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NO Anonymity
Size Is linear in party count

Not compatible with other useful protocols
(e.g. web protocols, binary authentication)
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Full Threshold

 Scheme can be instantiated with any t <= n

* Adversary corrupts up to t-1 parties
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Elliptic curve parameters G d
Secretvalues Sk Kk

Public values pk R
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Schnorr Signatures

SchnorrSign(sk, m) :
k « Z,
R=k-G

Linear function of k, sk €= H(R ”m)

Threshold friendly w. ——»

linear secret sharing o= (s,e)
%

output o



Verification

SchnorrSign(sk, m) :

k< Z, SchnorrVerity(pk, m, s, e) :
R=k-G R=5s-G+e-pk
= Hm) e = H(R|Im)
s=k—sk-e ,
c=(s,e) output e = e

output o



2P-Schnorr
ska+ skg = sk @

SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o



SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o

2P-Schnorr



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G Ry=k,-G Ry=ks G
e = H(R||m)

s=k—sk-e

o= (s,e)

output o



SchnorrSign(sk, m) :

k<—Zq
R=k-G
e = H(R|[m)
s=k—sk-e
o= (s,e)

output o

2P-Schnorr

kn < Z,

R
RB RA



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rp+—— R=R, + R;
e = H(R||m)

s=k—sk-e

o= (S,e)

output o



2P-Schnorr

SchnorrSign(sk, m) :

k<_Zq kpn < Z, kg < £,
R=k-G R=R,+ Rg+—— R=R, + R;
e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e

o= (s,e)

output o



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—5sk-e Shn = ky —skp - € sg = kg —skg - e
o= (s,e)

output o



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - e sg = kg — skg - €

c = (s,e) S><S

output o A



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - € sg = kg —skg - e
o= (s,e)

S =85, + S5g————> § =5, + 53

output o



2P-Schnorr
sk a skg @

SchnorrSign(sk, m) :

k<2, kn < Z, ks < Z,
R=k-G R=R,+ Rg+—— R=R, + R;

e = H(R||m) e = H(R||m) e = H(R||m)
s=k—sk-e Sn = kp —ska - € sg = kg —skg - e
o= (s,e)

S =85, + S5g————> § =5, + 53

A A

output o
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e Devised by David Kravitz, standardized by NIST

e \Widespread adoption across the internet

€« .9

e



Schnorr versus ECDSA

SchnorrSign(sk, m) :
k<2,
R=k-G
e = H(R||m)

s=k—sk-e
o= (s,e)
output o



Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = HR||m)
s=k—sk-e
o= (s,e)

output o



Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e
o= (s,e)

output o



Schnorr versus ECDSA

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,
o= (s,e) > = A

output o



Schnorr versus ECDSA

The x-coordinate of

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,
o= (s,e) > = A

output o




Schnorr versus ECDSA

The x-coordinate of

SchnorrSign(sk, m) : ECDSASi1gn(sk, m) :
k<2, k<2,
R=k-G R=k-G
e = H(R||m) e = H(m)
s=k—sk-e e+sk - r,

§ = —-
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output o o= (s,e)
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MP-ECDSA Challenges

ECDSASign(sk, m) :
k2,
e = H(m)
e+sk - "y

S:

0 ] (S , e) -‘: 4-;" N "a_~,-,;_, - | |
— Modular inverse
output o




MP-ECDSA Challenges

ECDSASi1gn(sk, m) :
k Zq

R=k-G

e = H(m) s Multiply secrets

o= (s,e) \_ inverse
~—s Modular inver
output o
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e | imited schemes based on Paillier encryption: [MacKenzie
Reiter 04], [Gennaro Goldfeder Narayanan 16], [Lindell 17]

* Practical key generation and efficient signing (full threshold):
- [Gennaro Goldfeder 18]: Paillier-based

- [Lindell Nof Ranellucci 18]: El-Gamal based

e Our work:

- [DKLs18]: 2-of-n ECDSA under native assumptions
- [DKLs19]: Full-Threshold ECDSA under native assumptions
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Our Approach

o 2-party multipliers: Oblivious Transfer in ECDSA curve
- Pros:

- With OT Extension (no extra assumptions) just a few
milliseconds

- Native assumptions (CDH in the same curve)
- NEW! [K-Magri-Orlandi-Shlomovits] Proactive-friendly

- Con: Higher bandwidth (100s of KB/party)
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Our Approach

e OT-MUL secure up to choice of inputs

e Light consistency check (unique to our protocol):
- \erity shares in the exponent before reveal
- Costs 5 exponentiations+curve points/party

- Subverting checks implies solving CDH in ECDSA curve
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Tradeoffs

e Our protocol avoids expensive zero-knowledge proofs
and assumptions foreign to ECDSA itself, required by
other works In the area

e Using OT-MUL is very light on computation, but more
demanding of bandwidth than alternative approaches;
we argue this is not an issue for many applications

e Our wall clock times (even WAN) are an order of
magnitude better than the next best concurrent work
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Our Model

* Universal Composability [Canetti '01] (static adv., global RO)

* Functionality (trusted third party emulated by protocol):
-Store secret key
-Compute ECDSA signature when enough parties ask

e Assumption: CDH is hard in the ECDSA curve
* Network: Synchronous, broadcast

e Security with abort
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Setup

* Fully distributed
* MUL setup: Pairwise among parties (Base OTs for OTe)
 Key generation: (Pedersen-style)

- Every party Shamir-shares a random secret

- Secret key is sum of parties’ contributions

- Verify in the exponent that parties’ shares are on the same
polynomial
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Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]
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e Instantiation: “Verified” Simplest Oblivious Transfer [Chou&Orlandi1 9]
e UC-secure (RO model) assuming CDH in the same curve as ECDSA

 OT Extension: [Keller Orsini Scholl ’15] only needs RO
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2P-MUL from OT [Gil99]
@ &

f* atpad — SAEE pad e

messages always
differ by o




Alice’s outp

Jt @ I1s the

sum of tr

az(Zp

e pads

adi)

2P-MUL from OT [Gil99]

S0b’s output b Is the
poroduct of iInputs
plus the sum of the pads

b=a+a-/p
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(M)Alice: Selective Failure
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(M)Alice: Checks and Encoding

1. High-entropy encoding of Bob’s input
( ensures Alice must correctly guess many bits

to learn anything
Based on [IN96]

*Any s bits taken in isolation look =uniform

2. Check system: each additional cheat halves
probabillity of ‘getting away’

» 2-s chance of learning more than s bits
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Obtaining Candidate Shares

e Building Block: Two party MUL with full security
IDKLs18]

* One approach (implemented): Evaluate along binary tree
- Each party starts with multiplicative shares of k and 1/k
- Multiplicative to additive shares: log(t)+c rounds

e Alternative: [Bar-llan&Beaver 89| approach yields
constant round protocol (work in progress)
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Check in Exponent

e There are three relations that have to be verified to
guarantee that inputs to multipliers were correct

. | sk
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. | sk
| K] . .

* Technique: Each equation is verified in the exponent,

using ‘auxiliary’ information that’s already available

e Cost: 5 exponentiations, 5 group elements per party

independent of party count, and no ZK proofs
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e Task: verify relationship between k] and [1/k]

. 1 |
e |[dea: verity ’;] k] = 1 by verifying [Z] k] - G =G
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Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
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Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

v
Public R = kAkh y G
[ . + . R
A — — € e .
Broadcast j s K .
Verify ) Ii=G+eky -G

1€[n] Easy for Adv. to offset
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ldea: Randomize Target

Currently we expect Z . to hit a fixed target G

Idea: randomize the multiplication so target is unpredictable

¢\ 1
Compute |—| instead of |—
k k

Reveal ¢ only after every other value is committed
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Adversary's contribution

Attempt at a solution: l Honest Party's contribution
v

Public R=Fkk, -G
Pa Py
=22 .R
Broadcast l tkA X i

Verify Y Ti=¢., G
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Adversary's contribution

Attempt at a solution: l Honest Party's contribution
' v

Public R — kAkh ’ G
Broadcast I, = <ﬂ+€ ﬁ - R
kn ki |
Verify ) Ti=®+egk, - G

1€ nj



Check in Exponent

Adversary's contribution
Attempt at a solution: l Honest Party's contribution

v
Public R — kAkh ’ G
Broadcast I, = (ﬂﬁs) ﬁ - R
kn ki |
Verify ) Ti=®+egk, - G

i€[n]  Completely unpredictable
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Check in Exponent

Adversary's contribution

Attempt at a solution: l Honest Party's contribution

Public

Broadcast

Verify

v

I, = [(ﬁﬁs) ﬁ] ‘R
K kn |

Z Fz, = (I),+€Skhkh - G

i€|n] Hard to compute assuming CDH
(Given sk;G, kG compute sk,k,G )
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Check in Exponent

There are two relations that have to be verified

R, pk
Conditioned on
correct [sk]

pk
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Our Approach

e Setup: MUL setup, VSS for [sk]
e Signing:
1. Get candidate shares |k], [1/k], and R=k-G
Compute [sk/k] = MUL([7/k], [sk])
Check relations in exponent Broadcast linear

combination

Reconstruct sig = [1/k]-H(m)+[sk/K] of shares

>~ W DN



e Setup: MUL setup, VSS for [sk]

e Signing:

Our Approach

Independent of

1. Get candidate shares [k], [1/k], and R=k-G message being

2. Compute [sk/k] = MUL([7/k], [sk])
3. Check relations in exponent
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Our Approach

e Setup: MUL setup, VSS for [sk]

* Signing:

Independent of

1. Get candidate shares [k], [1/k], and R=k-G message being

signed:
2. Compute [sk/k] = MUL([7/K], [sk]) Ecgfri‘éfaﬂzg'f'c
randomness
3. Check relations in exponent allowing one

‘online’ round

4. Reconstruct sig = [1/k]-H(m)+[sk/k] "¢ eper Trom serateh

efficiency
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Dominant Costs

(All costs for 256-bit elliptic curves)

Rounds Public Key | Bandwidth

Setup 5 520n 21n KB

Signing log(t)+6 5 <100t KB

Journal version (in progress): 8 round signing

(a la [Bar-llan Beaver 89]))
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* Implementation in Rust
e Ran benchmarks on Google Cloud
 One node per party

e LAN and WAN tests (up to 16 zones)

* Low Power Friendliness: Raspberry P
(~93ms for 3-0f-3)
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WAN Nodes

7.1 ms
665m
235 ms
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WAN Benchmarks

All time values in milliseconds

Parties/Zones  Signing Rounds  Signing Time  Setup Time

128/16 13 4118 3424
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Comparison

All time figures Iin milliseconds

Protocol

This Work
GG18
[LNRI18% ~11000 ~28000

Note: Our figures are wall-clock
times; includes network costs
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|s communication the bottleneck?

/

* Mobile applications (human-initiated):
- eg. t=4, <4Mb transmitted per party

- Well within LTE envelope for responsivity
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|s communication the bottleneck?

.2 B

o Large-scale automated distributed signing:
- Threshold 2: 3.8ms/sig <= ~263 sig/second
- Threshold 20: 31.6ms/sig <= ~31 sig/second
e Both settings need <500Mbps bandwidth



Special Case: 2-of-n

e IDKLs18]: Specialized protocol when t=2
e Only one party gets output

e Weaker functionality: Other party can
rejection-sample public nonce R
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Message 1

Two message
protocol!

Message 2



Special Case: 2-of-n

e Key differences:
- Instance key k multiplicative (Diffie-Hellman ex.)
- Alice has ‘final say’ for nonce R

- Check messages serve as encryption keys

-i.e. Instead of verifying I , + 15, = ¢, Alice
sends Encr, (o4) to Bob to conditionally reveal
her signature share o,
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Conclusion

o Efficient full-threshold ECDSA with fully distributed keygen

e Paradigm: ‘produce candidate shares, verify by exponent check’
costs 5 exponentiations (+ many hashes) to sign, no ZK online

e |Instantiation: Cryptographic assumptions native to ECDSA itself
(CDH in the same curve)

e Lightweight computation but communication well within
practical range (<100t KB/party)

e Wall-clock times: Practical in realistic scenarios



Thank you!

eprint.iacr.org/2019/523



