Threshold ECDSA
from ECDSA assumptions

Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat

j@ckdoerner.ne t ykondi@ccs.neu.edu eysa@ccs.neu.edu abhi@neu.edu

Northeastern University

Appeared at IEEE S&P 18 and ’19

Multi-Sig \‘/

= e

Disadvantages \‘/

NO Anonymity
Size Is linear in party count

Not compatible with other useful protocols
(e.g. web protocols, binary authentication)

Threshold Signature

{sk,, skg, skc} < Share(sk)

Threshold Signature

{sk,, skg, skc} < Share(sk)

sk o

Threshold Signature

{sk,, skg, skc} < Share(sk)

Threshold Signature

{sky, skg, skc} < Share(sk) INDISTIN 6 U1SHABLE

FRoM ORDI/NARY
g)\& — S\GNATVURE

pk Wg?/

sk~

3-of-n Signature Scheme
o, /{@
O @ D,

sk~

\\

3-of-n Sighature Scheme

k

sk, % §_\k @
. @ O’

sk~

3-of-n Sighature Scheme

sk

/\~

- \Sk R
sk\. @ U

sk~

3-of-n Sighature Scheme

sk

2\
k\ O}LD

3-of-n Sighature Scheme

3-of-n Sighature Scheme

oy %)

Full Threshold

 Scheme can be instantiated with any t <= n

* Adversary corrupts up to t-1 parties

Notation

Notation

Elliptic curve parameters G d

Notation

Elliptic curve parameters G d

Secret values Sk k

Notation

Elliptic curve parameters G d
Secretvalues Sk Kk

Public values pk R

Schnorr Signatures

SchnorrSign(sk, m) :
k<2,

Schnorr Signatures

SchnorrSign(sk, m) :
k<2,

R=k-G

: “
i X Cwig

Schnorr Signatures

SchnorrSign(sk, m) :
k<2,

R=k-G
e = H(R||m)

: “
i X Cwig

Schnorr Signatures

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R||m)

s=k—sk-e

: “
i X Cwig

Schnorr Signatures

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R||m)
s=k—sk-e
o= (s,e)

output o

: “
i X Cwig

Schnorr Signatures

SchnorrSign(sk, m) :
k « Z,
R=k-G

Linear function of k, sk €= H(R ”m)

Threshold friendly w. ——»

linear secret sharing o= (s,e)
%

output o

Verification

SchnorrSign(sk, m) :

k< Z, SchnorrVerity(pk, m, s, e) :
R=k-G R=5s-G+e-pk
= Hm) e = H(R|Im)
s=k—sk-e ,
c=(s,e) output e = e

output o

2P-Schnorr
ska+ skg = sk @

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o

2P-Schnorr

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G Ry=k,-G Ry=ks G
e = H(R||m)

s=k—sk-e

o= (s,e)

output o

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o

2P-Schnorr

kn < Z,

R
RB RA

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rp+—— R=R, + R;
e = H(R||m)

s=k—sk-e

o= (S,e)

output o

2P-Schnorr

SchnorrSign(sk, m) :

k<_Zq kpn < Z, kg < £,
R=k-G R=R,+ Rg+—— R=R, + R;
e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e

o= (s,e)

output o

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—5sk-e Shn = ky —skp - € sg = kg —skg - e
o= (s,e)

output o

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - e sg = kg — skg - €

c = (s,e) S><S

output o A

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - € sg = kg —skg - e
o= (s,e)

S =85, + S5g————> § =5, + 53

output o

2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - € sg = kg —skg - e
o= (s,e)

S =85, + S5g————> § =5, + 53

A A

output o

ECDSA

* Elliptic Curve Digital Signature Algorithm
e Devised by David Kravitz, standardized by NIST

e \Widespread adoption across the internet

ECDSA

* Elliptic Curve Digital Signature Algorithm
e Devised by David Kravitz, standardized by NIST

e \Widespread adoption across the internet

€« .9

e

Schnorr versus ECDSA

SchnorrSign(sk, m) :
k<2,
R=k-G
e = H(R||m)

s=k—sk-e
o= (s,e)
output o

Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = HR||m)
s=k—sk-e
o= (s,e)

output o

Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e
o= (s,e)

output o

Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,
o= (s,e) > = A

output o

Schnorr versus ECDSA

The x-coordinate of

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,
o= (s,e) > = A

output o

Schnorr versus ECDSA

The x-coordinate of

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,

§ = —-
o = (s,¢) k
output o o= (s,e)

output o

MP-ECDSA Challenges

ECDSASi1gn(sk, m) :
k«— 7 .
R=Fk-G
e = H(m)

e+sk - r,
k
o= (s,e)
output o

Sy =

MP-ECDSA Challenges

ECDSASi1gn(sk, m) :
k«— 7 .
R=Fk-G
e = H(m)

e+sk - r,
k
o= (s,e)
output o

Sy =

MP-ECDSA Challenges

ECDSASign(sk, m) :
k2,
e = H(m)
e+sk - "y

S:

0] (S , e) -‘: 4-;" N "a_~,-,;_, - | |
— Modular inverse
output o

MP-ECDSA Challenges

ECDSASi1gn(sk, m) :
k Zq

R=k-G

e = H(m) s Multiply secrets

o= (s,e) _ inverse
~—s Modular inver
output o

Threshold ECDSA

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

- [Lindell Nof Ranellucci 18]: El-Gamal based

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

- [Lindell Nof Ranellucci 18]: El-Gamal based

e Our work:

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

- [Lindell Nof Ranellucci 18]: El-Gamal based

* Our work:
- [DKLs18]: 2-of-n ECDSA under native assumptions

Threshold ECDSA

e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

- [Lindell Nof Ranellucci 18]: El-Gamal based

e Our work:

- [DKLs18]: 2-of-n ECDSA under native assumptions
- [DKLs19]: Full-Threshold ECDSA under native assumptions

Our Approach

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve

- Pros:

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a few
milliseconds

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a few
milliseconds

- Native assumptions (CDH in the same curve)

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a few
milliseconds

- Native assumptions (CDH in the same curve)

- NEW! [K-Magri-Orlandi-Shlomovits] Proactive-friendly

Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a few
milliseconds

- Native assumptions (CDH in the same curve)
- NEW! [K-Magri-Orlandi-Shlomovits] Proactive-friendly

- Con: Higher bandwidth (100s of KB/party)

Our Approach

Our Approach

e OT-MUL secure up to choice of inputs

Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):

Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):

- \erity shares in the exponent before reveal

Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):
- \erity shares in the exponent before reveal

- Costs 5 exponentiations+curve points/party

Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):
- \erity shares in the exponent before reveal
- Costs 5 exponentiations+curve points/party

- Subverting checks implies solving CDH in ECDSA curve

Tradeoffs

Tradeoffs

e Our protocol avoids expensive zero-knowledge proofs
and assumptions foreign to ECDSA itself, required by
other works In the area

Tradeoffs

e Our protocol avoids expensive zero-knowledge proofs
and assumptions foreign to ECDSA itself, required by
other works In the area

e Using OT-MUL is very light on computation, but more
demanding of bandwidth than alternative approaches;
we argue this is not an issue for many applications

Tradeoffs

e Our protocol avoids expensive zero-knowledge proofs
and assumptions foreign to ECDSA itself, required by
other works In the area

e Using OT-MUL is very light on computation, but more
demanding of bandwidth than alternative approaches;
we argue this is not an issue for many applications

e Our wall clock times (even WAN) are an order of
magnitude better than the next best concurrent work

Our Model

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)
* Functionality (trusted third party emulated by protocol):

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

e Assumption: CDH is hard in the ECDSA curve

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

e Assumption: CDH is hard in the ECDSA curve

* Network: Synchronous, broadcast

Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

e Assumption: CDH is hard in the ECDSA curve
* Network: Synchronous, broadcast

e Security with abort

Our Approach

e Setup: MUL setup, VSS for [sk]

Setup

Setup

e Fully distributed

Setup

e Fully distributed

* MUL setup: Pairwise among parties (Base OTs for OTe)

Setup

* Fully distributed
* MUL setup: Pairwise among parties (Base OTs for OTe)

 Key generation: (Pedersen-style)

Setup

* Fully distributed
* MUL setup: Pairwise among parties (Base OTs for OTe)
 Key generation: (Pedersen-style)

- Every party Shamir-shares a random secret

Setup

* Fully distributed
* MUL setup: Pairwise among parties (Base OTs for OTe)
 Key generation: (Pedersen-style)

- Every party Shamir-shares a random secret

- Secret key is sum of parties’ contributions

Setup

* Fully distributed
* MUL setup: Pairwise among parties (Base OTs for OTe)
 Key generation: (Pedersen-style)

- Every party Shamir-shares a random secret

- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the same
polynomial

Our Approach

1. Get candidate shares [k], [1/k], and R=k-G

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

Oblivious Transfer

6

b
mO, ml

Oblivious Transfer

<—b

o

Oblivious Transfer

Y
&
, °©

Mg, M ——»

Oblivious Transfer

6

—)
b

e Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi1 9]

Oblivious Transfer

6

—)
b

e Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi1 9]

e UC-secure (RO model) assuming CDH in the same curve as ECDSA

Oblivious Transfer

6

—)
b

e Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi1 9]
e UC-secure (RO model) assuming CDH in the same curve as ECDSA

 OT Extension: [Keller Orsini Scholl ’15] only needs RO

a+b=a-p

2P-MUL from OT |Gil99]

2P-MUL from OT [Gil99]

2P-MUL from OT [Gil99]

2P-MUL from OT [Gil99]
@ &

2P-MUL from OT [Gil99]
@ &

f* atpad — SAEE pad e

messages always
differ by o

Alice’s outp

Jt @ I1s the

sum of tr

az(Zp

e pads

adi)

2P-MUL from OT [Gil99]

S0b’s output b Is the
poroduct of iInputs
plus the sum of the pads

b=a+a-/p

Malicious Bob: Secure OT

(M)Alice: Selective Failure

P -

pad, ———

1
f—» a+pad, — O — padjta-
| —
Alice can use
inconsistent o 4 g4 pad
correlations
3
L. 0+ a+ pad3 E— OT

... and learn some
DE—) S bits of Bob’s input

- 5 pad-l-‘(l_y
<—ﬁ3

(M)Alice: Checks and Encoding

(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
ensures Alice must correctly guess many bits
to learn anything

(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
ensures Alice must correctly guess many bits
to learn anything

*Any s bits taken in isolation look =uniform

(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
(ensures Alice must correctly guess many bits

to learn anything
Based on [IN96]

*Any s bits taken in isolation look =uniform

(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
(ensures Alice must correctly guess many bits

to learn anything
Based on [IN96]

*Any s bits taken in isolation look =uniform

2. Check system: each additional cheat halves
probabillity of ‘getting away’

(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
(ensures Alice must correctly guess many bits

to learn anything
Based on [IN96]

*Any s bits taken in isolation look =uniform

2. Check system: each additional cheat halves
probabillity of ‘getting away’

» 2-s chance of learning more than s bits

Obtaining Candidate Shares

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

* One approach (implemented): Evaluate along binary tree

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

* One approach (implemented): Evaluate along binary tree

- Each party starts with multiplicative shares of k and 1/k

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

* One approach (implemented): Evaluate along binary tree
- Each party starts with multiplicative shares of k and 1/k

- Multiplicative to additive shares: log(t)+c rounds

Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

* One approach (implemented): Evaluate along binary tree
- Each party starts with multiplicative shares of k and 1/k
- Multiplicative to additive shares: log(t)+c rounds

e Alternative: [Bar-llan&Beaver 89| approach yields
constant round protocol (work in progress)

Our Approach

2. Compute [sk/k] = MUL([7/k], [sk])

Our Approach

2. Compute [sk/k] = MUL([7/k], [sk]) == GMW

Our Approach

3. Check relations in exponent

Check in Exponent

e There are three relations that have to be verified to
guarantee that inputs to multipliers were correct

. | sk
| K] . .

Check in Exponent

SUE
| <] . .

Check in Exponent

. | sk
| K] . .

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

Check in Exponent

. | sk
| K] . .

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

e Cost: 5 exponentiations, 5 group elements per party

independent of party count, and no ZK proofs

Check in Exponent

Check in Exponent

e Task: verify relationship between k] and [1/k]

Check in Exponent

e Task: verify relationship between k] and [1/k]

. 1 |
e |[dea: verity ’;] k] = 1 by verifying [Z] k] - G =G

Check in Exponent

Attempt at a solution:

Check in Exponent

Attempt at a solution:
Public R

Check in Exponent

Attempt at a solution:
Public R

1
Broadcast I, = l—] - R

Check in Exponent

Attempt at a solution:

Public R
1
Broadcast I, = 7| R

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh ’ G
r=|——| &
Broadcast ;= o ko i
Verify Y I=G

1€ nj

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G

1 1
[= —4c¢ | —| ‘R
Broadcast j [(kA) kh] .

Verify

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh ’ G
r 1 N 1 P
S — e € e — .
Broadcast j o ol
Verify D) Ii=G+eky -G

1€ nj

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R = kAkh y G
[. + . R
A — — € e .
Broadcast j s K .
Verify) Ii=G+eky -G

1€[n] Easy for Adv. to offset

ldea: Randomize Target

ldea: Randomize Target

e Currently we expect Z . to hit a fixed target G

ldea: Randomize Target

e Currently we expect Z . to hit a fixed target G

* ldea: randomize the multiplication so target is unpredictable

ldea: Randomize Target

e Currently we expect Z . to hit a fixed target G

* ldea: randomize the multiplication so target is unpredictable

1

e Compute é instead of | —
] e

ldea: Randomize Target

Currently we expect Z . to hit a fixed target G

Idea: randomize the multiplication so target is unpredictable

¢\ 1
Compute |—| instead of |—
k k

Reveal ¢ only after every other value is committed

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G

1 1
Broadcast , tkA khti

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G

Pa @
Broadcast |, = l—A—h - R

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=Fkk, -G
Pa Py
=22 .R
Broadcast l tkA X i

Verify Y Ti=¢., G

1€|n|

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G
Ps P,
Broadcast l tkA X i
Verify Z .=

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R — kAkh ’ G
Broadcast I, = (ﬂﬁs) ﬁ - R
K kn |

Verify

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G
Broadcast I, = <ﬂ+€ ﬁ - R
kn ki |
Verify) Ti=®+egk, - G

1€ nj

Check in Exponent

Adversary's contribution
Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh ’ G
Broadcast I, = (ﬂﬁs) ﬁ - R
kn ki |
Verify) Ti=®+egk, - G

i€[n] Completely unpredictable

Check in Exponent

Adversary's contribution
Attempt at a solution: l Honest Party's contribution

v
Public R = kAkh . G
¢ ¢
Broadcast |, = [(—A+€ 2| R
Kn kn | |
Verify) = ®+eskk, - G

i€|n] Hard to compute assuming CDH

Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

Public

Broadcast

Verify

v

I, = [(ﬁﬁs) ﬁ] ‘R
K kn |

Z Fz, = (I),+€Skhkh - G

i€|n] Hard to compute assuming CDH
(Given sk;G, kG compute sk,k,G)

Check in Exponent

There are two relations that have to be verified

[k].ll]h
| 2

o 2

Check in Exponent

There are two relations that have to be verified

Check in Exponent

There are two relations that have to be verified

Check in Exponent

There are two relations that have to be verified

R, pk
Conditioned on
correct [sk]

pk

Our Approach

4. Reconstruct sig = [1/k]-H(m)+[sk/k]

Our Approach

e Setup: MUL setup, VSS for [sk]
e Signing:
1. Get candidate shares |k], [1/k], and R=k-G
Compute [sk/k] = MUL([7/k], [sk])
Check relations in exponent Broadcast linear

combination

Reconstruct sig = [1/k]-H(m)+[sk/K] of shares

>~ W DN

e Setup: MUL setup, VSS for [sk]

e Signing:

Our Approach

Independent of

1. Get candidate shares [k], [1/k], and R=k-G message being

2. Compute [sk/k] = MUL([7/k], [sk])
3. Check relations in exponent

4. Reconstruct sig = [1/k]-H(m)+[sk/k]

signed:
ECDSA-specific
correlated
randomness
allowing one
‘online’ round

Our Approach

e Setup: MUL setup, VSS for [sk]

* Signing:

Independent of

1. Get candidate shares [k], [1/k], and R=k-G message being

signed:
2. Compute [sk/k] = MUL([7/K], [sk]) Ecgfri‘éfaﬂzg'f'c
randomness
3. Check relations in exponent allowing one

‘online’ round

4. Reconstruct sig = [1/k]-H(m)+[sk/k] "¢ eper Trom serateh

efficiency

Dominant Costs

(All costs for 256-bit elliptic curves)

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds

Setup

Signing

Dominant Costs

(All costs for 256-Dbit elliptic curves)
Rounds Public Key

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)
Rounds Public Key Bandwidth

Setup

Signing

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds

Public Key

Bandwidth

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds

Public Key

Bandwidth

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds

Public Key

520n

Bandwidth

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds

Public Key

520n

Bandwidth

21n KB

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds Public Key

Bandwidth

5 520n

21n KB

log(t)+6

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds Public Key

Bandwidth

5 520n

21n KB

log(t)+6 5

Setup

Signing

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds Public Key

Bandwidth

5 520n

21n KB

log(t)+6 5

<100t KB

Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds Public Key | Bandwidth

Setup 5 520n 21n KB

Signing log(t)+6 5 <100t KB

Journal version (in progress): 8 round signing

(a la [Bar-llan Beaver 89]))

Benchmarks

Benchmarks

* Implementation in Rust

Benchmarks

* Implementation in Rust

e Ran benchmarks on Google Cloud

Benchmarks

* Implementation in Rust
e Ran benchmarks on Google Cloud

 One node per party

Benchmarks

* Implementation in Rust
e Ran benchmarks on Google Cloud
 One node per party

e LAN and WAN tests (up to 16 zones)

Benchmarks

* Implementation in Rust
e Ran benchmarks on Google Cloud
 One node per party

e LAN and WAN tests (up to 16 zones)

* Low Power Friendliness: Raspberry P
(~93ms for 3-0f-3)

Execution Time (ms)

10000,

e
-
-
-

1000}

100}

LAN Setup

300/}

301

4 8 16 32 64
Number of Parties (n)

Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

LAN Setup

10000 —

e
-
-
-

1000}

300/}

Execution Time (ms)

100}

30—

4 3 16 32 64

Number of Parties (n)
Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

Execution Time (ms)

10000,

e
-
-
-

1000}

100}

LAN Setup

300

301

4 8 16 32 64
Number of Parties (n)

Broadcast PoK (DLog), Pairwise: 128 OTs

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

Execution Time (ms)

1000,

e
-
-

100}

LAN Signing

o
-

ek
-

4 8 16 32 64
Number of Parties (t)

128

256

WAN Nodes

7.1 ms
665m
235 ms

348 ms

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

3/5 9 233 328

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

16/16 10 3045 1676

WAN Benchmarks

All time values in milliseconds

Parties/Zones Signing Rounds Signing Time Setup Time

128/16 13 4118 3424

Comparison

All time figures Iin milliseconds

Signing
Protocol t = 2 t = 20
This Work 9.5 31.6
GG18 77 509

LNRIS 304 5194

Note: Our figures are wall-clock
times; includes network costs

Comparison

All time figures Iin milliseconds

Protocol

This Work
GG18
[LNRI18% ~11000 ~28000

Note: Our figures are wall-clock
times; includes network costs

|s communication the bottleneck?

|s communication the bottleneck?

* Mobile applications (human-initiated):

/

|s communication the bottleneck?

* Mobile applications (human-initiated):

|s communication the bottleneck?

/

* Mobile applications (human-initiated):

- eg. t=4, <4Mb transmitted per party

|s communication the bottleneck?

/

* Mobile applications (human-initiated):
- eg. t=4, <4Mb transmitted per party

- Well within LTE envelope for responsivity

|s communication the bottleneck?
B B E

|s communication the bottleneck?
B B E

o Large-scale automated distributed signing:

|s communication the bottleneck?

.2 B

o Large-scale automated distributed signing:

|s communication the bottleneck?

.2 B

o Large-scale automated distributed signing:

- Threshold 2: 3.8ms/sig <= ~263 sig/second

|s communication the bottleneck?

.2 B

o Large-scale automated distributed signing:
- Threshold 2: 3.8ms/sig <= ~263 sig/second
- Threshold 20: 31.6ms/sig <= ~31 sig/second

|s communication the bottleneck?

.2 B

o Large-scale automated distributed signing:
- Threshold 2: 3.8ms/sig <= ~263 sig/second
- Threshold 20: 31.6ms/sig <= ~31 sig/second
e Both settings need <500Mbps bandwidth

Special Case: 2-of-n

e IDKLs18]: Specialized protocol when t=2
e Only one party gets output

e Weaker functionality: Other party can
rejection-sample public nonce R

Result

s

=1 Rtp-ky-G 'Y =gG-1"-R
n? = HT)+4) = n?—HITD)
o
kg
2 — tﬁ(\l) : pk—tf\z) . G (% — téZ) .G —6-pk
Sp = tA(\l) : H(m)+t£\2) - T, sp=0- H(m)+té2) - T,

n® = HIT®)+s, ———— 5 =n"— HTW)+s,

% G
%) sk a skg @ g%

R'=kj- Dy «——————— Dy=ks-G

ky = H(R')+k;\\

R=k, D, R =HR') - Da+ R’

=R+ -ky-G ' =gG-1"-R
n? = HT'W)+¢ ¢ = n?—HITW)
n — (1) @

— O\
%) sk a skg @ g%
/(_ Z

’ Dg =k -G
R,=kA°DB<— B B

ky = H(R')+k;\\

Message 1

Two message
protocol!

Message 2

Special Case: 2-of-n

e Key differences:
- Instance key k multiplicative (Diffie-Hellman ex.)
- Alice has ‘final say’ for nonce R

- Check messages serve as encryption keys

-i.e. Instead of verifying I , + 15, = ¢, Alice
sends Encr, (o4) to Bob to conditionally reveal
her signature share o,

Conclusion

Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

e Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

e Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

e |Instantiation: Cryptographic assumptions native to ECDSA itself
(CDH in the same curve)

Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

e Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

e |Instantiation: Cryptographic assumptions native to ECDSA itself
(CDH in the same curve)

e Lightweight computation but communication well within
practical range (<100t KB/party)

Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

e Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

e |Instantiation: Cryptographic assumptions native to ECDSA itself
(CDH in the same curve)

e Lightweight computation but communication well within
practical range (<100t KB/party)

e Wall-clock times: Practical in realistic scenarios

Thank you!

eprint.iacr.org/2019/523

