• Refreshing Multiplier/OT Extension state for 
ECDSA signing (hint: Beaver’s OT correlation trick)

• Benchmarks of overhead added by (2,n) refresh to 
existing ECDSA implementation

• Discussions of definition, full proofs

Thanks Jack Doerner!
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