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ABSTRACT

Common Larceny is an implementation of Scheme for Mi-
crosoft’s Common Language Runtime (CLR), which is part
of .NET. Common Larceny interoperates with other CLR
languages using the JavaDot notation of JScheme, gener-
ating the JavaDot interfaces just in time via reflection, and
caching them for performance. All other differences between
Common Larceny, Petit Larceny, and Larceny derive from
differences in the compiler’s target language and architec-
ture: IL/CLR, ANSI C, or machine code. The Larceny
family therefore offers a case study in the suitability of these
target architectures for Scheme.

1. INTRODUCTION

Common Larceny is a new implementation of Scheme for
Microsoft’s Common Language Runtime (CLR), which is
the execution engine for .NET [11].

Common Larceny is the third in a family of implementations
that use my Twobit compiler [5]. The original implementa-
tion, which was named Larceny because that’s what “Lars’s
implementation” begins to sound like after you've said it
enough times, was used for research that tested algorithms
for compiler optimization, first class continuations, and gen-
erational garbage collection [5, 6, 12, 13, 14, 16]. Larceny
generated native code for the SPARC, and did not run on
other architectures.

After Larceny was released in 1999, Lars Hansen wrote a
new back end that generated moderately portable C code
instead of SPARC machine code. This implementation was
named Petit Larceny, and will be released for the first time
this summer.

Common Larceny is a port of Petit Larceny to Microsoft’s
CLR. It generates Microsoft’s Common Intermediate Lan-
guage (IL) instead of C, has a runtime system written in
C+#, and provides JavaDot notation for interoperation with
other CLR languages [1].

This paper describes the design and implementation of Com-
mon Larceny, emphasizing issues that arose from mismatches
between the semantics of Scheme and the semantics of the
Common Language System. The paper concludes with some
rough preliminary data on the relative performance of the
Larceny and PLT Scheme (DrScheme) families, mainly to
show how strongly a compiler’s target language can affect
performance.

2. DESIGN GOALS
2.1 Goal: Interoperability

Unlike Larceny, which was conceived as a research imple-
mentation, Common Larceny is intended for writing real
programs that run under .NET. This goal implies interop-
erability with other CLR languages.

2.2 Goal: Compatibility

At the same time, we want Common Larceny to remain
compatible with Petit Larceny at the source level. This
goal implies full support for Scheme’s first class procedures,
first class continuations, the full numeric tower, proper tail
recursion, and so on. This degree of compatibility made the
port easier and less risky, and should simplify the job of
maintaining Common Larceny over time.

We also want to improve compatibility between the Larceny
family of implementations and the PLT Scheme family, which
includes DrScheme and MzScheme [18]. The PLT Scheme
family emphasizes ease of use, pedagogy, tools for static
and dynamic debugging, programming environment, graph-
ical user interface, and most of the other things that pro-
grammers have come to expect from their programming lan-
guage. Perhaps the main shortcoming of PLT Scheme is its
performance: the entire system is based on an interpreter.
That interpreter is fairly fast as interpreters go, and there
is a MzC compiler that delivers worthwhile improvements
for some modules, but PLT Scheme generally cannot match
the performance of compiler-based implementations such as
Stalin, Bigloo, Gambit, Chez Scheme, or the original version
of Larceny.

A reasonable degree of compatibility between the Larceny
family and the PLT Scheme family would accomplish two
things: (1) programs developed in PLT Scheme, but in need
of more speed, could be ported to Petit Larceny; and (2)
programs developed in PLT Scheme could take advantage
of the facilities provided by .NET via Common Larceny.



class System.0bject.class

constructor

(System.Collections.Hashtable. 100)

dynamic method

(.ContainsKey ht key)

static method

(System.String.op_equality "abc" "def")

instance field (fetch)
instance field (assign)

(.name$ x)
(set-.name$ x "Solomon'")

static field

(Scheme.Rep.SFixnum.maxPreAlloc$)

Table 1: JavaDot syntax

We had hoped to port DrScheme to Common Larceny, but
that turned out to require translation of several hundred
thousand lines of C and C++ code into Scheme. (Much of
this code appears to have been written in C/C++ out of fear
that it wouldn’t have run fast enough had it been written
in Scheme and interpreted. We can’t just leave the C/C++
code alone because much of it is low-level code that talks
directly to the garbage collector or to other components that
look very different in Common Larceny.) Joe Marshall has
automated most of the syntactic translation from C/C++

to Scheme, but it is still necessary to clean up the translated
code by hand.

2.3 Goal: Performance

We didn’t expect Common Larceny to run as fast as Pe-
tit Larceny, but we hoped it would be at least as fast as
MzScheme, which is about twice as fast as DrScheme.

3. JAVADOT

Despite many minor differences, Microsoft’s Common Lan-
guage Runtime is fundamentally similar to the Java Virtual
Machine, so interoperation with the CLR languages is fun-
damentally the same problem as interoperation with Java.

Instead of reinventing a wheel, we implemented the JavaDot
notation designed by Ken Anderson and Tim Hickey for
JScheme [1]. As illustrated in Table 1, JavaDot notation
uses a set of lexical conventions to refer to the names of
classes, constructors, static fields and methods, and dynamic
instance fields and methods:

o Identifiers that end in .class name a class.

e Identifiers that end with a period name a constructor
for the class whose name precedes the final period.

o Identifiers that begin with a period name dynamic
methods.

e Identifiers that contain embedded periods name static
methods.

o Identifiers that begin with a period and end with a
dollar sign name a procedure that returns the value of
a dynamic instance field.

e Identifiers that do not begin with a period but end

with a dollar sign name a procedure that returns the
value of a static field.

For example, a Scheme programmer would write

(let ((ht (System.Collections.Hashtable. 100)))

(if (.ContainsKey ht key)
D)
.2

where a C# programmer would write

System.Collections.Hashtable ht
= new System.Collections.Hashtable (100);

if (ht.ContainsKey (key)) {

}

Scheme has no static type system, so the semantics of calling
a method from Scheme is slightly different from the seman-
tics of calling it from C#. In Scheme, the runtime types of
the arguments are used to resolve the method, whereas the
static types of the argument expressions would be used in
C#. This difference seldom matters, but a less convenient
mechanism can be used when it does matter.

The JavaDot notation is implemented by a collaboration be-
tween the read procedure, which marks symbols that have
special significance when JavaDot notation is enabled; the
macro expander, which rewrites JavaDot notation into calls
to the runtime support for JavaDot; and the runtime sup-
port for JavaDot, which uses the CLR’s reflection features
to locate the System.Collections.Hashtable class and the
ContainsKey method of the example above, transforming
the arguments from their Scheme representation to the rep-
resentation expected by the constructor and method, and
transforming the results back into the appropriate Scheme
representation. JavaDot interfaces and marshalling code are
generated just in time, but are cached for efficiency.

Here is an interactive example of JavaDot notation:

> System.0Object.class
#<System.RuntimeType System.Object>

> (.GetType System.0Object.class)
#<System.RuntimeType>

> (define x (Scheme.Rep.Factory.makeFixnum 17))

; Note: x is not a fixnum.
; X is a Scheme representation of the C# object



; that represents the Scheme fixnum 17.
; That C# object has an intValue() method
; and a value field.

> (.intValue x)

17

> (.value$ x)

17

> (set-.value$! x 24)

Error: CLR-INSTANCE-FIELD-SETTER not found: value

The error occurs because the value field (of the C# object
that represents a Scheme fixnum) is const.

Procedures written in Scheme can be passed to C# and
called from C#. This callback pattern is common in .NET
libraries.

4. IMPLEMENTATION

The Twobit compiler translates Scheme expressions or files
into the assembly language for a euphonious but hypotheti-
cal MacScheme machine. Apart from guidance provided by
a few tables, this part of the compilation process is the same
for Larceny, Petit Larceny, and Common Larceny.

In Common Larceny, the MacScheme machine assembly code
is translated into Microsoft’s Intermediate Language (IL).
This translation involves some peephole optimization, but
not as much as in Larceny or Petit Larceny. At load time,
the IL is JIT-compiled to native code by the CLR.

Microsoft’s IL is at about the same level as MacScheme ma-
chine language, but IL was designed to implement a radi-
cally different style of language. This fact is responsible for
most of the differences, apart from JavaDot, between Petit
Larceny and Common Larceny.

4.1 Compilation in Petit Larceny
Here is the definition of a Scheme procedure that allocates
test inputs for a sorting benchmark:

(define (rgen n m)
(let loop ((m n) (1 °0)))
(if (zero? n)
1
(loop (- n 1) (cons (random m) 1)))))

The Twobit compiler macro-expands and alpha-renames this
definition, performs various optimizations such as closure
analysis and incremental lambda-lifting (which will add m
as a new argument to the loop procedure), and eventually
converts the definition into the A-normal form shown in Fig-
ure 1. Twobit’s code generator then translates that form
into MacScheme machine assembly language, which looks
like this:

L1001
.proc
reg/opl/branchf internal:branchf-zero?,2,1004
reg/return 3

L1004
save 3
store 0,0
store 1,3
store 3,2
reg/op2imm/setreg internal:-/imm,2,1,7
store 7,1
setrtn 1006
global/invoke random,1
.align 4
L1006
.cont
load 0,0
setreg 7
load 2,1
load 6,2
reg/op2/setreg internal:comns,7,6,3
load 1,3
pop 3
branch 1001,3

In Larceny, this is assembled directly to native code. In
Common Larceny, a slightly different version of it is trans-
lated into IL. In Petit Larceny, a slightly different version of
it is translated into the C code shown in Figure 2. That C
code is just a sequence of calls to C preprocessor macros that
macro-expand the MacScheme machine instructions into C
statements that perform the actions associated with those
instructions.

4.2 Mismatchesbetween SchemeandtheCLR

Scheme is an unusual language in several ways [15]:

e Scheme is purely object-oriented in the rather basic
sense that all values are objects.

e Scheme performs integer arithmetic, instead of arith-
metic modulo 27V,

e Scheme provides first class continuations, instead of
try/catch/finally.

e Scheme is block-structured and higher-order.

e Scheme guarantees the asymptotic space complexity of
tail recursion [7].

The CLR is an unusual target machine in several ways:

e Unions of value and reference types are not expressible.

e Exceptions must follow a simple try/catch/finally
model.

e Managed code cannot inspect the control stack.

e There is no support for block structure.

These properties of Scheme and the CLR interact in several
unfortunate ways.



(let* ((.T14 (lambda (.nl1 .ml1)
(define .loopl9
(lambda (.m|3|28 .n|10 .1[10)
(let ((.T2 (zero? .nl10)))
(if .T2
.1110
(let* ((.T5 (- .nl10 1))

(.T7 (random .m|3|28))

(.REG2 .T5)

(.REG3 (coms .T7 .1]10)))
(.loopl9 .m|3|28 .REG2 .REG3))))))

(let* ((.REG1 .ml1) (.REG2 .nl1))
(.1loopl9 .REG1 .REG2 ’()))))
(.T15 (set! rgen .T14)))
’rgen)

Figure 1: A-normal form of the rgen procedure.

twobit_label( 1001, compiled_block_2_1001 );
twobit_reg( 2 );

twobit_opl_branchf_612( 2, compiled_temp_2_2, 1004, compiled_block_2_1004 ); /# internal:branchf-zero? */

twobit_reg( 3 );

twobit_return();

twobit_label( 1004, compiled_block_2_1004 );
twobit_save( 3 );

twobit_store( 0, 0 );

twobit_store( 1, 3 );

twobit_store( 3, 2 )
twobit_reg( 2 );
twobit_op2imm_131( fixnum(1), 3, compiled_temp_2_3 ); /* - */
twobit_setreg( 15 );

twobit_store( 15, 1 );

twobit_global( 1 ); /# random */

twobit_setrtn( 1006, compiled_block_2_1006 );

twobit_invoke( 1 );

twobit_label( 1006, compiled_block_2_1006 );

twobit_load( 0, 0 );

twobit_setreg( 15 );

twobit_load( 2, 1 );

twobit_load( 14, 2 );

twobit_reg( 15 );

twobit_op2_58( 14 ); /* cons */

twobit_setreg( 3 );

twobit_load( 1, 3 );

twobit_pop( 3 );

twobit_branch( 1001, compiled_block_2_1001 );

Figure 2: C code generated for the rgen procedure.



4.3 Representation of Values
Consider the addition of 1 to an integer variable x. On the
SPARC, (+ x 1) compiles into something like

0 taddcc Y%ril, 4, Yresult

4 bvc,a #32

8 (DELAY SLOT)

12 sub Yresult, 4, %result

16 or %g0, %rl, Jresult

20 jmpl %globals + 1096, %o7 !+
24 or g0, 4, hargreg2

where the first two instructions finish the job most of the
time, and the remaining instructions are executed only when
x is large. The simplicity and efficiency of this code relies
upon a representation of exact integers as the union of two
types, fixnum and bignum, where fixnums are immediate
values whose two low-order bits are zero, and bignums are
tagged pointers whose two low-order bits are not both zero.

That union cannot be expressed by Microsoft’s Common
Type System. More generally, the representation of Scheme
values as a union of primitive types (fixnum, boolean, char-
acter) and pointer or reference types (most other types) can-
not be expressed in the CLR target architecture, so we are
forced to use a less desirable representation.

In Common Larceny, all Scheme values are represented as
instances of a SchemeObject class (not its real name). Some
instances—booleans, the most common characters, and the
smallest exact integers—are preallocated.

This representation—like all other representations that were
available to us—is bad for interoperability. Every call be-
tween Scheme and some other language will require transla-
tion of data between Scheme’s pure OO representation and
the representation used in other CLR languages. This trans-
lation can be performed automatically, but it is going to be
inefficient.

Furthermore the standard debuggers provided by Visual Stu-
dio.NET and other development environments are likely to
display booleans and numbers as pointers.

4.4 Control Structure

Smalltalk-80 provides block contexts [10]. Common Lisp
provides continuable exceptions [19]. Scheme provides first
class continuations [15]. None of these advanced control
structures fit into the simple try/catch/finally model pro-
vided by the CLR, and we can’t implement these control
structures in the usual ways because managed code cannot
examine the control stack [8].

When we were designing Common Larceny, we thought it
would be impossible to implement first class continuations
while using the CLR control stack. Because compatibility
with certain other implementations of Scheme was an ex-
plicit design goal, we implemented our own control stack.

That too is bad for interoperability. We can’t use the CLR,
convention with our own control stack, so inter-language

nboyer:4
Petit Larceny (nasm) [N
Petit Larceny (C) ]
MzScheme |
DrScheme |
sboyer:5
Petit Larceny (nasm) N
Petit Larceny (C) .
MzScheme |
DrScheme |
sort:1e6
Petit Larceny (nasm) [N
Petit Larceny (C) I
MzScheme |
DrScheme |
Table 2: Relative performance (longer bars are

faster) for three benchmarks in Petit Larceny when
compiled to native Pentium code (nasm) or C, and
in interpreted MzScheme and DrScheme. Compil-
ing to IL in Common Larceny delivers performance
similar to that of MzScheme.

and intra-language calls must use two different calling con-
ventions. This is not as bad as it sounds, because we were
already forced to translate data on every inter-language call,
but it does have some additional consequences for debug-
ging. Standard debuggers will not be able to display the
Scheme control stack, and will not work properly when trac-
ing or stepping Scheme code.

After most of Common Larceny had been implemented, three
different researchers made independent discovery of a clever
technique that would have allowed us to implement Scheme’s
first class continuations while using the standard CLR con-
trol stack with a slightly non-standard calling convention
[17]. This technique works only in implementations that
have certain special properties, but Common Larceny has
those properties. The technique was discovered too late for
Common Larceny, but may be of use to other implemen-
tors. In particular, the technique could be used to imple-
ment Common Lisp’s continuable exceptions.

4.5 Block Structureand Tail Recursion

The CLR’s lack of support for block structure did not affect
Common Larceny because the Twobit compiler uses lambda
lifting and closure conversion to convert most non-global
variables into local variables, and allocates all remaining
non-local variables on the heap anyway [5].

The CLR provides a tail. modifier to assist with the im-
plementation of tail recursion, but we couldn’t use it in the
intended way because we aren’t using the standard calling
convention. At present, we use the tail. modifier for all
intra-language calls, whether tail or non-tail, but a more
conventional trampoline might be faster.

5. RELATIVE PERFORMANCE

From the limited benchmarking we have done so far, Com-
mon Larceny’s JIT-compiled IL appears to run about as
fast as interpreted MzScheme, which is usually about twice



as fast as DrScheme.

We would like to use a single machine to compare the per-
formance of Larceny, Petit Larceny, and Common Larceny,
but Larceny runs only on a SPARC, and the current version
of Common Larceny runs only in Microsoft’s CLR under
Windows. Lars Hansen has written a native code generator
for the Intel Pentium, but it runs only under Linux at the
moment.

In Figure 2 we compromise by showing the relative per-
formance of Hansen’s native code generator (nasm), Petit
Larceny, MzScheme, and DrScheme. The performance of
MzScheme can be assumed to approximate that of Common
Larceny.

All three benchmarks shown in Figure 2 were run on a 2.8
GHz Linux machine with one gigabyte of memory. The
nboyer:4 benchmark is a modernized version of the old
boyer benchmark from Gabriel’s suite, with an exponen-
tial scale factor suggested by Bob Boyer [2, 3, 4, 9]. The
sboyer:5 benchmark is the next larger version of the same
benchmark but with Baker’s shared consing, which reduces
gc time. The sort:1e6 benchmark uses an efficient merge-
sort routine to sort a list of one million fixnums.

6. STATUSAND FUTURE WORK

Common Larceny is currently in alpha release. We are fixing
bugs, improving documentation, and simplifying the com-
pile and build cycles so non-wizards can use them. The
interpreter is very slow at present, but will eventually be
replaced by incremental compilation to IL and on to native
code.

Petit Larceny is being released for several non-Intel plat-
forms now, with Intel versions to follow soon.

An approximation to MzScheme’s module system is being
implemented for the Larceny family. When that module
system is operational, Larceny and Petit Larceny will pro-
vide a faster execution engine for compute-bound MzScheme
programs, and Common Larceny will offer a migration path
from MzScheme to .NET.

7. CONCLUSIONS

Scheme and Lisp can be compiled to run on the Common
Language Runtime, and can interoperate with other CLR
languages, but differences between Lisp/Scheme and the lan-
guages for which the CLR was designed constrain an imple-
mentation in ways that limit performance and reduce the
usefulness of multi-language programming environments.
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