Larceny User Manual

Table of Contents

R 0 O PTRURP 2
2. INSEAIING LAICENY ..ottt bttt e e s e bbb e b bt e ne e s 3
2.1 VarietieS Of LAICENYoiuiiiiriiiiieieieieie sttt sttt b b e e e 3
2.2. DOWNIOBAING ...ttt ettt bbbt bttt et e et besbenbeene e e ennas 3
2.3. InStalling the ProgramSco.eiieiiieeee et 3
2.4. Compiling the RERS standard [HDrariesccooeeieiinineseeneeeee e 4
3. RUNNING L@ICENY ...ttt sttt e et bbbt b et e e e e b e b e sb e bt nb e beene e e s 5
3.1 RERSIMOUE ...ttt sttt bt b e e bt et et e e et b e b b e ne e e e 5
3. 2. ERRBRS MOUE ..ottt ettt st b e bt e e s et b abenb e neeneennas 5
3.3 RORSIMOUE ...ttt bbbt bttt b e bbb nb e ne e e 9
3.4, SCNEIME SCIIPLS ...eeueieiteiteeterie ettt b ettt e b et be bt st e e e e e e e b e nbeebenneeneeneens 11
3.5. RERS SCIPLING ..veuveueetertentisiesieee ettt sttt sttt e et et be bt se e e e s e s et e nreabenseeneeneens 12
0. ETTOIS ..ottt R e n e R e r e renne e n e n e nne s 12
3.7. TroOUDIESNOOTINGeeeeteieiiceieeee et e et e b e ne s 12
3.8 PEITOIMMENCE ...t bbbttt e b e bt e e 13
o= Y 4] = ST P USRS 14
T o LSOO TP PTPRURORPRIN 14
4.2, CASE-SENSITIVITY .eeiueeeieieiteitest ettt sttt b bbbt ae et et et e b e seesbenbeene e e e 14
4.3. LEXICAl EXLENSIONS ..ottt sttt sttt ettt ettt be st et et e s et e seesbenbeeneeneeneas 15
4.4, LEXICal PAIAIMELELSceiitiriiiteriieteeee ettt sttt sttt et ettt et e b e b e se e e et e s e beseesbeseeeneeseennas 15
5. File Naming CONVENTIONSciiiirieieierie ettt e et e b b e ene e e e 16
5.1 SUFTIXES ettt e bbbt b b he s e e e e b b e b e nr e ne e 16
5.2 DITECIOMES ...ttt bttt b bbbt bt se e e et et e b e ne e e bt ereeneene e 16
5.3. Resolving referencesto lHDraries ... 17
5.4. Mapping library names to files (ERRSRS/RORS)cccoceriiireninieesesese e 18
5.5. Mapping library namesto filesS (RSRS)ccoiiiiiiiiiieeeree e 19
6. Compiling fIleS AN [TDIAITEScc.oiiiiiieeeee e 20
6.1. Compiling ERRSRS/REORS [IDIari€sccoviiiiieieeree s 20
6.2. Compiling RSRS SOUICE FIIESc.eiiiiiiieieeee s 21
7. ERRSRS Standard [HDIaIMESooiiiiiiiiieeese ettt 21
% T 07 o ST PRV 21
T.2. RECOIUS ...ttt bbbt b e bt s e st e e et et et e rb e e b e neeebenaeeneenes 21
8. RERS Standard [IDraries ..o e 26
8L BASEIDIAIY ..ot bbbt 26
8.2, UNICOME ...ttt e bbbt b e bt se s e e e e b e b nee bt nr e e e 27
8.3, BYLEVECIOIS ...ttt b e nh s e s e sne b e e anenreenn e e e e sneenne s 27
Bl LISES .ottt e R R R R bRt e et b bR benr e ne e 27
SIS o4 1] 0o SO PO RTORPRRR 27
8.6, CONLIOl ...ttt e b e e bbb st e s e e e e e b e bR e b e nn e e 27
BT RECOITS ...ttt e bbbt bt bt a e e et e b b e e bt b e neene e 27
8.8. EXCeptions and CONAITIONSccueiiiiiiriiriiriesicsieeee ettt 28
8.9. INPUL BN QULPULeieieietieieeeeee ettt e et e b e e e 28
8.10. PrOGIaIMSeeiiiiieiiieeie ettt b et e s h e n e e e s R e b e arenr e n e n e neenne s 29
S0 N 11107 (oSS PO RTOR PSR 29
8.12. SYNEAX-CASEveveeieeieeieeste ettt sttt b bbbt e sb e e n e s e s ne e b e e e e nre e n e n e neene s 29
8.13. HAshLaDIES ... e 29

Larceny User Manual

8.14. ENUMENELION SELSoiviiviitiiieeiieieieesie st sttt se et et bbbt e et e b et e nbesbenseeneeneens 29
BLLD. EVEL it b ettt bR b b e ne s 29
8.16. Mutable Pairs @nNd SEHNGSccuecveiieieiesecre et e et e e ae e sseeste e sreesneenesreensens 30
B.L7. RBERS ..o bbb bttt ettt Re b re et 30
9. Larceny's ERRS5RS/RORS [HDIANESoceeiieeieiieie ettt see sttt ae e s e 30
S0 I o 7= o PO URPRRS 30
S 2 o 1] o] = PP SSRSS 30
9.3. BENCHMAIKING ..ottt e ae et e ae e beeneesreesneenneeneennens 32
S (= oo (0 S o] 1 1= PSSR 33
10. Larceny'S RERS [HDIAIESccvciieiieiieieeie sttt ee e ste e st esre e teeneesneenneenaeeneeseeneenns 33
0 00 T 1 o R 33
B = Y= o (o £ TR RRPR 33
O = o (] £ T PP PPRURPRPRR 35
O e 0To= o L1 =SSP 35
10.5. PAITS AN LISES .oveiuiiiiiesiesie sttt bbbttt bbbt 37
0TS o 11 39
1O.7. RECOMTS ...veviiiieiieiieie ettt bbbttt ettt bt bbbt et et e b e benbeebenbe e e enes 39
10.8. Input, OULPUL, @NA FITESc.eeeeeceee e 42
10.9. Operating System INLEITACEccecveeeceee e 45
10.20. FiXNUM PIIMITIVES ...e.evicieciecie st ee sttt e e e st e e sneeaesseesseentesneesneensesneenseeneennes 46
00 B I 100 o ST PRSPR 48
10.12. Hashtables and hash fUNCLIONS ... s 49
10O.13. PArAIMELENSoeeiiieiieeiieesiee sttt e st sas e me e s s e e se e sareeaneesnneeaneesaneeaneesnneenneens 51
O oo Y I £SO 53
000 TS 1 1 oo K 53
10.16. System Control and Performance Measurementcceveeeeeeeneesesieesessee e see e 54
O S S 0o ST RPPPR 58
O I 1 = T o oo SRR 58
10.19. Foreign-Function INterfaCeto Ccceeiiiieiiee et 58
I I T oW o o 11 o S 76
11.1. Entering the dEUGQESoovi e 76
IR BT o 1H o [0 = ol 11 0= o S 76
G T T = o £ 77
0 R I = o o 77
11.5. Other fUNCLIONEIITYecvecieeiecee ettt s ae e s reenteeneenns 78
S = 1110 =6 TSP P PRSP 78
12.1. SChEME SEANAAITSoviiiitiiieeieeeee bbbttt bt sre b enes 78
12.2. Other relevant StANCAIAScccoieiiiireree s 78
0 TSRS 79
1. Larceny

Larceny implements the Scheme programming language as defined by |EEE Standard 1178-1990, the
Revised® Report, the Revised® Report, and ERR5RS. Those language standards serve as Larceny's
primary documentation.

This manual describes aspects of Larceny that are not described by the |EEE standard, the Revised
Reports, or ERR5RS. For the most current version of this manual, please see Larceny's online
documentation page [http://larceny.ccs.neu.edu/doc]. For links to the Common Larceny User Manual and
the Larceny mailing list, please visit Larceny's main web page [http://larceny.ccs.neu.edu/].

To report bugs, please send email to the Larceny developersat <I ar ceny@cs. neu. edu>, or submit a bug

2

http://larceny.ccs.neu.edu/doc
http://larceny.ccs.neu.edu/doc
http://larceny.ccs.neu.edu/doc
http://larceny.ccs.neu.edu/
http://larceny.ccs.neu.edu/

Larceny User Manual

ticket using Larceny's Trac system [http://larceny.ccs.neu.edu/trac/].

2. Installing Larceny

2.1. Varieties of Larceny

There are three main varieties of Larceny.

Native Larceny isthe fastest and most convenient variety of Larceny. It compiles directly to native
machine code for Intel x86-32 or SPARC microprocessors running Windows, Linux, MacOS X, or
Solaris operating systems.

Petit Larceny compilesto C instead of machine code. It runs on most Unix machines, including PowerPC
Macintoshes with MacOS X.

Common Larceny compilesto J T-compiled IL on Microsoft's Common Language Runtime (CLR) or
Mono. It provides access to the .NET libraries from Scheme.

2.2. Downloading

The current versions of Larceny are available for download at Larceny's main web page
[http://larceny.ccs.neu.edu/].

Twobit and Larceny are distributed in two forms: as a precompiled binary, or as source code that can be
used to reconstruct any of the precompiled binary distributions. Unless you intend to modify Larceny
yourself, you do not need to download the source code.

2.3. Installing the programs

If you are installing or running Common Larceny, please consult the Common Larceny User Manua
[http://larceny.ccs.neu.edu] instead of becoming confused by the instructions in this manual.

Unpack the distribution files with an appropriate command such as one of the following:

tar -xzf larceny-X Y-bin-native-sparc-solaris.tar.gz

tar -xzf |arceny-X Y-bin-native-ia32-nacosx.tar.gz

tar -xzf larceny-X Y-bin-native-ia32-1inux86.tar.gz

tar -xzf larceny-X Y-bin-native-ia32-wi n32.tar.gz

tar -xzf |arceny-X Y-bin-petit-stdc-macosx.tar. gz
X.Y-src

tar -xzf |arceny- .tar.gz

That will create a directory with asimilar name (but without the . t ar . gz suffix) in your current working
directory. That isthe Larceny root directory, which you may rename to something shorter, such as
| ar ceny; therest of this section will refer to it by that name.

Assuming you have unpacked a binary distribution, the | ar ceny directory will contain the following files:

| arceny. bin Run-tinme system

| ar ceny. heap Heap image with all libraries, FFlI, and conpiler

| ar ceny Shel | script that runs | arceny. heap

scheme-scri pt Shel | script that runs Schene scripts

conpil e-stal e Schene script that conpil es ERRSRS/ R6RS |i braries
startup. sch Pat hnames for the require and autol oad features

http://larceny.ccs.neu.edu/trac/
http://larceny.ccs.neu.edu/trac/
http://larceny.ccs.neu.edu/
http://larceny.ccs.neu.edu/
http://larceny.ccs.neu.edu
http://larceny.ccs.neu.edu

Larceny User Manual

If you unpacked a binary distribution, then you should be able to run it immediately by making the
| ar ceny directory your current working directory and invoking . / | ar ceny or perhapsjust | ar ceny.

If you unpacked the source code there will be many other files and directories, but | ar ceny. bi n and
| ar ceny. heap will not be present.

Tip

Y ou can reconstruct thel ar ceny. bi n and | ar ceny. heap files from their source code, but that
process requires aworking version of Larceny or PLT Scheme v37x; unless you're porting
Larceny or Petit Larceny to a brand new target architecture, it's easier to obtain those files from a
binary distribution of Larceny.

You may add thel ar ceny directory to your standard path, or you may install Larceny into adirectory that
isalready part of your standard path.

Suppose, for example, that you want to install Larceny in/ usr/1 ocal / bi n and
/usr/local/lib/larceny.Copylarceny andschene-script to/usr/l ocal/binand edit the
definition of LARCENY_PATH at the head of each file to point to the correct directory:

LARCENY_PATH=/ usr/l ocal /1i b/l arceny

Then move the entire | ar ceny directory to/ usr /1 ocal /1i b/ | arceny, Or copy | ar ceny. bi n,
| ar ceny. heap, startup. sch, andthel i b directory to/usr/1ocal /1i b/ arceny.

Y ou should now be able to run Larceny from any directory by typing "I ar ceny™ at a prompt.

2.4. Compiling the R6RS standard libraries

Before you can run Larceny in ERR5RS or R6RS modes, you may have to compile the ERRSRS/R6RS
runtime and standard libraries. This step is definitely required if you are using Petit Larceny or building
any variety of Larceny from source code. With the prebuilt native varieties of Larceny, however, this step
should not be necessary unless you change one of thefilesinli b/ R6RS Or | i b/ SRFI .

Tip

If thel i b/ R6RS directory and its subdirectories are read-only, then the standard libraries will not
be touched, modified, or recompiled by accident.

Compiling the ERR5RS/R6RS runtime and standard libraries is accomplished as follows:

$./larceny

Larceny v0.96 "Fluoridation" (...)
> (require 'r6rsnode)

> (larceny: conpile-r6rs-runtinme)

> (exit)

Warning

Compiling the ERR5RS/R6RS runtime as shown above causes all previously compiled
ERR5RS/R6RS libraries and top-level programs to become stale. That means those previously
compiled fileswill need to be recompiled or removed.

Larceny User Manual

3. Running Larceny

Larceny runsin any of four distinct modes:

R5RS traditional read/eval/print |oop (the default)
ERR5RS ERRS5RS read/ eval /print | oop

R6RS bat ch execution of R6RS top-I|evel prograns
Scheme scri pt bat ch execution of R6RS Schene scripts

These modes correspond to the four distinct kinds of Scheme programs that are described by the current
de facto standards for Scheme. (IEEE/ANSI Std 1178 is so similar to the R5RS standard that Larceny
implements both languages in R5RS mode.)

3.1. R5RS mode

When you start Larceny in R5RS mode (the default), you will be presented with a banner message and the
read-eval-print loop's prompt:
% | ar ceny

Larceny vX. Y "<version_nanme>" (MW DD YYYY HH MM SS, ...)
| arceny. heap, built ...

>

Y ou can enter a Scheme expression at the prompt. After a complete expression has been read, it will be
evaluated and its results printed.

Note

In native Larceny, the expression is evaluated by compiling it to native machine code, which is
then executed. In Petit Larceny, the expression is evaluated by an interpreter because compiling to
C, running the C compiler, and loading the compiled C code would take too long. Interpreted code
behaves like compiled code, so most of what this manual says about the compiler is also true of
Petit Larceny's interpreter.

By default, Larceny's Twobit compiler makes several assumptions that allow it to generate faster code; for
example, the compiler assumes Scheme's standard procedures will not be redefined. To obtain strict
conformance to R5RS semantics, see the section of this user manual devoted to performance.

3.2. ERR5RS mode

To interact with Larceny's ERR5RS read/eval/print loop, specify the - er r 5r s option on Larceny's
command line:

% | ar ceny - err5rs
Larceny v0.95 "First Safety"” (...)
ERRS5RS node (no libraries have been inported)

Since no libraries have been imported, the only forms you can evaluate are constant literals, variable
references (but no variables have been imported!), procedure calls (but no procedure values are
accessible!), library definitions, and import forms. The first thing you'll want to do isto import some
libraries, such as:

> (inport (rnrs base)

Larceny User Manual

(rnrs io sinple)
(errb5rs records syntactic))

Once you have imported (rnrs base) or acomposite library that includesit, you can evaluate definitions
and use all other syntax and variables you have imported.

3.2.1. Automatic loading

As an extension to ERR5RS, Larceny attemptsto load libraries automatically when they are first
imported. Autoloading makes interactive development and separate compilation much more convenient.

All of Larceny's predefined libraries can be autol oaded.

To enable autoloading of other ERR5RS/R6RS libraries, you can:

* usethe- pat h command-line option

* usethe LARCENY_ LI BPATH environment variable
®* uUsecurrent-require-path

 edit startup. schin Larceny'sroot directory

» addthelibrariesto Larceny'sl i b directory

3.2.2. Dynamic loading

Larceny automatically loads ERRSRS/R6RS libraries when they are first imported. Thisis usually the
most convenient way to load alibrary, but autoloading can't be used to load atop-level program. Explicit
loading is needed for top-level programs, for libraries that don't reside in Larceny's
current-require-path, and for libraries that are defined in files whose names do not follow Larceny's
standard naming conventions.

Explicit loading is the only portable way for ERR5RS programsto load alibrary.

Explicit loading also makes it possible to write portable programs whose source files conform to both the
R5RS and ERR5RS. Two different configuration files, one for the R5RS and one for ERR5RS, can
perform al of the imports and loads needed to run the program.

For explicit loading of nonstandard libraries, top-level programs, or unadorned R5RS-style code from a
file, you must first import a suitable load procedure:

> (inport (err5rs |oad))

Loading alibrary does not automatically import it. To use the variables and syntax that are exported by a
library, you must import that library explicitly:

> (load "lib/R6RS/ I arceny/ benchmar ki ng. sl s")

> (inport (larceny benchmarking))

> (time (vector-for-each + (make-vector 1000000 0)))
Wirds al |l ocat ed: 3095752

Words reclainmed: O

El apsed tine...: 111 nms (User: 104 ns; System 8 ns)

6

Larceny User Manual

El apsed GC tine: 4 ns (CPU. 4 in 8 collections.)

In Larceny, you may omit the call to | oad because the (1 ar ceny benchnar ki ng) library will be
autoloaded when it isimported. In other ERR5RS systems, however, you may have to load all of the
nonstandard libraries that will be imported by atop-level program or library before you load that top-level
program or library.

Y ou do not have to import those libraries into the ERR5RS top level, however, unless you want to use the

variables and syntax exported by those libraries in the expressions and definitions you evaluate at the top
level.

3.2.3. Predefined libraries

Larceny predefines several nonstandard libraries in addition to the standard ERR5RS and R6RS libraries,
and autoloads them for your convenience. The predefined, autol oadable libraries include:

R6RS standard libraries:

(rnrs base (6)) ; R6RS chapter 9

(rnrs uni code (6)) ; RGRS library chapter 1

(rnrs bytevectors (6)) ; R6RS library chapter 2

(rnrs lists (6)) ; R6RS library chapter 3

(rnrs sorting (6)) ; R6RS library chapter 4

(rnrs control (6)) ; R6RS library chapter 5

(rnrs exceptions (6)) ; RGRS library section 7.1

(rnrs conditions (6)) ; RGRS library sections 7.2 and 7.3
(rnrs io ports (6)) ; RGRS library sections 8.1 and 8.2
(rnrs io sinple (6)) ; RGRS library sections 8.1 and 8.3
(rnrs files (6)) ; RGRS library chapter 9

(rnrs prograns (6)) ; RGRS library chapter 10

(rnrs arithmetic fixnunms (6)) ; RGRS library section 11.2

(rnrs arithmetic flonunms (6)) ; RGRS library section 11.3

(rnrs arithnetic bitw se (6)) ; RGRS library section 11.4

(rnrs syntax-case (6)) ; RGRS library chapter 12

(rnrs hashtables (6)) ; RGRS library chapter 13

(rnrs enumns) ; R6RS library chapter 14

(rnrs (6)) ; RGRS library chapter 15

(rnrs eval (6)) ; RGRS library chapter 16

(rnrs nmutable-pairs (6)) ; RGRS library chapter 17

(rnrs nutabl e-strings (6)) ; RGRS library chapter 18

(rnrs r5rs (6)) ; RGRS library chapter 19

R6RS standard libraries that are autol oadable but deprecated in Larceny:

(rnrs records procedural (6)) ; RBRS library section
(rnrs records i1 nspection (6)) ; RGRS library section
(rnrs records syntactic (6)) R6RS |ibrary section

ey
N B W

SRFI libraries (which follow the SRFI 97 naming convention):

(srfi :1 lists) ; list library

(srfi :2 and-let*) ; extended “and’ and " let*’
(srfi :5 let) ; extended version of “let’
(srfi :6 basic-string-ports) ; basic string ports

(srfi :8 receive) ; binding to nultiple val ues
(srfi :9 records) defining record types

(srfi :11 let-val ues)

(srfi :13 strings)

(srfi :14 char-set)

(srfi :16 case-I| anbda)
(srfi :17 generalized-set!)

syntax for multiple val ues
string libraries
character-set library
syntax for variable arity
general i zed set!

=

Larceny User Manual

(srfi :19 tine)

(srfi :23 error)

(srfi :25 multi-dinensional-arrays)
(srfi :26 cut)

(srfi :27 random bits)

(srfi :28 basic-format-strings)
(srfi :29 localization)

(srfi :38 with-shared-structure)
(srfi :39 paraneters)

(srfi :41 streans)

(srfi :42 eager-conprehensions)
(srfi :43 vectors)

(srfi :45 | azy)

(srfi :48 internediate-format-strings)
(srfi :51 rest-val ues)

(srfi :54 cat)

(srfi :59 vicinities)

(srfi :61 cond)

(srfi :63 arrays)

(srfi :64 testing)

(srfi :67 conpare-procedures)

(srfi :78 lightweight-testing)
(srfi :87 case)

(srfi :98 os-environnent-vari abl es)
(srfi :99 records)

(srfi :99 records procedural)

(srfi :99 records I nspection)

(srif :99 records syntactic)

time data types and procedures
error reporting nechani sm

nmul ti-di mensional array prinmtives
speci al i zi ng wi thout currying
sources of random bits

basic format strings

| ocal i zati on

i/o for data with shared structure
par amet er obj ects

streans

eager conprehensi ons

vector library

iterative lazy algorithns

f or mat

rest val ues hackery

still nore formatting

vicinity

a nore general cond cl ause
honogeneous, heterogeneous arrays
an APl for test suites

t hree-way conpari son procedures

i ght wei ght testing

a nore general case clause

envi ronnent vari abl es

ERRS5RS records (conposite |ibrary)
ERRS5RS records (procedural API)
ERR5RS records (1 nspection API)
ERR5RS records (syntactic APl)

SRFI libraries that are autoloadable but deprecated in Larceny, usually because they have been
superseded in whole or in part by R6RS syntax or libraries:

(srfi :60 integer-bits)

(srfi :66 octet-vectors)

(srfi :69 basic-hash-tabl es)
(srfi :71 let)

(srfi :74 bl obs)

(srfi :86 nu-and-nu)

(srfi :95 sorting-and-nerging)

Other autoloadable libraries:

(err5rs records procedural)
(err5rs records inspection)
(err5rs records syntactic)
(err5rs | oad)

(rnrs | oad)

(larceny | oad)

(larceny conpiler)

| ar ceny benchnar ki ng)

| arceny profiling)

| arceny records printer)
| ar ceny shi vers-synt ax)
r5rs)

explicit-renam ng)

(
(
(
(
(
(

3.2.4. Library path

integers as bits

octet vectors

basi ¢ hash tables

extensions of let, let*, letrec
oct et - addr essed bi nary bl ocks
mu and nu sinulating val ues etc
sorting and nerging

ERRS5RS records (procedural API)
ERRS5RS records (inspection APl)
ERRS5RS records (syntactic APl)
ERRS5RS | oad procedure

equi valent to (err5rs | oad)

ext ensi on of (err5rs | oad)
separate conpil ati on (ERR5RS/ R6RS)
timng facilities

profiling of Scheme code
custom printing of records
syntax favored by din Shivers
approxi mates the R5RS top | evel
macros with explicit renam ng

Larceny's autoload feature locates ERRSRS/R6RS libraries by performing a depth-first search of the
directories that belong to Larceny'scur rent - r equi r e- pat h. Libraries will not be autoloaded unless they
are defined in files whose names follow Larceny's standard conventions.

Thecurrent-require-pathisinitialized by the st art up. sch filein Larceny's root directory.

8

Larceny User Manual

Larceny's - pat h command-line option adds one or more directories to the directoriesin the
current-require-path.

The LARCENY_LI BPATH environment variable can also be used to add one or more directories to the
directoriesinthecurrent - r equi r e- pat h.

3.2.5. Importing Larceny's standard procedures

Any of Larceny's R5RS-mode top-level procedures can be imported into an ERR5RS or R6RS library or
program by using an import declaration with apri m ti ves clause that names the R5RS procedures to be
imported. For example:

(inport (primtives random current-seconds
getenv setenv system
current-directory file-nodification-tine
system features vector-1like-cas!)
(rnrs base)
(rnrs control))

Warning

This feature is non-portable. Other implementations of ERR5RS or the R6RS may not even have
an underlying implementation of the R5RS.

3.3. R6RS mode

To execute atop-level R6RS program that is contained within afile named pgm type:

| arceny -r6rs -program pgm

The - pr ogr amoption can be omitted, in which case Larceny will read the top-level program from
standard input:

larceny -r6rs < pgm

If you omit the - pr ogr amoption and do not redirect standard input, then Larceny will wait patiently for
you to type a complete top-level program into standard input, terminating it with an end-of-file.

Y ou probably don't want to do that. Had you wanted to type R6RS code at Larceny, you'd be using
ERR5RS mode instead.

By default, Larceny's Twobit compiler uses settings that make good sense for production code but violate
some absolute requirements of the R6RS. For maximal adherence to R6RS requirements (at the expense
of portability, interoperability, and/or performance), see the discussion of conpi | er - swi t ches inthe
section onthe (I arceny conpil er) library.

3.3.1. Predefined libraries

The R6RS standard does not specify any way for atop-level program to define its own libraries. Portable
R6RS programs are therefore limited to importing a subset of the R6RS standard libraries.

As an extension to the R6RS, Larceny allows R6RS top-level programs and Scheme scripts to import any
libraries that are predefined in Larceny's ERR5RS mode.

9

Larceny User Manual

3.3.2. Library path

As another extension to the R6RS, Larceny alows R6RS top-level programs to import any libraries that
can be found in the directories specified by the - pat h option on Larceny's command line using Larceny's
standard trandation from library namesto file names. On most systems, you can specify multiple
directories by separating them with a colon; under Windows, use a semicolon as separator instead. The
first directory listed will be searched first.

Tip

If you have a set of portable libraries that run under more than one implementation of the RERS,
and you want to have a special version of some of those libraries for Larceny, you can put all your
portable versions in one directory and the Larceny-specific versions in another. When you run
Larceny, use the - pat h option and specify the Larceny-specific directory first.

Note

The - pat h option cannot be used by Scheme scripts, because command-line options are passed
along to the Scheme script without being interpreted by the scheme- scri pt processor.

Warning
We emphasize that this extension is non-portable. Other implementations of the R6RS may not

provide anything comparable to Larceny's - pat h option. Even if they do, their mappings from
library names to file names may be incompatible with Larceny's.

3.3.3. Library environment variable

As another extension to the R6RS, Larceny alows R6RS top-level programs to import any libraries that
can be found in directories specified by the LARCENY_LI BPATH environment variable. The value of that
environment variable should be a string in the same format as for Larceny's - pat h command-line option,
described above.

Warning
We emphasize that this extension is non-portable. Other implementations of the RERS may not

support anything comparable to Larceny's LARCENY_LI BPATH environment variable. Even if they
do, their mappings from library names to file names may be incompatible with Larceny's.

3.3.4. Defining libraries
As an extension to the R6RS, Larceny allows atop-level program or Scheme script to define R6RS
libraries within the file that contains the top-level program or Scheme script, before the import form that
begins the top-level program. These libraries must be arranged so that no library depends upon libraries
that come later in thefile.
Warning

We emphasize that this extension is non-portable. Other implementations of the RERS may not
allow R6RS programs to define their own libraries.

3.3.5. Importing procedures from Larceny's underlying R5RS

10

Larceny User Manual

system

As an extension to the R6RS, Larceny allows any of the procedures that are predefined at top level in
Larceny's R5RS mode to be imported by using apri nitives clausein ani nport declaration.

Warning

This extension is highly non-portable. Other implementations of the R6RS may not even have an
underlying implementation of the R5RS.

3.4. Scheme scripts

On most Unix systems (including MacOS X and Linux), Larceny'sschene- scri pt will execute Scheme
scripts as described in R6RS non-normative appendix D, with or without the optional script header. To
make Scheme scripts executable in their own right, without executing scheme- scri pt directly, add
Larceny'sroot directory to your path as described in doc/ HOMO- | NSTALL.

Suppose, for example, that / home/ nysel f/ hel | o isan R6RS Scheme script whose first line isthe
optional script header shown below:

#!/ usr/ bi n/ env schene-scri pt

If you do not have execute permission for this script, or Larceny's root directory is not in your path, you
can still run the script from Larceny's root directory asfollows:

% ./ schenme-script /hone/nyself/hello

If you have execute permission for the script, and Larceny's root directory isin your path, you can also
run the script as follows:

% / honme/ nysel f/ hell o

If, in addition, the directory that contains the script isin your path, you can run the script as follows:
% hel | o

Y ou may also pass command-line arguments to a Scheme script.
Warning
We emphasize that Scheme scripts are not portable. Scheme scripts are specified only by a
non-binding appendix to the R6RS, not by the R6RS proper. Other implementations of the R6RS
may not support Scheme scripts at all, or may give them a semantics incompatible with Larceny's.
On Unix systems, standard input and output can be redirected in the usual way. In Larceny, standard input
corresponds to the textual port initially returned by cur r ent - i nput - por t , and standard output
corresponds to the textual port initially returned by cur r ent - out put - port .
Warning

We emphasize that redirection of standard input and output is non-portable. Other

11

Larceny User Manual

implementations of the R6RS may not allow redirection, or may identify the standard input and
output with ports other than those initially returned by cur r ent - i nput - port and
current-out put-port.

3.5. R5RS scripting

Suppose hel | 0. sch contains the following R5RS code:

(display "Hello world!'")
(new i ne)
(exit)

You canrun hel | 0. sch asascript by executing Larceny as follows:

% | arceny -nobanner -- hello.sch

Y ou can redirect Larceny's standard input, in which case you may want to eliminate the herald
announcement and the read/eval/print loop's prompt:

% | ar ceny ;nﬁbﬁrner h_ -e "(begin (herald #f) (repl-pronpt values))" \
ello.sc

For an explanation of why that works, which may suggest other creative uses of Larceny, ask for help:

% | arceny -help

3.6. Errors

In R6RS modes, errors should result in an error message followed by a clean exit from the program.

If your program encounters an error in an interactive mode (R5RS or ERR5RYS), it will enter the
debugger; thisis believed to be afeature.

Despite its crudity, and to some extent because of it, Larceny's debugger works at least as well with
optimized compiled code as with interpreted code.

If you type a question mark at the debugger prompt, the debugger will print a help message. That message
ismore helpful if you understand the Twobit compiler and Larceny's internal representations and
invariants, but this manual is not the place to explain those things.

The debugging context is saved so you can exit the debugger and re-enter it from the main read/eval/print
loop's prompt:

> (debug)
The debugger is pretty much a prototype; you don't need to tell us how bad it is.

3.7. Troubleshooting

3.7.1. Errors when starting Larceny

12

Larceny User Manual

When attempting to run an R6RS program, you may see awarning about "I oadi ng source in favor

of stale fasl file",following by along series of error messages about syntactic keywords used as a
variable, ending with the kind of error you'd expect to see when alarge R6RS program is fed to a Scheme
compiler that was expecting to see R5RS-compatible code. That means the R6RS runtime and standard
libraries were not installed correctly, or their source files have been touched or modified since they were
last compiled. To fix the problem, recompile the R6RS standard libraries as described in step 4 of

doc/ HOATO- BUI LD.

The precompiled binary forms of Larceny should run on most machines with the appropriate processor
and operating system, but the executable program "I ar ceny. bi n" may be incompatible with very old or
with very new versions of the processor or operating system. If that appears to be the case, you should see
whether a newer version of Larceny fixes the problem. If not, please report the problem to us at

| ar ceny@cs. neu. edu. Please report success stories as well.

3.7.2. Errors when compiling the ERR5RS/R6RS runtime

If something goes wrong while compiling the ERR5RS/R6RS runtime, make sure you are running the
copy of Larceny you think you are running and have read and write permission for | i b/ R6RS, | i b/ SRFI ,
and all their subdirectories and files. If you get an error message about something being "expanded
against a different build of this library",thenoneor more of the compiled filesin i b/ R6RS
or | i b/ SRFI or its subdirectories has gone stale. Removing all . si f asl filesfrom| i b/ R6RS and

l'i b/ SRFI and their subdirectories will eliminate the stale file(s).

Warning

Don't removethe. sch or. sl s files.

3.7.3. Autoloading errors

If Larceny attempts to autoload an imported ERRS5RS/R6RS library but cannot find the library, then the
library may be defined in afile that doesn't follow Larceny's standard naming conventions. Another
possibility isthat the - pat h option was omitted or incorrect.

If an ERR5RS/R6RS library is compiled, then al compiled libraries and top-level programs that depend
upon it must also be recompiled. In particular, recompiling the standard R6RS runtime will invalidate all
compiled libraries and top-level programs. Larceny's conpi | e- st al e script and the

conpi | e-stal e-1ibraries procedure of (1 arceny conpil er) makeit convenient to recompile all of
the libraries and top-level programs within any given directory in an order consistent with their
dependencies.

3.7.4. Crashes

Please report all crashes with as much information is possible; a backtrace from a debugger or a core
dumpisideal (but please do not mail the core dump without contacting us first). Larceny's run-time
system is compiled with full debugging information by default and a debugger like GDB should be able to
provide at |east some clues.

3.8. Performance

By default, Larceny's Twobit compiler makes several assumptions that allow it to generate faster code; for
example, the compiler assumes Scheme's standard procedures will not be redefined.

13

Larceny User Manual

To disable certain compiler optimizations that are incompatible with the R6RS, see the section that
describesthe (1 arceny conpi | er) library.

To obtain strict conformance to R5RS semantics at the expense of slower code, evaluate the expression

(conpi | er-swi tches 'standard)

To make the compiler generate faster code, you can promise not to redefine standard procedures and not
to redefine any top-level procedure while it is running. To make this promise, evaluate

(compil er-switches 'fast-safe)

To view the current settings of Twobit's numerous compiler switches, evaluate

(conpi | er-swi t ches)

All of Twobit's compiler switches are procedures whose setting can be changed by passing the new value
of the switch as an argument.

For more information, evaluate

(hel p)

Note

Some of the help information that will be printed may be irrelevant to the heap image you are
using.

4. Lexical syntax

Larceny's default lexical syntax extends the lexical syntax required by the R5RS, R6RS, and ERR5RS
standards.

The R6RS forbids most lexical extensions, however, so Larceny provides several mechanisms for turning
its lexical extensions on and off.

4.1. Flags

By default, Larceny recognizes severa Larceny-specific flags of the form permitted by the R6RS. The
flag you are most likely to encounter represents one of Larceny's unspecified values:

#! unspeci fi ed

Certain other flags have special meaningsto Larceny'sr ead and get - dat umprocedures. They are
described below.

4.2. Case-sensitivity

By default, Larceny is case-sensitive. This global default can be overridden by specifying —£ol dcase or
—nof ol dcase on Larceny's command line, or by changing the value of Larceny'scase- sensi tive?

14

Larceny User Manual

parameter.

The case-sensitivity of a particular textual input port is affected by reading one of the following flags
from the port using ther ead or get - dat umprocedures:

#! f ol d- case
#! no-f ol d- case

The#! f ol d- case flag enables case-folding on data read from the port by ther ead and get - dat um
procedures, while the #! no- f ol d- case flag disables case-folding. The behavior established by one of
these flags extends to the next flag read from the port by r ead or get - dat um

Both #! f ol d- case and #! no- f ol d- case evaluate to an unspecified value. To obtain the effect of one of
these flags while treating it as a comment, place #; in front of the flag.

4.3. Lexical extensions

When a port isfirst opened, the Larceny-specific lexical extensions that are accepted on the port are
determined by Larceny'slexical parameters.

The following flags change the case-sensitivity and lexical extensions on the specific port from which
they areread:

#rérs i mplies #!'no-fol d-case, negates other flags
#r5rs ; inplies #!fol d-case, #!'errbrs

#lerrbrs ; allows Larceny-specific extensions

#!| ar ceny ; inplies #!'no-fold-case, #!'errbrs

The#! r6rs flag isacomment, while al of Larceny's other flags evaluate to an unspecified value. To
obtain the effect of aflag other than #! r 6r s while treating it as a comment, place #; in front of the flag.

Warning
The R6RS requires implementations to treat #! r 6r s as acomment; it is the only flag that

implementations of the R6RS are required to treat as a comment. Since the #! r 6r s flag behaves
differently from al other flags, it is deprecated.

4.4. Lexical parameters

When given no argument, these parameters return the current default for some aspect of the lexical syntax
that will be accepted on newly created ports. When given an argument, these procedures change the
default as specified by the argument.

Procedure case-sensitive?

(case-sensitive?) => bool ean

(case-sensitive? bool ean)

Determines whether newly created textual ports default to case-sensitive.

Procedure read-larceny-weirdness?

(read-1arceny-weirdness?) => bool ean

15

Larceny User Manual

(read-1arceny-wei rdness? bool ean)

Determines whether newly created textual ports allow Larceny's usual extensions to R5RS lexical syntax.
This parameter also determines whether newly created ports alow # as an insignificant digit; thisis
required by the R5RS, but disallowed by the R6RS.

Procedure read-traditional -weir dness?

(read-traditional -weirdness?) => bool ean

(read-traditional -weirdness? bool ean)

Determines whether newly created textual ports allow certain lexical extensions that are deprecated in
Larceny. These extensions include symbols enclosed by vertical bars and read-time evaluation.

For the current semantics of these parameters, please consult the Larceny devel opers web page that
describes Larceny'slexical syntax [http://larceny.ccs.neu.edu/larceny-trac/wiki/LexicalConversion].

5. File naming conventions
5.1. Suffixes

In Larceny, file names generally follow Unix conventions, even on Windows. The following suffixes
have special meanings to some components of Larceny.

. sl s isthe preferred suffix for files that consist of ERRSRS/R6RS-compatible library definitions.

. sch isthe preferred suffix for files that contain RS5RS source code.

. scmis an aternative suffix for files that contain RS5RS source code.

. sl fasl isthe suffix for files that contain the pre-compiled form of ERR5RS/R6RS-compatible code.
. fasl isthe suffix for files that contain the pre-compiled form of R5RS code.

. mal isthe preferred suffix for files that contain MacScheme assembly language in symbolic form.

. I ap isthe suffix for files that contain MacScheme assembly language.

. 1 op isthe suffix for files that contain machine code segments in the form expected by Larceny's heap
linker.

. heap isthe suffix for files that contain an executable heap image (must be combined with the
| ar ceny. bi n runtime).

5.2. Directories

Larceny's root directory should contain the following files:

| ar ceny
scheme-scri pt
| arceny. bin

| ar ceny. heap

16

http://larceny.ccs.neu.edu/larceny-trac/wiki/LexicalConversion
http://larceny.ccs.neu.edu/larceny-trac/wiki/LexicalConversion

Larceny User Manual

startup. sch

The following subdirectories are also essential for correct operation of some features of some modesin
some varieties of Larceny:

Thei ncl ude subdirectory is used when compiling files with Petit Larceny.

Thestartup. sch filetellsLarceny'sr equi r e procedure to search some of thel i b subdirectories for
libraries that are loaded dynamically.

5.3. Resolving references to libraries

The R6RS does not specify any mapping from library namesto files or to other locations at which the
code for alibrary might be found. As R6RS non-normative appendix E putsit:

Implementations may take radically different approaches to storing source code for
libraries, among them: files in the file system where each file contains an arbitrary number
of library forms, filesin the file system where each file contains exactly one library form,
records in a database, and data structures in memory....Implementations may provide a
means for importing libraries....

In other words, implementations are allowed to extend the R6RS with arbitrary mechanisms for resolving
references to imported libraries, but R6RS programs that rely on such mechanisms are not portable. In
particular, R6RS libraries are not portable.

Larceny provides five distinct Larceny-specific mechanisms that non-portable R6RS programs can use to
import or to define libraries:

1. ERR5RS and R6RS standard libraries may be imported. Their code islocated automagically.

2. Nonstandard libraries, such as (| arceny conpi | er), may be placed in one of the directories that are
searched by Larceny's autoload feature, provided those libraries are located in files that follow
Larceny's standard naming conventions as described in the next section.

3. R6RS top-level programs may use Larceny's - pat h option to specify directories that contain other
libraries the program may import, provided those libraries are located in files that follow Larceny's
standard naming conventions as described in the next section.

4. R6RS top-level programs may use Larceny's LARCENY_LI BPATH environment variable to specify
directories that contain other libraries the program may import, provided those libraries are located in
files that follow Larceny's standard naming conventions as described in the next section.

17

Larceny User Manual

5. R6RS top-level programs and Scheme scripts may define their own librariesin the same file that
contains the top-level program or Scheme script.

ERR5RS programs may use any of those five mechanisms, and may also use a sixth mechanism: An
ERR5RS program can be written as alittle configuration program that |oads the program's libraries from
files before any libraries are imported. This sixth mechanism is portable, but is not available to R6RS
programs.

5.4. Mapping library names to files (ERR5RS/R6RYS)

Suppose Larceny's - pat h option is used to specify a certain directory, and the program imports a
nonstandard library whose name is of the form (namel nanme2 ...1 ast nanme) . Larceny will search for that
library in the following files:

e directory/ nanel/ nane2/ ../l astnane. | arceny. sl f asl

e directory/ nanel/ nane2/ ./l astnane. | arceny. sl s

e directory/ nanel/ nane2/ ../l ast nane. sl f asl

e directory/ namel/ nane2/ ./l ast nane. sl s

e directory/ nanel/ nane2. | arceny. sl f asl

e directory/ nanel/ nane2. | arceny. sl s

e directory/ nanel/ nane2. sl f asl

e directory/ nanel/ nane2.sls

e directory/ nanel. | arceny. sl f asl

e directory/nanel. |l arceny.sls

e directory/ nanel. sl fasl

e directory/nanel.sls

The search starts with the first of those file names, continues with the following file namesin order, and
ends when afile with one of those namesis found. The imported library must be one of the libraries

defined within the first file found by this search, since the search is not continued after that first fileis
found (except as noted in the next paragraph).

If the search ends by finding afile whose name ends with . si f asl , then Larceny checks to see whether
thereis afilein the same directory with the same root name but ending with . sl s instead of . sl f as| . If
the. sl s file has been modified since the. si f asl file was last modified, then awarning is printed and
the. sl s fileisloaded instead of the. sI f asl file. Otherwisethe. sl f asl fileisloaded.

Note

18

Larceny User Manual

The R6RS allows arbitrary mappings from library namesto library code. Larceny takes advantage
of this by ignoring version numbers when mapping library names to files, and by (virtually)
rewriting any version number that may be specified in the definition of alibrary so it matches any
version specification that appears within thei mport form. Furthermore Larceny allows different
versions of the same library to be imported, but Larceny's algorithm for resolving library
references ensures that the different versions of alibrary will be identical except for their version
numbers, which have no meaningful semantics. Although Larceny's treatment of versions
conforms to the R6RS specification, it should be clear that version numbers serve no purposein
Larceny. Since the R6RS version feature has no usefully portable semantics, it is deprecated.

5.5. Mapping library names to files (R5RS)

In R5RS mode, Larceny's - pat h option and LARCENY_LI BPATH environment variable may be used to
specify directories to be searched by the r equi r e procedure, which takes a single symbol libname asits
argument. Ther equi r e procedure will search for the following filesin every directory that is part of the
current require path, starting with the directories specified by LARCENY _LIBPATH and the - pat h
option:

* |ibnane. fasl

* |ibnane.sch

* |ibnane.scm

These files are expected to contain R5RS code, not library definitions. Otherwise the search proceeds
much the same as when searching for an ERRSRS/R6RS library.

Note
Therequi r e path is specified by st art up. sch in Larceny'sroot directory, but may be changed
dynamically using the cur r ent - r equi r e- pat h parameter. Changing ther equi r e path is not
recommended, however, because Larceny relies on the r equi r e path for dynamic loading of
libraries used by several important features of Larceny, notably ERR5RS and R6RS modes.
Procedure require
(require libnane)

libname must be a symbol that names an R5RS-compatible library within the current require path.

If the library has not already been loaded, then it is located and loaded. If the library isfound and loaded
successfully, then r equi r e returns true; otherwise an error is signalled.

If the library has already been loaded, then r equi r e returns false without loading the library a second
time.

Procedure current-require-path
(current-require-path) => stringlist

(current-require-path stringlist)

19

Larceny User Manual

The optional argument isalist of directory names (without slashes at the end) that should be searched by
requi r e and (in ERRSRS/R6RS modes) by L arceny's autoload feature. Returns the list of directory
names that will be searched.

6. Compiling files and libraries

This chapter explains how you can use Larceny to compile Scheme source code to native machine code.

The native varieties of Larceny have ajust-in-time compiler that compiles to native code automatically
whenever you evaluate an expression, load a source file, or import a source library. Even so, files will
load faster if they are compiled ahead of time.

Petit Larceny does not have ajust-in-time compiler, so compiling ahead of timeis the only way to enjoy
the speed of native machine code in Petit Larceny.

Common Larceny uses an interpreter for expressions that are typed at the interactive read/eval/print loop,
but fileswill be compiled asthey are loaded if you specify Lar ceny. f asl on the command line. For more
information on compiling filesin Common Larceny, please consult the Common Larceny User Manual
[http://larceny.ccs.neu.edu].

The main disadvantage of compiling files and libraries is that compiled code goes stale when its origina
source code is changed or when alibrary on which the compiled code depends is changed or recompiled.
Stale compiled code can be dangerously inconsistent with libraries on which it depends, so Larceny
checks for staleness and refuses to execute a stale library or program.

6.1. Compiling ERR5RS/R6RS libraries

On Unix machines, the most convenient way to compile a group of ERR5RS/R6RS libraries and top-level
programsisto use the conpi | e- st al e script in Larceny'sroot directory. If Larceny'sroot directory isin
your execution path, then there are just two steps:

1. Usecd to change to the directory that contains the ERR5RS/R6RS files you want to compile. (Files
that lie within subdirectories of that directory will be compiled also.)

2. Run the conpi | e- st al e script.

For example:

% cd |ib/ R6RS
% conpi |l e-stal e

On non-Unix machines, you can accomplish the same thing using Larceny's ERR5RS mode and the
(larceny conpiler) library:

% pushd | i b\ R6RS

% ..\..\larceny.bat -errbrs

Larceny v0.96 "Fl uoridation"

ERRS5RS node (no libraries have been inported)

> (inport (larceny conpiler))

> (conpile-stale-libraries)

20

http://larceny.ccs.neu.edu
http://larceny.ccs.neu.edu

Larceny User Manual

To compileindividual files, usetheconpil e-fil e or conpil e-1i brary procedures that are exported by
(larceny conpiler).

6.2. Compiling R5RS source files

Procedure compile-file

(compile-file sourcefile)

Compiles sourcefile, which must be a string naming afile that contains R5RS source code. If fadfileis
supplied as a second argument, then it must be a string naming the file that will contain the compiled
code; otherwise the name of the compiled file is obtained from sourcefile by replacing the". sch” or

" scm' suffix with". fasl .

For ERRS5RS/R6RS libraries and top-level programs, see above.

7. ERR5RS standard libraries

ERR5RS is till being developed, so the specifications described below are subject to change as its
standard libraries are revised.

7.1. Load

This section describesthe (err5rs | oad) library.
Procedure load
(load fil enane)

L oads ERR5RS code from filename, evaluating each form as though it had been entered at the interactive
read/eval/print loop.

Warning
Thel oad procedure should be used only at an interactive top level and in files that will be loaded

into an interactive top level. Callsto the | oad procedure have no effect at compile time, and

should not appear in files that will be compiled separately; usethel i brary andi nport Syntaxes
instead.

7.2. Records

When a procedure is said to be equivalent to an R6RS procedure, the equivalence holds only when all
arguments have the properties required of them by the R6RS specification. ERR5RS does not mandate
R6RS exception semantics for programs that violate the specification.

7.2.1. Procedural layer

This section describesthe (err5rs records procedural) library.

Procedure make-rtd

21

Larceny User Manual

(make-rtd nane fiel dspecs)

(make-rtd nane fiel dspecs parent-rtd)

(make-rtd nane fiel dspecs parent-rtd option .)

name is a symbol, which matters only to ther t d- nane procedure of the inspection layer. fieldspecsisa
vector of field specifiers, where each field specifier is one of

» asymbol naming the (mutable) field;

» alist of theform (mut abl e nane) , where name is a symbol naming the mutable field;

 alist of theform (i nmut abl e nane) , where name is a symbol naming the immutable field.

The optional parent isan rtd or #f . It isan error for any of the symbolsin fieldspecs to name more than
one of the fields specified by fieldspecs, but the field names in fieldspecs may shadow field namesin the
parent rtd.

make- rt d returns an R6RS-compatibl e record-type descriptor.

Larceny allows the following optional arguments to follow the optional parent-rtd argument:

 the symbol seal ed meansthe new rtd cannot be used as the parent of other rtds;

* the symbol opaque meansther ecor d? predicate will not recognize instances of the new rtd;

* the symbol ui d, followed by another symbol id, means the new rtd is non-generative with uid id; the
semantics of this extension isthe same asin the R6RS,

These Larceny-specific options may be used in any combination, giving Larceny's ERR5RS records the

same expressive power as R6RS records, with which they are fully interoperable.

Procedure rtd?

(rtd? obj)

This predicate returns true if and only if its argument is a record-type descriptor. rt d? is equivalent to the
record-type-descri pt or ? procedure of the R6RS.

Procedure rtd-constructor

(rtd-constructor rtd)

(rtd-constructor rtd fiel dspecs)

rtd is a record-type descriptor, and fieldspecs is an optional vector of symbols.

If no fieldspecs argument is supplied, thenrt d- const ruct or returns a procedure that expects one

argument for each field of the record-type described by rtd and returns an instance of that record-type
with itsfieldsinitialized to the corresponding arguments. Arguments that correspond to the fields of the

22

Larceny User Manual

record-type's parent (if any) comefirst.

If fieldspecsis supplied, thenrt d- const ruct or returns a procedure that expects one argument for each
element of fieldspecs and returns an instance of the record-type described by rtd with the named fields
initialized to the corresponding arguments.

It isan error if some symbol occurs more than once in fieldspecs. Fields of a derived record-type shadow
fields of the same name in its parent; the fieldspecs argument cannot be used to initialize a shadowed
field.

Procedure rtd-predicate

(rtd-predicate rtd)

Equivalent to ther ecor d- pr edi cat e procedure of the R6RS.

Procedure rtd-accessor

(rtd-accessor rtd field)

field isasymbol that names afield of the record-type described by the record-type descriptor rtd. Returns
aunary procedure that accepts instances of rtd (or any record-type that inherits from rtd) and returns the
current value of the named field.

Fields in derived record-types shadow fields of the same name in a parent record-type.

Procedure rtd-mutator

(rtd-nutator rtd field)

field isasymbol that names afield of the record-type described by the record-type descriptor rtd. Returns
abinary procedure that accepts instances of rtd (or any record-type that inherits from rtd) and a new value

to be stored into the named field, performs that side effect, and returns an unspecified value.

Fields in derived record-types shadow fields of the same name in a parent record-type.

7.2.2. Inspection layer
This section describesthe (err5rs records inspection) library.
Procedure record?
(record? obj)
Equivalent to its R6RS namesake.
Procedure record-rtd
(record-rtd record)
Equivalent to its R6RS namesake.
Procedure rtd-name

(rtd-nane rtd)

23

Larceny User Manual

Equivaent to ther ecor d- t ype- name procedure of the R6RS.
Procedure rtd-parent

(rtd-parent rtd)

Equivalent to ther ecor d- t ype- par ent procedure of the R6RS.
Procedure rtd-field-names

(rtd-field-nanes rtd)

Equivalent to ther ecor d- t ype-fi el d- names procedure of the R6RS. (That is, it returns a vector of the
symbols that name the fields of the record-type represented by rtd, excluding the fields of parent
record-types.)

Procedure rtd-all-field-names
(rtd-all-field-names rtd)

Returns a vector of the symbols that name the fields of the record-type represented by rtd, including the
fields of its parent record-types, if any, with the fields of parent record-types coming before the fields of
its children, with each subsequence in the same order as in the vectors that would be returned by calling
rtd-fiel d-names onrtd and on al its ancestral record-type descriptors.

Procedur e rtd-field-mutabl e?
(rtd-field-nutable? rtd field)

rtd is arecord-type descriptor, and field is a symbol naming afield of the record-type described by rtd.
Returns#t if the named field is mutable; otherwise returns #f .

7.2.3. Syntactic layer
This section describesthe (err5rs records syntactic) library.

The syntactic layer consists of SRFI 9 [http://srfi.schemers.org/srfi-9/] extended with single inheritance
and (optional) implicit naming.

All ERR5RS record-type definitions are generative (unless Larceny's optional ui d feature is used), but
ERR5RS drops the SRFI 9 restriction to top level, mainly because the R6RS allows generative definitions
wherever a definition may appear.

The syntax of an ERR5RS record-type definition is

<definition>
-> <record type definition> ; addition to 7.1.6 in R5RS

<record type definition>
-> (define-record-type <type spec>
<constructor spec>
<predi cate spec>
<field spec> ...)

<type spec> -> <type nane>
-> (<type name> <parent >)

24

http://srfi.schemers.org/srfi-9/
http://srfi.schemers.org/srfi-9/

Larceny User Manual

<constructor spec>
-> #f
-> #t
-> <constructor name>
-> (<constructor name> <field name> ...)

<predi cate spec>
-> #f
-> #t
-> <predi cate nanme>

<field spec> -> <field nane>
-> (<field name>)
-> (<field nane> <accessor name>)
-> (<field nanme> <accessor nane> <nutator name>)

<par ent > - > <expressi on>
<type name> -> <identifier>
<constructor nane> -> <identifier>
<pr edi cat e name> -> <identifier>
<accessor name> -> <jidentifier>
<mut at or nanme> -> <jidentifier>
<field nane> -> <identifier>

The semantics of arecord type definition is the same asin SRFI 9: the record type definition
macro-expands into a cluster of definitions that

definesthe <t ype name> as the record-type descriptor for the new record-type;

defines a constructor for instances of the new record-type (unless the constructor spec is#f);

defines a predicate that recognizes instances of the new record-type and its subtypes (unless the
predicate spec is#f);

defines an accessor for each field name;

defines a mutator for each mutable field name.
An ERR5RS record type definition extends SRFI 9 with the following additional options:
» |f a<parent > expression is specified, then it must evaluate to an rtd that serves as the parent

record-type for the record-type being defined.

o |If #f isspecified for the constructor or predicate, then no constructor or predicate procedure is defined.
(Thisis useful when the record-type being defined will be used as an abstract base class.)

» |If #t isspecified for the constructor or predicate, then the name of the constructor is the type name
prefixed by make- , and the name of the predicate is the type name followed by a question mark (?).

* |f the constructor name is specified as#t or as an identifier, then the constructor's arguments
correspond to the fields of the parent (if any) followed by the new fields added by this record-type
definition.

 |f afield spec consists of asingle identifier, then

* thefiedisimmutable;

25

Larceny User Manual

* the name of its accessor is the type name followed by a hyphen (-) followed by the field name.
 If afield spec consists of alist of one identifier, then

* thefield ismutable;

* the name of its accessor is the type name followed by a hyphen (-) followed by the field name;

« the name of its mutator is the type name followed by a hyphen (-) followed by the field name
followed by - set ! .

7.2.4. Record identity

Two ERR5RS records with fields are eqv? if and only if they were created by the same (dynamic) call to
some record constructor. Two ERR5RS records are eq? if and only if they are eqv?.

Apart from the usual constraint that equivalence according to eqv? implies equivalence according to
equal ?, the behavior of equal ? on ERR5RS records is unspecified. (This is compatible with the R6RS.)

A defi ne-record-type form macro-expands into code that calls make- r t d each time the expanded
record-type definition is executed. Two ERR5RS record-type descriptors are eqv? if and only if they were
created by the same (dynamic) call to make-rtd.

8. R6RS standard libraries

This chapter explains which features of the R6RS standard libraries are available in each of Larceny's
major modes of execution.

Larceny was the first substantially complete implementation of the R6RS. Any features that are missing
from R6RS modes are missing because of bugs or because the features are deprecated in Larceny. The
most up-to-date listing of Larceny's known deviations from the R6RS standard can be found on the web
page that describes the current status of Larceny's R6RS-compatible mode
[http://larceny.ccs.neu.edu/larceny-trac/wiki/DargoM ode].

Larceny is R6RS-compatible but not R6RS-conforming. When Larceny is said to support afeature of the
R6RS, that means the feature is present and will behave as specified by the R6RS so long as no exception
israised. Larceny does not always raise the specific conditions specified by the R6RS, and does not

perform all of the checking for portability problems that is mandated by the R6RS. These deviations do
not affect the execution of production code, and do not compromise Larceny's traditional safety.

8.1. Base library
ERR5RS and R6RS modes support al procedures and syntaxes exported by the (rnrs base) library.
Larceny's R5RS mode does not support | i brary, i mport, Ori denti fi er - synt ax.
Note

The semantics of quasi quot e, | et - synt ax, and | et r ec- synt ax differ between the R5RS and
the R6RS. Larceny's R5RS mode still supports the R5RS semantics.

26

http://larceny.ccs.neu.edu/larceny-trac/wiki/DargoMode
http://larceny.ccs.neu.edu/larceny-trac/wiki/DargoMode

Larceny User Manual

8.2. Unicode

All of Larceny's modes support all features of the (rnrs uni code) library.

Larceny v0.97 conforms to The Unicode Standard, Version 5.0.

8.3. Bytevectors

ERR5RS and R6RS modes support all procedures and syntaxes exported by (rnrs byt evect ors), but
the endi anness syntax is deprecated because it is redundant with quot e. Larceny's R5RS mode does not
support endi anness.

In Larceny, any symbol names a supported endianness. The symbolsbi g and1i tt| e have their expected
meanings. All other symbols mean (nat i ve- endi anness) with respect to integer operations, but mean
the opposite of (nati ve- endi anness) with respect to |EEE-754 operations. For string operations, the
endianness must be the symbol bi g or the symbol 1i tt1e. All of these extensions are permitted by the
R6RS standard.

Larceny'sut f 16- >stri ng and ut f 32- >st ri ng accept one, two, or three arguments. The R6RS
specification of these procedures does not allow them to accept a single argument, but that is believed to
be an error in the R6RS.

8.4. Lists

All of Larceny's modes support all featuresof the (rnrs 1ists) library.

8.5. Sorting

All of Larceny's modes support all features of the (rnrs sorting) library.

8.6. Control

All of Larceny's modes support all features of the (rnrs control) library.

8.7. Records

ERR5RS and R6RS modes support all procedures and syntaxes exported by (rnrs records
procedural), (rnrs records inspection),and(rnrs records syntactic).

Those libraries are deprecated, however; the make- r ecor d- const r uct or - descri pt or procedure does
not ssimplify unusually complex cases enough to justify the complexity it adds to typical cases, and the
entire syntactic layer is gratuitously incompatible with the procedural layer.

Larceny's R5RS mode supports all features of the deprecated (rnrs records procedural) and(rnrs
records inspection) libraries. RSRS mode does not support (rnrs records syntactic).

All of Larceny's modes support all features of the (err5rs records procedural) and (err5rs
records inspection) libraries. ERR5RS and R6RS modes also support the (err5rs records
syntactic) library. Theselibraries are equivalenttothe (srfi :99 records procedural), (srfi :99
records inspection),and(srfi :99 records syntactic) libraries.

27

Larceny User Manual

The record definition syntax of SRFI 9 [http://srfi.schemers.org/srfi-9/] is a proper subset of the syntax
provided by the (err5rs records syntactic) library. In R5RS mode, SRFI 9 can be loaded
dynamically using ther equi r e procedure:

> (require 'srfi-9)

We recommend the ERR5RS and/or SRFI 9 libraries be used instead of the corresponding R6RS libraries.
Warning

The R6RS spouts some tendentious nonsense about procedural records being slower than syntactic
records, but thisis not true of Larceny's records, and is unlikely to be true of other
implementations either.

Warning

Larceny continues to support its old-style records, which are almost but not quite compatible with
ERR5RS and R6RS records. This can be confusing, since some of Larceny's procedures have the
same names as R6RS procedures. That has made it necessary to overload those procedures to work
with both old-style and R6RS records. We apologize for the mess.

8.8. Exceptions and conditions

All of Larceny's modes support all features of the (rnrs exceptions) and (rnrs conditions)
libraries.

8.9. Input and output

ERR5RS and R6RS modes support all names exported by the (rnrs io ports),(rnrs io sinple),
and (rnrs files) libraries.

Thebuf f er - node, eol - styl e, and er r or - handl i ng- node Syntaxes are deprecated because they are
redundant with quot e. These deprecated syntaxes may be provided in the form of procedures rather than
syntax, but this deviation from R6RS semantics cannot be detected by portable R6RS programs.

Larceny's R5RS mode supports all non-deprecated features of those libraries.

Larceny supports four distinct buffer modes: none, 1 i ne, dat um and bl ock. The R6RS requires the
buf f er - mode Syntax to raise an exception for the dat umbuffer mode, which is the buffer mode Larceny
uses for interactive output ports.

In Larceny, any symbol names a supported end-of-line style. All end-of-line and error-handling-mode
symbols whose meanings are not described by the R6RS have local e-dependent meanings, which isan
extension permitted by the R6RS standard.

Although Larceny supports the UTF-16 codec, it is not really useful on Windows machines (where it
should be most useful) because Larceny's low-level file system mimics a byte-oriented Unix file system
even on Windows. This problem should be addressed in some future version of Larceny.

The most up-to-date list of known deviations from R6RS io semantics can be found on the web page that
describes the current status of Larceny's R6RS-compatible mode
[http://larceny.ccs.neu.edu/l arceny-trac/wiki/DargoM ode] .

28

http://srfi.schemers.org/srfi-9/
http://srfi.schemers.org/srfi-9/
http://larceny.ccs.neu.edu/larceny-trac/wiki/DargoMode
http://larceny.ccs.neu.edu/larceny-trac/wiki/DargoMode

Larceny User Manual

8.10. Programs

ERR5RS and R6RS modes support the (rnrs prograns) library.

Larceny's R5RS mode providesthe exi t procedure but not the command- | i ne procedure of that library.
Larceny'straditional command- | i ne- ar gument s procedure can be used to implement an approximation to
conmand- | i ne. For adefinition, seel i b/ R6RS/ r nrs/ progr ans. sl s.

8.11. Arithmetic

All of Larceny's modes support all featuresof the (rnrs arithmetic fixnunms),(rnrs arithnetic
flonums),and (rnrs arithnmetic bitw se) libraries.

Note

R6RS fixnum and flonum operations may be slower than the corresponding generic operations,
since the fixnum and flonum operations are required to check their arguments and may also have
to check their results. Isolated operations in small micro-benchmarks are likely to be slower than

groups of similar operationsin larger programs, however, because the Twobit compiler removes
redundant checks and propagates type information.

8.12. Syntax-case

ERRS5RS and R6RS modes support the (rnrs synt ax- case) library. Larceny's R5SRS mode does not.

8.13. Hashtables

All of Larceny's modes support all features of the (rnrs hasht abl es) library.

Note

Larceny's traditional make- hasht abl e procedure has been renamed to
nmake- ol dstyl e- hasht abl e.

Note
When you use Larceny's R5RS or ERR5RS mode to dump a heap image that containseq? or eqv?

hashtables you have created, they are automatically reset so they will rehash themselves whenever
you begin anew session with the dumped heap.

8.14. Enumeration sets

ERR5RS and R6RS modes support the (rnrs enuns) library. Larceny's R5SRS mode provides all of the
procedures exported by (rnrs enums) but does not provide the def i ne- enuner at i on Syntax.

8.15. Eval

ERR5RS and R6RS modes support the (rnrs eval) library. Larceny's R5RS mode provides an
R5RS-compatible eval procedure, not an R6RS-compatible eval procedure, and does not provide the
envi ronment procedure.

29

Larceny User Manual

8.16. Mutable pairs and strings

All of Larceny's modes support all features of the (rnrs nut abl e-pairs) and(rnrs
mut abl e- st ri ngs) libraries.

8.17. R5RS

All of Larceny's modes support all features of the (rnrs r5rs) library.

9. Larceny's ERR5RS/R6RS libraries

Larceny provides libraries for loading and compiling ERRS5RS/R6RS libraries and for timing benchmarks.
Future versions of Larceny will offer more ERR5RS/R6RS libraries.

9.1. Load

The (1 arceny | oad) library exports both thel oad procedure of (err5rs | oad) andr5rs: require,
which isarenaming of ther equi r e procedure used by Larceny's R5RS mode.

In Larceny's ERR5RS mode, the | oad procedure can load R5RS libraries and programs as well as
ERRS5RS/R6RS libraries.

Ther5rs: requi re procedure should be used only for dynamic loading of R5RS librariesinto Larceny's
underlying R5RS system. The variables defined by that library can be imported into an ERR5RS session
or ERR5RS/R6ERS library or program using apri mi ti ves clauseinani nport form.

Warning

These procedures should be used only at an interactive top level and in files that will be loaded
into an interactive top level. Calls to these procedures have no effect at compile time, and should
not appear in files that will be compiled separately; usethel i brary andi nport Syntaxesinstead.

9.2. Compiler

The (1 arceny conpiler) library exportsthel oad and r 5rs: requi r e procedures of (1 arceny | oad),
thecurrent - requi r e- pat h procedure, the conpi l e-fil e, conpile-library, and
conpi | e-stal e-1i brari es procedures described below, and the conpi | er - swi t ches procedure.

These procedures can be used to compile ERRS5RS/RERS libraries and top-level programs before they are
imported or executed. Thisis especially important for Petit Larceny, which would otherwise use an
interpreter. For native Larceny, whose just-in-time compiler generates native machine code as source
libraries and programs are loaded, imported, or executed, the main advantage of separate compilation is
that compiled libraries and programs will load much faster than source libraries and programs.

The main disadvantage of separate compilation isthat compiled libraries and programs go stale when
their source code is changed or when alibrary on which they depend is changed or recompiled. Stale
libraries and programs can be dangerously inconsistent with libraries on which they depend, so Larceny
checks for staleness and refuses to execute a stale library or program. The conpi | e-stal e-1i brari es
procedure provides a convenient way to recompile stale libraries and programs.

30

Larceny User Manual

(compile-file sourcefile [slfaslfile])

Compiles sourcefile, which must be a string naming afile that contains source code for one or more
ERR5RS/R6RS libraries or atop-level program. If dfadfile is supplied as a second argument, then it must
be a string naming the file that will contain the compiled code; otherwise the name of the compiled fileis
obtained from sourcefile by replacing the ”. sI s" suffix with ™. sl fasl ".

Procedure compile-library
(compile-library sourcefile [slfaslfile])

Compiles sourcefile, which must be a string naming afile that contains source code for one or more
ERR5RS/R6RS libraries. Apart from its unwillingness to compile top-level programs, conpi |l e-1i brary
behaves the same asconpi | e-fi | e above.

Procedure compile-stale-libraries
(conpile-stale-libraries)
(compil e-stale-libraries changedfil e)

If no argument is supplied, then all . sl s" filesthat lie within the current directory or a subdirectory are
recompiled.

If changedfile is supplied, then it must be a string giving the absolute pathname of afile. (In typical usage,
changedfile is a source file that has been modified, making it necessary to recompile all files that depend
upon it.) Compiles all ERR5RS/R6RS library files that lie within the same directory as changedfile or a
subdirectory, and have not yet been compiled or whose compiled files are older than changedfile.

Note

In future versions of Larceny, conpi | e-st al e-1i brari es might compile only the source files
that depend upon changedfile.

Procedure compiler-switches

(conpil er-sw tches)

(conpi l er-sw t ches node)

If no argument is supplied, then the current settings of all compiler switches are displayed. Each of those
switchesisitself a parameter that is exported by the (1 arceny conpi | er) library. Calling any individual

compiler switch with no arguments will return its current setting. Calling any individual compiler switch
with an argument (usually a boolean) will change its setting to that argument.

The conpi | er - swi t ches procedure may also be called with one of the following symbols as its
argument:

def aul t setsmost compiler switchesto their default settings.

f ast - saf e enables all optimizations but continues to generate code to perform all run-time type and
range checks that are needed for safety (in the traditional sense, not the R6RS sense).

31

Larceny User Manual

f ast - unsaf e enables all optimizations and also disables type and range checking. This setting is
deprecated because it compromises safety (in the traditional sense).

sl owturns off all optimizations.
st andar d sets compiler switches for maximal conformance to the R5RS and R6RS standards.
Warning

The st andar d setting is deprecated because it generates very slow code (because the R5RS makes
it difficult to inline standard procedures), disables most compile-time checking (because the R6RS
forbids rejection of programs with obvious errors unless the R6RS classifies the errors as
syntactic), and may also compromise the portability or interoperability of ERRSRS/R6RS libraries
and programs (because the R6RS outlaws several extensions that Larceny uses to improve its
compatibility with other implementations of the R5RS and R6RS as well as interoperability
between Larceny's own R5RS and ERR5RS/R6RS modes).

Tip

Selective toggling of compiler switches is almost always better than using the st andar d setting.
To improve R5RS conformance without sacrificing too much performance, set the

benchmar k- mode switch to false and set thei nt egr at e- pr ocedur es switch to false only when
compiling files that need to be sensitive to redefinitions of standard procedures. For R6RS
libraries and programs, setting the benchnar k- node and gl obal - opt i mi zat i on switchesto false
will eliminate a couple of minor conformance issues with only a small loss of performance and
without sacrificing compile-time checking or portability.

9.3. Benchmarking

The (1 arceny benchmar ki ng) library exportstheti me syntax and r un- benchmar k procedure described
below.

Syntax time
(time expression)

Evaluates expression and returns its result after printing approximations to the storage allocated and time
taken during evaluation of expression.

> (time (fib 30))
Wrds al located: O
Words reclained: 0O

El apsed tine...: 49 ns (User: 48 ns; System 0 ns)
El apsed GC tine: 0 ms (CPU. 0 in O collections.)
832040

(run-benchmark nanme iterations thunk predicate)

Given the name of a benchmark, the number of iterations to be performed, a zero-argument procedure
thunk that runs the benchmark, and a unary predicate that checks the result of thunk, prints
approximations to the storage allocated and time taken by iterations calls to thunk.

> (run-benchmark "fi b30"
100

32

Larceny User Manual

(lambda () (fib 30))
(lanbda (x) (= x 832040)))

fib30

Words al l ocated: O

Words reclaimed: 0

El apsed tinme...: 4828 ns (User: 4824 ms; System 4 ns)
El apsed GC tine: 0 ms (CPU:. 0 in O collections.)

9.4. Records printer

The (Il arceny records printer) library exportsthe two procedures described below. These procedures
can be used to override Larceny's usual printing of records and opague types that were defined using the
records libraries.

Procedure rtd-printer

(rtd-printer rtd) => maybe-procedure

Given arecord type descriptor, returns its custom print procedure, or returns false if the rtd has no custom
print procedure.

Procedure rtd-printer-set!
(rtd-printer-set! rtd printer)
Given arecord type descriptor rtd and a printer for instances of that rtd, installs printer as a custom print

procedure for rtd. The printer should be a procedure that, given an instance of the rtd and a textual output
port, writes a representation of the instance to the port.

10. Larceny's R5RS libraries

The procedures described in this chapter are nonstandard. Some are deprecated after being rendered
obsolete by ERR5RS or R6RS standard libraries. Others still provide useful capabilities that the standard
libraries don't.

10.1. Strings

Larceny provides Unicode strings with R6RS [http://www.rérs.org/] semantics.

Thestring-downcase and st ri ng- upcase procedures perform Unicode-compatible case folding, which
can result in a string whose length is different from that of the original.

Larceny may still providest ri ng- downcase! and stri ng- upcase! procedures, but they are deprecated.

10.2. Bytevectors

A bytevector is adata structure that stores bytes — exact 8-bit unsigned integers. Bytevectors are useful in
constructing system interfaces and other low-level programming. In Larceny, many bytevector-like
structures — bignums, for example — are implemented in terms of alower-level bytevector-like data
type. The operations on generic bytevector-like structures are particularly fast but useful largely in code

33

http://www.r6rs.org/
http://www.r6rs.org/

Larceny User Manual

that manipulates Larceny's data representations.

The(rnrs bytevectors) library now providesalarge set of proceduresthat, in Larceny, are defined
using the procedures described below.

Integrable procedure make-bytevector
(make- byt evector |ength) => bytevector
(make-bytevector length fill) => bytevector

Returns a bytevector of the desired length. If no second argument is given, then the bytevector has not
been initialized and most likely contains garbage.

Operations on bytevector structures

(bytevector? obj) => bool ean

(bytevector-length bytevector) => integer

(bytevector-ref bytevector offset) => byte

(bytevector-set! bytevector offset byte) => unspecified

(bytevector-equal ? bytevectorl bytevector2) => bool ean

(bytevector-fill! bytevector byte) => unspecified

(bytevector-copy bytevector) => hytevector

These procedures do what you expect. All are integrable, except byt evect or - equal ? and

byt evect or - copy. The byt evect or - equal ? nameis deprecated, since the R6RS callsit byt evect or =2.
Operations on bytevector-like structures

(bytevector-1like? obj) => bool ean

(bytevector-like-length bytevector) => integer

(bytevector-like-ref bytevector offset) => byte

(bytevector-like-set! bytevector offset byte) => unspecified

(bytevector-1like-equal ? bytevectorl bytevector2) => bool ean

34

Larceny User Manual

(bytevector-like-copy bytevector) => bhytevector

A bytevector-like structure is alow-level representation for indexed arrays of uninterpreted bytes.
Bytevector-like structures are used to represent types such as bignums and flonums.

Thereis no way to construct a "generic" bytevector-like structure; use the constructors for specific
bytevector-like types.

The bytevector-like operations operate on all bytevector-like structures. All are integrable, except
byt evect or - | i ke- equal ? and byt evect or - | i ke- copy. All are deprecated because they violate
abstraction barriers and make your code representation-independent; they are useful mainly to Larceny

developers, who might otherwise be tempted to write some low-level operationsin C or assembly
language.

10.3. Vectors

Procedure vector-copy
(vector-copy vector) => vector
Returns a shallow copy of its argument.

Operations on vector-like structures

(vector-1like? object) => bool ean

(vector-like-length vector-like) => fixnum
(vector-like-ref vector-like k) => object
(vector-like-set! vector-like k object) => unspecified

A vector-like structure is alow-level representation for indexed arrays of Scheme objects. Vector-like
structures are used to represent types such as vectors, records, symbols, and ports.

Thereis no way to construct a"generic" vector-like structure; use the constructors for specific data types.
The vector-like operations operate on al vector-like structures. All are integrable. All are deprecated
because they violate abstraction barriers and make your code representation-independent; they are useful

mainly to Larceny developers, who might otherwise be tempted to write some low-level operationsin C
or assembly language.

10.4. Procedures

Operations on procedures

(make- procedure | ength) => procedure

(procedure-1ength procedure) => fixnum

35

Larceny User Manual

(procedure-ref procedure offset) => object
(procedure-set! procedure offset object) => unspecified

These procedures operate on the representations of procedures and allow user programs to construct,
inspect, and alter procedures.

Procedure procedure-copy
(procedur e-copy procedure) => procedure
Returns a shallow copy of the procedure.

The procedures above are deprecated because they violate abstraction barriers and make your code
representation-independent; they are useful mainly to Larceny developers, who might otherwise be
tempted to write some low-level operationsin C or assembly language.

The rest of this section describes some procedures that reach through abstraction barriersin a more
controlled way to extract heuristic information from procedures for debugging purposes.

Note

The following text is copied from a straw proposal authored by Will Clinger and sent to
rrr-authors on 09 May 1996. The text has been edited lightly. See the end for notes about the
Larceny implementation.

The procedures that extract heuristic information from procedures are permitted to return any result
whatsoever. If the type of aresult is not among those listed below, then the result represents an
implementation-dependent extension to this interface, which may safely be interpreted as though no
information were available from the procedure. Otherwise the result is to be interpreted as described
below.

Procedure procedure-arity

(procedure-arity proc)

Returns information about the arity of proc. If theresult is#f , then no information is available. If the
result is an exact non-negative integer k, then proc requires exactly k arguments. If the result is an inexact
non-negative integer n, then proc requires n or more arguments. If theresult isa pair, thenitisalist of
non-negative integers, each of which indicates a number of arguments that will be accepted by proc; the
list is not necessarily exhaustive.

Procedure procedure-documentation-string

(procedur e-docunent ati on-string proc)

Returns general information about proc. If the result is#f , then no information is available. If theresult is
astring, then it isto be interpreted as a "documentation string" (see Common Lisp).

Procedure procedure-name
(procedur e- nane proc)

Returns information about the name of proc. If the result is#f , then no information is available. If the

36

Larceny User Manual

result isa symbol or string, then it represents a name. If the result isa pair, then it isalist of symbols
and/or strings representing a path of names; the first element represents an outer name and the last
element represents an inner name.

Procedure procedure-source-file

(procedure-source-file proc)

Returns information about the name of afile that contains the source code for proc. If the result is#f , then
no information is available. If the result is a string, then the string is the name of afile.

Procedure procedure-sour ce-position

(procedur e-sour ce-position proc)

Returns information about the position of the source code for proc whithin the source file specified by
procedure-source-file. If the result is#f , then no information is available. If the result is an exact integer
k, then k characters precede the opening parenthesis of the source code for proc within that source file.
Procedure procedure-expression

(procedur e- expressi on proc)

Returns information about the source code for proc. If the result is#f , then no information is available. If
theresult isapair, then it is alambda expression in the traditional representation of alist.

Procedure procedure-environment
(procedur e-envi ronnent proc)

Returns information about the environment of proc. If the result is#f , then no information is available. In
any case the result may be passed to any of the environment inquiry functions.

Notes on the Larceny implementation

Twobit does not yet produce data for all of these functions, so some of them always return #f .

10.5. Pairs and Lists

The(rnrs lists) library now provides a set of procedures that may supersede some of the procedures
described below. If one of Larceny's procedures duplicates the semantics of an R6RS procedure whose
name is different, then Larceny's name is deprecated.

Procedure append!

(append! listl list2 ...obj) => object

append! destructively appends its arguments, which must be lists, and returns the resulting list. The last
argument can be any object. The argument lists are appended by changing the cdr of the last pair of each
argument except the last to point to the next argument.

Procedure every?

(every? procedure listl list2 .) => object

37

Larceny User Manual

every? applies procedure to each element tuple of list_sin first-to-last order, and returns #f as soon as
_procedure returns #f . If procedure does not return #f for any element tuple of list_s, then the value
returned by _procedure for the last element tuple of _list_sisreturned.

Procedure last-pair

(last-pair list-structure) => pair

| ast - pai r returnsthe last pair of the list structure, which must be a sequence of pairs linked through the
cdr fields.

Procedure list-copy

(list-copy list-copy) => list

l'i st - copy makes ashallow copy of the list and returns that copy.
Procedure remove

(remove key list) => |ist
Procedure remq

(remg key list) => list
Procedure remv

(remv key list) => list
Procedure remp

(remp pred? list) => I|ist

Each of these procedures returns a new list which contains al the elements of list in the original order,
except that those elements of the original list that were equal to key (or that satisfy pred?) are not in the
new list. Remove uses equal ? asthe equivalence predicate; r ey useseq?, and r env USeS eqv?.

Procedure remove!

(remove! key list) => list
Procedure remq!

(remg! key list) => list
Procedure remv!

(remv! key list) => list
Procedure remp!

(remp! pred? list) => list

These procedures are liker enove, reng, r env, and r enp, except they modify list instead of returning a
fresh list.

Procedure reverse!
(reverse! list) => list

rever se! destructively reversesits argument and returns the reversed list.

38

Larceny User Manual

Procedure some?
(some? procedure listl list2 .) => object

some? applies procedure to each element tuple of list_sin first-to-last order, and returns the first
non-false value returned by _procedure. If procedure does not return atrue value for any element tuple of
_list_s, then some? returns #f .

10.6. Sorting

The(rnrs sorting) library now provides asmall set of procedures that supersede most of the
procedures described below. All of the procedures described below are therefore deprecated.

Procedures sort and sort!

(sort list less?) => |ist
(sort vector |ess?) => vector
(sort! list less?) => |ist
(sort! vector |less?) => vector

These procedures sort their argument (alist or a vector) according to the predicate less?, which must
implement atotal order on the elements in the data structures that are sorted.

sort returnsafresh data structure containing the sorted data; sort! sorts the data structure in-place.

10.7. Records

Note

Larceny's records have been extended to implement all ERRS5RS
[http://scheme-punks.org/wiki/index.php?title=Main_Page] and R6RS [http://www.r6rs.org/]
procedures from

(err5rs records procedural)
(err5rs records inspection)
(rnrs records procedural)
(rnrs records I nspection)

We recommend that Larceny programmers use the ERR5RS APIs instead of the R6RS APIs. This
should entail no loss of portability, since the standard reference implementation of ERR5RS
records should run efficiently in any implementation of the R6RS that permits new librariesto
defined at all.

Larceny now has two kinds of records: old-style and ERR5RS/R6RS. Old-style records cannot be

created in R6RS-conforming mode, so our extension of R6RS procedures to accept old-style
records does not affect R6RS conformance.

Note

The following specification describes Larceny's old-style record API, which is now deprecated. It

39

http://scheme-punks.org/wiki/index.php?title=Main_Page
http://scheme-punks.org/wiki/index.php?title=Main_Page
http://www.r6rs.org/
http://www.r6rs.org/

Larceny User Manual

is based on a proposal posted by Pavel Curtisto rrrs-authors on 10 Sep 1989, and later re-posted
by Norman Adams to comp.lang.scheme on 5 Feb 1992. The authorship and copyright status of
the original text are unknown to me.

This document differs from the original proposal in that its record types are extensible, and that it
specifies the type of record-type descriptors.

10.7.1. Specification

Procedure make-record-type
(rmake-record-type type-nane fiel d- nanes)

Returns a "record-type descriptor”, a value representing a new data type, digoint from all others. The
type-name argument must be a string, but is only used for debugging purposes (such as the printed
representation of arecord of the new type). The field-names argument is alist of symbols naming the
"fields" of arecord of the new type. It isan error if the list contains any duplicates.

If the parent-rtd argument is provided, then the new type will be a subtype of the type represented by
parent-rtd, and the field names of the new type will include all the field names of the parent type. It isan
error if the complete list of field names contains any duplicates.

Record-type descriptors are themselves records. In particular, record-type descriptors have afield printer
that is either #f or aprocedure. If the value of the field is a procedure, then the procedure will be called to
print records of the type represented by the record-type descriptor. The procedure must accept two
arguments: the record object to be printed and an output port.

Procedur e record-constructor
(record-constructor rtd)

Returns a procedure for constructing new members of the type represented by rtd. The returned procedure
accepts exactly as many arguments as there are symbolsin the given list, field-names; these are used, in
order, astheinitial values of those fieldsin a new record, which is returned by the constructor procedure.
The values of any fields not named in that list are unspecified. The field-names argument defaults to the
list of field-namesin the call to make-record-type that created the type represented by rtd; if the
field-names argument is provided, it isan error if it contains any duplicates or any symbols not in the
default list.

Procedure record-predicate

(record-predicate rtd)

Returns a procedure for testing membership in the type represented by rtd. The returned procedure
accepts exactly one argument and returns atrue value if the argument is a member of the indicated record
type or one of its subtypes; it returns afalse value otherwise.

Procedur e record-accessor

(record-accessor rtd field-nane)

Returns a procedure for reading the value of a particular field of amember of the type represented by rtd.

The returned procedure accepts exactly one argument which must be arecord of the appropriate type; it
returns the current value of the field named by the symbol field-name in that record. The symbol

40

Larceny User Manual

field-name must be a member of the list of field-names in the call to make-record-type that created the
type represented by rtd, or amember of the field-names of the parent type of the type represented by rtd.

Procedure record-updater
(record-updater rtd field-nane)

Returns a procedure for writing the value of a particular field of amember of the type represented by rtd.

The returned procedure accepts exactly two arguments: first, arecord of the appropriate type, and second,
an arbitrary Scheme value; it modifies the field named by the symbol field-name in that record to contain

the given value. The returned value of the updater procedure is unspecified. The symbol field-name must

be amember of thelist of field-namesin the call to make-record-type that created the type represented by
rtd, or amember of the field-names of the parent type of the type represented by rtd.

(record? obj)

Returns atrue value if obj isarecord of any type and a false value otherwise. Note that r ecor d? may be
true of any Scheme value; of course, if it returns true for some particular value, then

recor d-type-descriptor isapplicable to that value and returns an appropriate descriptor.

Procedure record-type-descriptor

(record-type-descriptor record)

Returns a record-type descriptor representing the type of the given record. That is, for example, if the
returned descriptor were passed to record-predicate, the resulting predicate would return atrue value
when passed the given record. Note that it is not necessarily the case that the returned descriptor is the one
that was passed to record-constructor in the call that created the constructor procedure that created the
given record.

Procedure record-type-name

(record-type-nane rtd)

Returns the type-name associated with the type represented by rtd. The returned value is eqv? to the
type-name argument given in the call to make-record-type that created the type represented by rtd.

Procedure record-type-field-names

(record-type-field-nanes rtd)

Returns alist of the symbols naming the fields in members of the type represented by rtd.

Procedure record-type-parent

(record-type-parent rtd)

Returns a record-type descriptor for the parent type of the type represented by rtd, if that type has a parent
type, or afalse value otherwise. The type represented by rtd has a parent type if the call to
make-record-type that created rtd provided the parent-rtd argument.

Procedure record-type-extends?

(record-type-extends? rtdl rtd2)

41

Larceny User Manual

Returns atrue value if the type represented by rtdl is a subtype of the type represented by rtd2 and afalse
value otherwise. A type sisasubtype of atypet if s=t or if the parent type of s, if it exists, is a subtype of
t.

10.7.2. Implementation

The R6RS spouts some tendentious nonsense about procedural records being slower than syntactic
records, but thisis not true of Larceny's records, and is unlikely to be true of other implementations either.
Larceny's procedural records are fairly efficient already, and will become even more efficient in future
versions as interlibrary optimizations are added.

10.8. Input, Output, and Files

The(rnrs io ports) and(rnrs files) librariesnow provide aset of procedures that may supersede
some of the procedures described below. If one of Larceny's procedures duplicates the semantics of an
R6RS procedure whose name is different, then Larceny's name is deprecated.

Procedure close-open-files

(cl ose-open-files) => unspecified

Closes al openfiles.

Procedure console-input-port

(consol e-input-port) => input-port

Returns a character input port such that no read from the port has signalled an error or returned the
end-of-file object.

Rationale: console-input-port and console-output-port are artifacts of Unix interactive 1/0O conventions,
where an interactive end-of-file does not mean "quit" but rather "done here". Under these conventions the
console port should be reset following an end-of-file. Resetting conflicts with the semantics of portsin
Scheme, so console-input-port and console-output-port return anew port if the current port is already at
end-of-file.

Sinceit is convenient to handle errorsin the same manner as end-of-file, these procedures also return a
new port if an error has been signalled during an /O operation on the port.

Console-input-port and console-output-port ssimply call the port generators installed in the parameters
consol e-input-port-factory and console-output-port-factory, which allow user programsto install their
own console port generators.

Procedure consol e-output-port

(consol e-out put-port) => out put - port

Returns a character output port such that no write to the port has signalled an error.

See console-input-port for afull explanation.

Parameter consol e-input-port-factory

42

Larceny User Manual

The value of this parameter is a procedure that returns a character input port such that no read from the
port has signalled an error or returned the end-of-file object.

See console-input-port for afull explanation.
Parameter consol e-output-port-factory

The value of this parameter is a procedure that returns a character output port such that no write the port
has signalled an error.

See console-input-port for afull explanation.

Parameter current-input-port

The value of this parameter is a character input port.

Parameter current-output-port

The value of this parameter is a character output port.

Procedure delete-file

(delete-file filenane) => unspecified

Deletes the named file. No error issignalled if the file does not exist.
Procedure eof-object

(eof -object) => end-of-file object

Eof-object returns an end-of-file object.

Procedure file-exists?

(file-exists? fil enane) => bool ean

File-exists? returns #t if the named file exists at the time the procedure is called.
Procedure file-modification-time

(file-nodification-tinme filename) => vector or #f

File-modification-time returns the time of last modification of the file as a vector, or #f if the file does not
exist. The vector has six elements: year, month, day, hour, minute, second, all of which are exact
nonnegative integers. The time returned is relative to the local timezone.

(file-nodification-time "larceny") => #(1997 2 6 12 51 13)
(file-nodification-time "geekdoni) => #f

Procedure flush-output-port

(flush-output-port) => unspecified

(flush-out put-port port) => unspecified

Larceny User Manual

Write any buffered datain the port to the underlying output medium.
Procedure get-output-string

(get-output-string string-output-port) => string
Retrieve the output string from the given string output port.
Procedure open-input-string

(open-input-string string) => input-port

Creates an input port that reads from string. The string may be shared with the caller. A string input port
does not need to be closed, although closing it will prevent further reads fromit.

Procedure open-output-string
(open-out put-string) => output-port

Creates an output port where any output is written to a string. The accumulated string can be retrieved
with get-output-string at any time.

Procedure port?

(port? object) => bool ean

Tests whether its argument is a port.

Procedure port-name

(port-name port) => string

Returns the name associated with the port; for file ports, thisis the file name.
Procedure port-position

(port-position port) => fixnum

Returns the number of characters that have been read from or written to the port.
Procedure rename-file

(renane-file fromto) => unspecified

Renames the file from and gives it the name to. No error is signalled if from does not exist or to exists.
Procedure reset-output-string

(reset-output-string port) => unspecified

Given aport created with open-output-string, deletes from the port all the characters that have been
output so far.

Procedure with-input-from-port

Larceny User Manual

(with-input-fromport input-port thunk) => object

Calls thunk with current input bound to input-port in the dynamic extent of thunk. Returns whatever value
was returned from thunk.

Procedure with-output-to-port
(with-out put-to-port output-port thunk) => object

Calls thunk with current output bound to output-port in the dynamic extent of thunk. Returns whatever
value was returned from thunk.

10.9. Operating System Interface

Procedure command-line-arguments

(command- | i ne-arguments) => vector

Returns a vector of strings. the arguments supplied to the program by the user or the operating system.
Procedure dump-heap

(dump-heap fil enanme procedure) => unspecified

Dump a heap image to the named file that will start up with the supplied procedure. Before procedureis
called, command line arguments will be parsed and any init procedures registered with

add-i ni t - procedure! will be called.

Note: Currently, heap dumping is only available with the stop-and-copy collector (- st opcopy command
line option), although the heap image can be used with all the other collectors.

Procedure dump-interactive-heap

(dump-interactive-heap filename) => unspecified

Dump a heap image to the named file that will start up with the standard read-eval-print loop. Before the
read-eval-print loop is called, command line arguments will be parsed and any init procedures registered

with add-i ni t - procedure! will becalled.

Note: Currently, heap dumping is only available with the stop-and-copy collector (- st opcopy command
line option), although the heap image can be used with all the other collectors.

Procedure getenv

(getenv key) => string or #f

Returns the operating system environment mapping for the string key, or #f if thereis no mapping for key.
Procedure system

(system command) => status

Send the command to the operating system's command processor and return the command's exit status, if
any. On Unix, command is a string and status is an exact integer.

45

Larceny User Manual

10.10. Fixnum primitives

Fixnums are small exact integersthat are likely to be represented without heap allocation. Larceny never
represents a number that can be represented as a fixnum any other way, so programs that can use fixnums
will do so automatically. However, operations that work only on fixnums can sometimes be substantially
faster than generic operations, and the following primitives are provided for use in those programs that
need especially good performance.

The(rnrs arithnetic fixnuns) library now provides alarge set of proceduresthat, in Larceny, are
defined using the procedures described below. If one of Larceny's procedures duplicates the semantics of
an R6RS procedure whose name is different, then Larceny's name is deprecated.

All arguments to the following procedures must be fixnums.
Procedure fixnum?

(fixnun? obj) => bool ean

Returns#t if itsargument isafixnum, and #f otherwise.
Procedure fx+

(fx+ fixl fix2) => fixnum

Returns the fixnum sum of its arguments. If the result is not representable as a fixnum, then an error is
signalled (unless error checking has been disabled).

Procedure fx-

Returns the fixnum difference of its arguments. If the result is not representable as a fixnum, then an error
issignalled.

Procedure fx—

(fx—fix1l) => fixnum

Returns the fixnum negative of its argument. If the result is not representable as afixnum, then an error is
signalled.

Procedure fx*
(fx* fix1l fix2) => fixnum

Returns the fixnum product of its arguments. If the result is not representable as a fixnum, then an error is
signalled.

Procedure fx=
(fx= fix1l fix2) => bool ean
Returns#t if itsarguments are equal, and #f otherwise.

Procedure fx<

46

Larceny User Manual

(fx< fixl fix2) => bool ean

Returns#t if fixlislessthan fix2, and #f otherwise.

Procedure fx<=

(fx<= fix1l fix2) => bool ean

Returns#t if fix1 islessthan or equal to fix2, and #f otherwise.
Procedure fx>

(fx> fix1l fix2) => bool ean

Returns#t if fix1 is greater than fix2, and #f otherwise.
Procedure fx>=

(fx>= fix1l fix2) => bool ean

Returns#t if fix1 is greater than or equal to fix2, and #f otherwise.
Procedure fxnegative?

(fxnegative? fix) => bool ean

Returns#t if itsargument is less than zero, and #f otherwise.
Procedure fxpositive?

(fxpositive? fix) => bool ean

Returns#t if itsargument is greater than zero, and #f otherwise.
Procedure fxzero?

(fxzero? fix) => bool ean

Returns#t if itsargument is zero, and #f otherwise.

Procedure fxlogand

(fxlogand fix1l fix2) => fixnum

Returns the bitwise and of its arguments.

Procedure fxlogior

(fxlogior fixl fix2) => fixnum

Returns the bitwise inclusive or of its arguments.

Procedure fxlognot

(fxlognot fix) => fixnum

47

Larceny User Manual

Returns the bitwise not of its argument.
Procedure fxlogxor

(fxlogxor fix1l fix2) => fixnum

Returns the bitwise exclusive or of its arguments.
Procedure fxish

(fxlsh fixl fix2) => fixnum

Returns fix1 shifted left fix2 places, shifting in zero bits at the low end. If the shift count exceeds the
number of bits in the machine's word size, then the results are machine-dependent.

Procedure most-positive-fixnum
(nmost-positive-fixnum) => fixnum

Returns the largest representabl e positive fixnum.
Procedure most-negative-fixnum
(nmost-negative-fixnum) => fixnum

Returns the smallest representable negative fixnum.
Procedure fxrsha

(fxrsha fix1l fix2) => fixnum

Returns fix1 shifted right fix2 places, shifting in a copy of the sign bit at the left end. If the shift count
exceeds the number of bitsin the machine's word size, then the results are machine-dependent.

Procedure fxrshl
(fxrshl fix1l fix2) => fixnum

Returns fix1 shifted right fix2 places, shifting in zero bits at the high end. If the shift count exceeds the
number of bits in the machine's word size, then the results are machine-dependent.

10.11. Numbers

Larceny has six representations for numbers: fixnums are small, exact integers; bignums are
unlimited-precision exact integers; ratnums are exact rationas; flonums are inexact rationals; rectnums are
exact complexes, and compnums are inexact complexes.

Number -representation predicates

(fi xnun? obj) => bool ean

(bi gnun? obj) => bool ean

Larceny User Manual

(ratnun? obj) => bool ean
(fl onun?? obj) => bool ean
(rectnunf? obj) => bool ean
(compnun? obj) => bool ean

These predicates test whether an object is a number of a particular representation and return #t if so, #f if
not.

Procedure random
(randomlimt) => exact integer

Returns a pseudorandom nonnegative exact integer in the range 0 through limit-1.

10.12. Hashtables and hash functions

Hashtables represent finite mappings from keys to values. If the hash function is a good one, then the
value associated with a key may be looked up in constant time (on the average).

Note

The R6RS hashtables library are a big improvement over Larceny's traditional hash tables, and
should be used instead of the API described below.

Note

To resolve a clash of names and semantics with the R6RS nake- hasht abl e procedure, Larceny's
traditional make- hasht abl e procedure has been renamed to make- ol dst yl e- hasht abl e.

10.12.1. Hash tables

Procedure make-ol dstyle-hashtable
(make-ol dstyl e- hasht abl e hash-functi on bucket-searcher size) => hashtable

Returns a newly allocated mutable hash table using hash-function as the hash function and
bucket-searcher, e.g. assq, assv, assoc, to search a bucket with size buckets at first, expanding the
number of buckets as needed. The hash-function must accept akey and return a non-negative exact
integer.

(make-ol dstyl e- hasht abl e hash-functi on bucket-searcher) => hashtabl e

Equivalent to (make- ol dst yl e- hasht abl e hash-function bucket - searcher n) for somevalue of n
chosen by the implementation.

(make-ol dstyl e- hasht abl e hash-function) => hashtabl e

Equivalent to (make- ol dst yl e- hasht abl e hash-function assv).

49

Larceny User Manual

(make-ol dstyl e-hashtable) => hashtabl e

Equivalent to (make- ol dst yl e- hasht abl e obj ect - hash assv).
Procedur e hashtabl e-contains?

(hasht abl e-cont ai ns? hashtabl e key) => boo

Returns true iff the hashtable contains an entry for key.

Procedure hashtable-fetch

(hasht abl e-fetch hashtabl e key flag) => object

Returns the value associated with key in the hashtable if the hashtable contains key; otherwise returns
flag.

Procedure hashtable-get

(hasht abl e-get hasht abl e key) => obj ect

Equivalent to (hasht abl e-fetch #f).

Procedure hashtable-put!

(hasht abl e-put! hashtabl e key val ue) => unspecified
Changes the hashtable to associate key with value, replacing any existing association for key.
Procedure hashtable-remove!

(hasht abl e-renove! hashtabl e key) => unspecified
Removes any association for key within the hashtable.

Procedure hashtable-clear!

(hasht abl e-cl ear! hashtable) => unspecified

Removes all associations from the hashtable.

Procedure hashtable-size

(hasht abl e-si ze hashtabl e) => integer

Returns the number of keys contained within the hashtable.
Procedure hashtable-for-each

(hasht abl e-for-each procedure hashtabl e) => unspecified

The procedure must accept two arguments, a key and the value associated with that key. Calls the
procedure once for each key-value association in hashtable. The order of these callsis indeterminate.

50

Larceny User Manual

Procedure hashtable-map

(hasht abl e-map procedure hasht abl e)

The procedure must accept two arguments, a key and the value associated with that key. Calls the
procedure once for each key-value association in hashtable, and returns alist of the results. The order of
the callsisindeterminate.

Procedure hashtable-copy

(hasht abl e-copy hashtabl e) => hasht abl e

Returns a copy of the hashtable.

10.12.2. Hash functions

The hash values returned by these functions are nonnegative exact integer suitable as hash values for the
hashtabl e functions.

Procedure equal-hash

(equal - hash object) => integer

Returns a hash value for object based on its contents.

Procedure object-hash

(obj ect-hash object) => integer

Returns a hash value for object based on its identity.
Warning
This hash function performs extremely poorly on pairs, vectors, strings, and bytevectors, which
are the objects with which it ismostly likely to be used. For efficient hashing on object identity,
create the hashtable with nake- eg- hasht abl e oOr nake- eqv- hasht abl e of the (rnrs
hasht abl es) library.

Procedure string-hash

(string-hash string) => fixnum

Returns a hash value for string based on its content.

Procedure symbol-hash

(synbol - hash synbol) => fixnum

Returns a hash value for symbol based on its print name. The synbol - hash isvery fast, because the hash
code is cached in the symbol data structure.

10.13. Parameters

Parameters are procedures that serve as containers for values; parts of the system that do not operate in the

51

Larceny User Manual

same namespace can still share parameters and thereby read and write shared state.

A parameter takes zero or one arguments. If called with no arguments, it returns the current value of the
parameter. If called with one argument, it sets the parameter's value to that of the argument and returns
the new value.

Procedure make-parameter

(make- paraneter nane val ue [predicate]) => procedure

Create a parameter with name name, initial value value, and optional setter predicate predicate. When the
parameter is set the new value isfirst passed to predicate,, and if it returns#f then an error is signalled.
Name can be a symbol or a string.

Syntax parameterize

(paraneterize ((paraneter0O valueO) .) expr0O exprl .)

Parameterize overrides the values of a set of parametersin adynamic scope — it islike fluid-let for
parameters.

10.13.1. Larceny parameters

The following list of parameters does not yet include the reader or compiler switches, which are also
parameters.

Parameter br eak- handl er [debugging.html#proc:break-handler]

Parameter consol e-i nput - port - f act or y [i0.html#proc:consol e-input-port-factory]
Parameter consol e- out put - por t - f act or y [i0.html#proc:console-output-port-factory]
Parameter cur rent - i nput - por t [i0.html#proc:current-input-port]

Parameter cur r ent - out put - por t [io.html#proc:current-output-port]

Parameter er r or - handl er [control.html#proc:error-handler]

Parameter eval uat or [control.html#proc:evaluator]

Parameter her al d [repl.html#proc:herald]

Parameter i nt er act i on- envi ronment [environ.html#proc:interaction-environment]
Parameter keyboar d- i nt er r upt - handl er [control.html#proc:keyboard-interrupt-handler]
Parameter | oad- eval uat or [control.html#proc:load-evaluator]

Parameter qui t - handl er [control.html#proc:quit-handler]

Parameter r epl - | evel [repl.html#proc:repl-level]

Parameter r epl - eval uat or [repl.html#proc:repl-evaluator]

52

debugging.html#proc:break-handler
debugging.html#proc:break-handler
io.html#proc:console-input-port-factory
io.html#proc:console-input-port-factory
io.html#proc:console-output-port-factory
io.html#proc:console-output-port-factory
io.html#proc:current-input-port
io.html#proc:current-input-port
io.html#proc:current-output-port
io.html#proc:current-output-port
control.html#proc:error-handler
control.html#proc:error-handler
control.html#proc:evaluator
control.html#proc:evaluator
repl.html#proc:herald
repl.html#proc:herald
environ.html#proc:interaction-environment
environ.html#proc:interaction-environment
control.html#proc:keyboard-interrupt-handler
control.html#proc:keyboard-interrupt-handler
control.html#proc:load-evaluator
control.html#proc:load-evaluator
control.html#proc:quit-handler
control.html#proc:quit-handler
repl.html#proc:repl-level
repl.html#proc:repl-level
repl.html#proc:repl-evaluator
repl.html#proc:repl-evaluator

Larceny User Manual

Parameter r epl - pri nt er [repl.html#proc:repl-printer]

Parameter r eset - handl er [control.html#proc:reset-handler]

Parameter st andar d- t i nesl i ce [control.html#proc:standard-timeslice]
Parameter st r uct ur e- conpar at or [structures.html#proc:structure-comparator]
Parameter st r uct ur e- pri nt er [structures.html#proc:structure-printer]

Parameter t i ner - i nt er rupt - handl er [control.html#proc:timer-interrupt-handler]

10.14. Property Lists

The property list of asymbol is an association list that is attached to that symbol. The association list
maps properties, which are themselves symbols, to arbitrary values.

Procedure putprop

(put prop symbol property obj) => unspecified

If an association exists for property on the property list of symbol, then its value is replaced by the new
value obj. Otherwise, a new association is added to the property list of symbol that associates property
with obyj.

Procedure getprop

(getprop symbol property) => obj

If an association exists for property on the property list of symbol, then its value is returned. Otherwise,
#f isreturned.

Procedure remprop
(remprop synbol property) => unspecified

If an association exists for property on the property list of symbol, then that association is removed.
Otherwise, thisis ano-op.

10.15. Symbols

Procedure gensym

(gensym string) => synbol

Gensym returns a new uninterned symbol, the name of which contains the given string.
Procedure oblist

(oblist) =>1list

Oblist returns the list of interned symbols.

53

repl.html#proc:repl-printer
repl.html#proc:repl-printer
control.html#proc:reset-handler
control.html#proc:reset-handler
control.html#proc:standard-timeslice
control.html#proc:standard-timeslice
structures.html#proc:structure-comparator
structures.html#proc:structure-comparator
structures.html#proc:structure-printer
structures.html#proc:structure-printer
control.html#proc:timer-interrupt-handler
control.html#proc:timer-interrupt-handler

Larceny User Manual

Procedure oblist-set!
(oblist-set! list) => unspecified
(oblist-set! list table-size) => unspecified

oblist-set! setsthelist of interned symbols to those in the given list by clearing the symbol hash table
and storing the symbolsin list in the hash table. If the optional table-sizeis given, it is taken to be the
desired size of the new symbol table.

See also: symbol-hash.

10.16. System Control and Performance
Measurement

Procedure collect

(collect) => unspecified

(coll ect generation) => unspecified
(col l ect generation nethod) => unspecified

Collect initiates a garbage collection. If the system has multiple generations, then the optional arguments
are interpreted as follows. The generation is the generation to collect, where 0 is the youngest generation.
The method determines how the collection is performed. If method is the symbol collect, then afull
collection is performed in that generation, whatever that means — in a normal multi-generational copying
collector, it means that all live objectsin the generation’s current semispace and all live objects from all
younger generations are copied into the generation's other semispace. If method is the symbol promote,
then live objects are promoted from younger generations into the target generation — in our example
collector, that means that the objects are copied into the target generation's current semispace.

The default value for generation is 0, and the default value for method is collect.

Note that the collector'sinternal policy settings may cause it to perform a more major type of collection
than the one requested; for example, an attempt to collect generation 2 could cause the collector to
promote all live datainto generation 3.

Procedure gc-counter

(gc-counter) => fixnum

gc-counter returns the number of garbage collections performed since startup. On a 32-bit system, the
counter wraps around every 1,073,741,824 collections.

gc-counter isa primitive and compilesto a single load instruction on the SPARC.

Procedure major-gc-counter

(maj or-gc-counter) => fixnum

maj or-gc-counter returns the number of major garbage collections performed since startup, where a major

collection is defined as a collection that may change the address of objects that have already survived a
previous collection. On a 32-hit system, the counter wraps around every 1,073,741,824 collections.

54

Larceny User Manual

major-gc-counter is a primitive and compiles to asingle load instruction on the SPARC. Its primary use
to implement efficient hashtables that hash on object identity (make-eq-hashtable and
make-eqv-hashtable).

Procedure gcctl
(gcctl heap-nunber operation operand) => unspecified

[GCCTL islargely obsolete in the new garbage collector but may be resurrected in the future. It can till
be used to control the non-predictive collector.]

gcctl controls garbage collection policy on a heap-wise basis. The heap-number is the heap to operate on,
like for the command line switches. heap 1 is the youngest. If the given heap number does not correspond
to aheap, gcctl fails silently.

The operation is a symbol that selects the operation to perform, and the operand is the operand to that
operation, always a number. For the non-predictive garbage collector, the following operator/operand
pairs are meaningful:

* j-fixed, n: after a collection, the collector parameter j should be set to the value n, if possible.
(Non-predictive heaps only.)

* j-percent, n: after a collection, the collector parameter j should be set to be n percent of the number of
free steps. (Non-predictive heaps only.)

* incr-fixed, n: when growing the heap, the growing should be done in increments of n. In the
non-predictive heap, n isthe number of steps. In other heaps, n denotes kilobytes.

* incr-percent, n: when growing the heap, the growing should be done in increments of n percent.

Example: if the non-predictive heap is heap number 2, then the expressions

(gcetl 2 '"j-fixed 0)
(gcetl 2 "incr-fixed 1)

makes the non-predictive collector ssmulate a normal stop-and-copy collector (because | is always set to
0), and grows the heap only one step at atime as necessary. This may be useful for certain kinds of
experiments.

Example: ditto, the expressions
(gcetl 2 'j-percent 50)
(gcetl 2 'incr-percent 20)

selects the default policy settings.

Note: The gectl facility is experimental. A more developed facility will allow controlling heap contraction
policy, aswell as setting all the watermarks. Certainly one can envision other uses, too. Finally, it needs
to be possible to get current values.

Note: Currently the non-predictive heap (np-sc-heap.c) and the standard stop-and-copy "old" heap
(old-heap.c) are supported, but not the standard "young" heap (young-heap.c), nor the stop-and-copy

55

Larceny User Manual

collector (sc-heap.c).
Procedure sro
(sro pointer-tag type-tag limt) => vector

SRO ("standing room only") is a system primitive that traverses the entire heap and returns a vector that
contains al live objectsin the heap that satisfy the constraints imposed by its parameters.

« If pointer-tag is-1, then object type is unconstrained; otherwise, the object type is constrained to have a
pointer tag that matches pointer-tag. Y ou can read all about pointer tags here, but the short story is that
1=pair, 3=vector-like, 5=bytevector-like, and 7=procedure-like.

 If type-tagis-1, then object type is unconstrained by type-tag; otherwise, only objects with a matching
type-tag are selected (after selection by pointer tag). Pairs don't have type-tags, but other objects do.
Y ou can read all about type-tags here.

 Limit constrains the selected objects by the number of references. If limit is-1, then no constraints are
imposed; otherwise, only objects (selected by pointer-tag and type-tag) with no more than limit
references to them are selected.

For example, (sro -1 -1 -1) returns avector that contains all live objects (not including the vector), and
(sro 5 2 3) returns avector containing all live flonums (bytevector-like, with typetag 2) that are referred to
in no more than 3 places.

Procedure stats-dump-on
(stats-dump-on filename) => unspecified

Stats-dump-on turns on garbage collection statistics dumping. After each collection, a complete RTS
statistics dump is appended to the file named by filename.

The file format and contents are documented in a banner written at the top of the output file. In addition,
accessor procedures for the output structure are defined in the program Util/process-stats.sch.

Stats-dump-on does not perform an initial dump when the fileisfirst opened; only at the first collection is
the first set of statistics dumped. The user might therefore want to initiate a minor collection just after
turning on dumping in order to have a baseline set of data.

Procedure stats-dump-off

(stats-dump-off) => unspecified

Stats-dump-off turns off garbage collection statistics dumping (which was turned on with stats-dump-on).
It does not dump afinal set of statistics before closing the file; therefore, the user may wish to initiate a
minor collection before calling this procedure.

Procedure system-features

(systemfeatures) => alist

System-features returns an association lists of system features. Most entries are self-explanatory. The
following are amore subtle:

56

Larceny User Manual

» Thevalue of architecture-name is Larceny's notion of the architecture for which it was compiled, not
the architecture the program is currently running on. For example, the value of this featureis
"Standard-C" if you're running Petit Larceny.

» Thevalue of heap-area-info is a vector of vectors, one subvector for each heap areain the running
system. The subvector has four entries. the generation number, the area type, the current size, and
additional information.

Procedure display-memstats

(di splay-menstats vector) => unspecified

(di splay-menstats vector mnimal) => unspecified

(display-menstats vector minimal full) => unspecified

Display-memstats takes as its argument a vector as returned by memstats and displays the contents of the

vector in human-readable form on the current output port. By default, not all of the valuesin the vector

are displayed.

If the symbol minimal is passed as the second argument, then only a small number of statistics generally
relevant to running benchmarks are displayed.

If the symbol full is passed as the second argument, then all statistics are displayed.

Procedure memstats

(menstats) => vector

Memstats returns a freshly allocated vector containing run-time-system resource usage statistics. Many of
these will make no sense whatsoever to you unless you also study the RTS sources. A listing of the
contents of the vector is available here.

Procedure run-with-stats

(run-wi th-stats thunk) => obj

Run-with-stats eval uates thunk, then prints a short summary of run-time statistics, as with

(display-nmenstats ... 'nminiml),

and then returns the result of evaluating thunk.
Procedure run-benchmark
(run-benchmark name k thunk ok?) => obj

Run-benchmark prints a short banner (including the identifying name) to identify the benchmark, then
runs thunk k times, and finally tests the value returned from the last call to thunk by applying the predicate
ok? to it. If the predicate returns true, then run-benchmark prints summary statistics, as with

([di splay-nenmstats][5] ... "minimal).

57

Larceny User Manual

If the predicate returns false, an error is signalled.

10.17. SRFI Support

The SRFIs (Scheme Requests For Implementations) is an Internet-based collection of Scheme code
designed and provided by Scheme programmers. The SRFI effort is open to anyone, and is described at
http://srfi.schemers.org.

The fundamental SRFI is SRFI-0, "Feature-based conditional expansion construct”, which alows a
program to query the underlying implementation about the available SRFIs (and potentially about other
implementation features) at macro expansion time. The design documents for this and other SRFIs are
available at the web site shown above.

Larceny currently supports many SRFIs, but not as many as it should. Some SRFIs are built into Larceny,
but most must be loaded dynamically using Larceny'sr equi r e procedure:

> (require 'srfi-0)

Larceny provides the following nonstandard SRFI keysfor use in SRFI O:

| ar ceny

10.18. SLIB support

SLIB [http://www-swiss.al.mit.edu/~jaffer/SLIB.html] is alarge collection of useful libraries that have
been written or collected by Aubrey Jaffer.

Larceny supports SLIB via SRFI 96 [http://srfi.schemers.org/srfi-96/], but SLIB itself is not shipped with

Larceny; it must be downloaded separately and then installed. For the most up-to-date information on
installing and using SLIB with Larceny, see doc/ HOMO- SLI B.

10.19. Foreign-Function Interface to C

Larceny provides a general foreign-function interface (FFI) substrate on which other FFIs can be built;
see Larceny Note #7 [LarcenyNotes/note7-ffi.html]. The FFI described in this manual sectionisasimple
example of aderived FFI. It isnot yet fully evolved, but it is useful.

Warning

This section has undergone signficant revision, but not all of the material has been properly vetted.
Some of the information in this section may be out of date.

Note
Some of the text below is adapted from the 2008 Scheme Workshop paper, “The Layers of

Larceny's Foreign Function Interface,” by Felix S Klock Il. That paper may provide additional
insight for those searching for implementation details and motivations.

10.19.1. Introducing the FFI

There are anumber of different potential ways to use the FFI. One client may want to develop codein C

58

http://srfi.schemers.org
http://www-swiss.ai.mit.edu/~jaffer/SLIB.html
http://www-swiss.ai.mit.edu/~jaffer/SLIB.html
http://srfi.schemers.org/srfi-96/
http://srfi.schemers.org/srfi-96/
LarcenyNotes/note7-ffi.html
LarcenyNotes/note7-ffi.html

Larceny User Manual

and load it into Larceny. Another client may want to load native libraries provided by the host operating
system, enabling invocation of foreign code from Scheme expressions without developing any C code or
even running a C compiler. Larceny's FFI can be used for both of these cases, but many of its facilities
target athird client in between the two extremes: a client with a C compiler and the header files and object
code for the foreign libraries, but who wishes to avoid writing glue code in C to interface with the
libraries.

There are four main steps to interacting with foreign code:

1. identifying the space of values manipulated by the foreign code that will also be manipulated in
Scheme,

2. describing how to marshal values between foreign and Scheme code,
3. loading library file(s) holding foreign object code, and
4. linking procedures from the loaded library.

Step 1 is conceptual, while steps 2 through 4 yield artifacts in Scheme source code.

10.19.2. The space of foreign values

At the machine code level, foreign values are uninterpreted sequences of bits. Often foreign object codeis
oriented around manipulating word-si zed bit-sequences (words) or arrays and tuples of words.

Many libraries are written with a particular interpretation of such values. In C code, explicit types are
often used hints to guide such interpretation; for example, a0 of type bool isusually interpreted as false,
whilea1 (or other non-zero value) of type bool isusualy interpreted as true. Another example are C
enumerations (or enums). An enum declaration defines a set of named integral constants. After the C
declaration:

enum nonths { JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG SEP, OCT, NOV, DEC };

aJANin C code now denotes 1, FEB is 2, and so on. Furthermore, tools like debuggers may render a
variable x dynamically assigned the value 2 (and of static type enum nont hs) as FEB. Thus the enum
declaration intoduces a new interpretation for afinite set of integers.

This leads to questions for a client of an FFI; we explore some below.

» Should foreign words be passed over to the Scheme world as uninterpreted numbers (and thus be
converted into Scheme integers, usually fixnums), or should they be marshaled into interpreted values,
such as#f and #t for thebool type, or the Scheme symbols { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC} for the enum nont hs type?

» Similarly, how should Scheme values be marshaled into foreign words?

» A foreign library might leave the mapping of names like FEB to words like 2 unspecified in the library
interface. That is, while the C compiler will know FEB mapsto 2 according to a particular version of the
library's header file, the library designer may intend to change this mapping in the future, and clients
writing C code should only use the names to refer to aenum nont hs value, and not integer expressions.

59

Larceny User Manual

» How should this constraint be handled in the FFI; should the library client revise their code in
reaction to such changes to the mapping?

 Or should the system derive the mapping from the header files, in the same manner that the C
compiler does?

» Foreign libraries often manipul ate mutable entities, like arrays of words where modifications can be
observed (often by design).

» How should such values be marshaled?
* Isit sound to copy such values to the Scheme heap? If so, is ashallow copy sufficient?

» Will the foreign code hold references to heap-all ocated objects? Heap-allocated objects that leak out to
foreign memory must be treated with care; garbage collection presents two main problems.

* First, such objects must not move during a garbage collection; Larceny supports thisvia
special-purpose alocation routines: cons- nonr el ocat abl e, make- nonr el ocat abl e- byt evect or,
and nake- nonr el ocat abl e- vect or.

 Second, the garbage collector must know to hold on to (i.e. trace) such values as long as they are
needed by foreign code; otherwise the objects or their referents may be collected without the
knowledge of the foreign code.

Answering these questions may require deep knowledge of the intended usage of the foreign library.

The Larceny FFI attempts to ease interfacing with foreign code in the presence of the above concerns, but
the nature of the header filesincluded with most foreign libraries means that the FFI cannot infer the
answers unassi sted.

Note

Foreign C code developed to work in concert with Larceny could hypothetically be written to cope
with holding handles for objects managed by the the garbage collector, but there is currently no
significant support for this use-case.

Note

One class of foreign valuesis not addressed by the Larceny FFI: structures passed by value (as
opposed to by reference, ie pointers to structures). There is no way to describe the interface to a
foreign procedure that accepts or produces a C st ruct (at least not properly nor portably).

This tends to not matter for many foreign libraries (since many C programmers eschew passing
structures by value), but it can arise.

If the foreign library of interest has procedures that accept or produce aC st r uct , we currently
recommend either avoiding such procedures, or writing adapter code in C that marshal s between
values handled by the FFI and the C st r uct .

The conclusion is: when designing an interface to aforeign library, you should analyze the values
manipulated on the foreign side and identify their relationship with values on the Scheme side. After you
have identified the domains of interest, you then describe how the values will be marshaled back and forth

60

Larceny User Manual

between the two domains.

10.19.3. Marshalling via ffi-attributes

This section describes the marshalling protocol defined in1i b/ Base/ std-ffi.sch.

Foreign functions automatically marshal their inputs and outputs according to type-descriptors attached to
each foreign function.

Type-descriptors are S-expressons formed according to the following grammar:

TypeDesc ::= CoreAttr | Arrowl | MaybeT | OneO'T
CoreAttr ::= PrimAttr | VoidStar |
PrimAttr ::= CurrentPrinAttr | DeprecatedPrimAttr

CurrentPrimAttr
c:=1int | uint | byte | short | ushort | char | uchar
| long | ulong | Ionglong | ulonglong
| sizet | float | double | bool | string | void

Depr ecat edPri mAttr
::= unsigned | boxed

Voi dStar ::= void*

Ar r owT = (-> (TypeDesc ...) TypeDesc)
MaybeT = (maybe TypeDesc)

e T = (oneof (Any Fixnum ... TypeDesc)

where - - - represents a user-extensible part of the grammar (see below), Any represents any Scheme
value, and Fi xnumrepresents any word-sized integer.

A central registry maps Cor eAt t r 'sto a foreign representation and two conversion routines. one to
convert a Scheme value to aforeign argument, and another to convert aforeign result back back to a
Scheme value. The denoted components are collectively referred to as a type within the FFI
documentation. The registry isextensible; theffi - add-at tri but e- core-entry! procedure adds new
CoreAttr's totheregistry, and one can alternatively add short-hands for type-descriptors viathe
ffi-add-alias-of-attribute-entry! procedure. Finaly, one can add new Voi dSt ar productions
(subtypes of the voi d* type-descriptor) viatheffi-instal | -voi d*- subt ype procedure (defined in the
| i b/ St andar d/ f or ei gn-stdl i b. sch library).

10.19.3.1. Primitive Attribute Types

Thefollowing isalist of the accepted types and their conversions at the boundary between Scheme and
foreign code:

i nt
Exact integer valuesin the range [-231,231-1] . Scheme integersin that range are converted to and from
C"int".

ui nt

Exact integer values in the range [0,2°2

"unsi gned int".

-1]. Scheme integersin that ranges are converted to and from C

61

Larceny User Manual

byt e
Synonymous with i nt in the current implementation.

short
Synonymous withii nt in the current implementation.

ushort
Synonymous with unsi gned in the current implementation.

char
Scheme ASCII characters are converted to and from C "char ".

uchar
Scheme ASCII characters are converted to and from C "unsi gned char".

| ong
Synonymous with i nt in the current implementation.

ul ong
Synonymous with unsi gned in the current implementation.

| ongl ong
Exact integer valuesin the range [-263
C"long | ong".

,263-1] . Scheme integersin that range are converted to and from

ul ongl ong
Exact integer valuesin the range [0,264-1]. Scheme integersin that range are converted to and from C
"unsi gned | ong | ong".

si ze_t
Synonymous with ui nt in the current implementation.

fl oat
Scheme flonums are converted to and from C "f | oat ". The conversiontof | oat is performed viaaC
(f1 oat) cast fromaC doubl e.

doubl e
Scheme flonums are converted to and from C "double".

bool
Scheme objects are converted to C i nt ; #f is converted to O, and all other objectsto 1. In the
reverse direction, O is converted to #f and all other integersto #t .

string
A Scheme string holding ASCII charactersis copied into aNUL-terminated bytevector, passing a
pointer to its first byte to the foreign procedure; #f isconvertedto aC "(char *) 0" value. In the
reverse direction, a pointer to a NUL-terminated sequence of bytes interpreted as ASCII charactersis
copied into afreshly allocated Scheme string; a NULL pointer is converted to #f .

voi d
No return value. (Only used in return position for foreign functions; all Scheme procedures passed to
the FFI are invoked in a context expecting one value.)

unsi gned

62

Larceny User Manual

Synonymous with ui nt ; deprecated.

boxed
Any heap-allocated data structure (pair, bytevector-like, vector-like, procedure) is convertedto aC
"voi d*" to the first element of the structure. The value #f is also acceptable. It isconvertedtoaC
"(voi d*) 0" value. (Only used in argument position for foreign functions; foreign functions are not
expected to return direct references to heap-allocated values.)

10.19.3.2. Extending the Core Attribute Registry

The public interface to many foreign librariesis written in terms of types defined within that foreign
library. One can introduce new types to the Larceny FFI by extending the core attribute entry table.

Procedure ffi-add-attribute-core-entry!
(ffi-add-attribute-core-entry! entry-nane rep-sym marshal unnmarshal) => unspecified

ffi-add-attribute-core-entry! extends the internal registry with the new entry specified by its arguments.

* entry-name is asymbol (the symbolic type name being introduced to the ffi).

» rep-nameisalow-level type descriptor symbol, one of si gned32, unsi gned32, si gned64,
unsi gned64 (representing varieties of fixed width integers), i eee32 (representing “floats’), i eee64
(representing “doubles’), or poi nt er (representing “(voi d*)” in C).

» marshal isamarshaling function that accepts a Scheme object and a symbol (the name of the invoking
procedure); it is responsible for checking the Scheme object's validity and then producing a
corresponding instance of the low-level representation.

» unmarshal iseither #f or an unmarshalling function that accepts an instance of the low-level
representation and produces a corresponding Scheme object.

10.19.3.3. Attribute Type Constructors

Core attributes suffice for linking to simple functions. Constructured FFI attributes express more complex
marshaling protocols

Arrow Type Constructors. A structured FFI attribute of theform (-> (s_1 ...s_n) s_r) (calledan
arrow type) allows passing functions from Scheme to C and back again. Each of thes 1, ..., s n,s risan
FFI attribute. When an arrow type describes an input to a foreign function, it marshals a Scheme
procedure to a C function pointer by generating glue code to hook the two together and marshal values as
described by the FFI attributes within the arrow type. Likewise, when an arrow type describes an output
from aforeign function, it marshals a C function pointer to a Scheme procedure, again by generating glue
code. These two mappings naturally generalize to arbitrary nesting of arrow types, so one can create
callbacks that consume callouts, return callouts that consume callbacks, and so on.

Warning
The current implementation of arrow types introduces an unnecessary space leak, because none of

Larceny's current garbage collectors attempt to reclaim some of the structure allocated (in
particular, the so-called trampolines) when functions are marshaled via arrow types.

63

Larceny User Manual

The FFI could be revised to reduce the leak (e.g. it could keep a cache of generated trampolines
and reuse them, but currently do not do so).

Many foreign libraries have a structure where one only sets up afixed set of callbacks, and then all
further computation does not require arrow type marshaling. Thisis one reason why fixing this
problem has been alow priority item for the Larceny devel opment team.

Maybe Type Constructor. (maybe t) capturesthe pattern of passing NULL in C and #f in Scheme to
represent the absence of information. The FFI attribute t within the maybe type describes the typical
information passed; the constructed maybe type marshals #f to the foreign null pointer or 0 (as
appropriate), and otherwise applies the marshaling of t. Likewise, it unmarshals the foreign null pointer
and 0 to #f , and otherwise applies the unmarshaling of t.

(There are afew other built-in type constructors, such as the oneof type constructor, but they are not as
fully-developed as the two above, and are intended for use only for internal development for now.)

10.19.3.4. void* Type Hierarchies

Using the voi d* attribute wraps foreign addresses up in a Larceny record, so that standard numeric
operations cannot be directly applied by accident. The FFI uses two features of Larceny's record system:
the record type descriptor is afirst class value with an inspectable name, and record types are extensible
viasingle-inheritance.

Basic Operationson voi d*. The FFI providesvoi d*-rt, arecord type descriptor with asinglefield (a
wrapped address). Thereis also afamily of functions for dereferencing the pointer within avoi d*-rt and
manipul ating the state it references.

Procedure void*->address

(voi d*->address x) => numnber
Extracts the underlying address held in avoi d*.

Procedure void* ?

(voi d*? x) => bool ean
Distinquishes voi d*'s from other Scheme values.

Procedure void* -byte-ref

(voi d*-byte-ref x idx) => nunber
Extracts byte at offset from address within x.

Procedure void* -byte-set!

(voi d*-byte-set! x idx val) => unspecified
Modifies byte at offset from address within x.

Procedure void* -word-r ef

(void*-word-ref x idx) => nunber
Extracts word-sized integer at offset from address within x.

Procedur e void* -wor d-set!

Larceny User Manual

(voi d*-word-set! x idx val) => unspecified
Modifies word-sized integer at offset from address within x.

Procedur e void* -void* -ref

(void*-void*-ref x idx) => void*
Extracts address (and wraps it in avoi d*) at offset from address within x.

Procedur e void* -voi d* -set!

(voi d*-void*-set! x idx val) => unspecified
Modifies address at offset from address within x.

Procedur e void* -doubl e-ref

(voi d*-doubl e-ref x idx) => nunber
Extracts 64-bit flonum at offset from address within x.

Procedur e void* -doubl e-set!

(voi d*-doubl e-set! x idx val) => unspecified
Modifies 64-bit flonum at offset from address within x.

Type Hierarchies. Procedures for establishing type hierarchies are provided by the
| i b/ St andar d/ f or ei gn- stdl i b. sch library; see ffi-install-void* -subtype and
establish-void*-subhierarchy!.

10.19.4. Creating loadable modules

Y ou must first compile your C code and create one or more |oadable object modules. These object
modules may then be loaded into Larceny, and Scheme foreign functions may link to specific functionsin
the loaded module. Defining foreign functions in Scheme is covered in alater section.

The method for creating aloadable object module varies from platform to platform. In the following,
assume you have to C source filesfilel.c and file2.c that define functions that you want to make available
asforeign functionsin Larceny.

10.19.4.1. SunOS 4

Compile your source files and create a shared library. Using GCC, the command line might look like this:

gcc -fPIC -shared filel.c file2.c -o ny-library.so

The command creates my-library.so in the current directory. This library can now be loaded into Larceny
using foreign-file. Any other shared libraries used by your library files should also be loaded into Larceny
using foreign-file before any procedures are linked using foreign-procedure.

By default, /lib/libc.so is made available to the dynamic linker and to the foreign function interface, so
there is no need for you to load that library explicitly.

10.19.4.2. SunOS 5

Compile your source files and create a shared library, linking with all the necessary libraries. Using GCC,

65

Larceny User Manual

the command line might look like this:

gcc -fPIC -shared filel.c file2.¢c -lc -Im-Ilsocket -0 nmy-library.so

Now you can use foreign-file to load my-library.so into Larceny.

By default, /lib/libc.so is made available to the foreign function interface, so there is no need for you to
load that library explicitly.

10.19.5. The Interface
10.19.5.1. Procedures

Procedure foreign-file

(foreign-file filenane) => unspecified

foreign-file loads the named object file into Larceny and makesit available for dynamic linking.
Larceny uses the operating system provided dynamic linker to do dynamic linking. The operation of the

dynamic linker varies from platform to platform:

» On some versions of SUNOS 4, if the linker is given afile that does not exist, it will terminate the
process. (Most likely thisisabug.) This means you should never call foreign-file with the name of a
file that does not exist.

* On SunOS5, if aforeign fileis given to foreign-file without a directory specification, then the dynamic
linker will search its load path (the LD_LI BRARY_PATH environment variable) for the file. Hence, a
foreign filein the current directory should be " ./file.so", not "file.so".

Procedure foreign-procedure

(foreign-procedure name (arg-type ..) return-type) => unspecified

FIXME: The interface to this function has been extended to support hooking into Windows procedures
that use the Pascal calling convention instead of the C one. The way to select which convention to use
should be documented.

Returns a Scheme procedure p that calls the foreign procedure whose name is name. When piscalled, it
will convert its parameters to representations indicated by the arg-types and invoke the foreign procedure,

passing the converted values as parameters. When the foreign procedure returns, its return value is
converted to a Scheme value according to return-type.

Types are described below.

The address of the foreign procedure is obtained by searching for name in the symbol tables of the foreign
files that have been loaded with foreign-file.

Procedure foreign-null-pointer

(foreign-null-pointer) => integer

66

Larceny User Manual

Returns aforeign null pointer.
Procedure foreign-null-pointer?
(foreign-null-pointer? integer) => bool ean

Tests whether its argument isaforeign null pointer.
10.19.6. Foreign Data Access

10.19.6.1. Raw memory access
The two primitives peek-bytes and poke-bytes are provided for reading and writing memory at specific
addresses. These procedures are typically used for copying data from foreign data structures into Scheme
bytevectors for subsequent decoding.
(The use of peek-bytes and poke-bytes can often be avoided by keeping foreign datain a Scheme
bytevector and passing the bytevector to a call-out using the boxed parameter type. However, this
technique is inappropriate if the foreign code retains a pointer to the Scheme datum, which may be moved
by the garbage collector.)
Procedure peek-bytes

(peek-bytes addr bytevector count) => unspecified

Addr must be an exact nonnegative integer. Count must be a fixnum. The bytesin the range from addr
through addr+ count-1 are copied into bytevector, which must be long enough to hold that many bytes.

If any address in the range is not an address accessible to the process, unpredictable things may happen.
Typicaly, you'll get a segmentation fault. Larceny does not yet catch segmentation faults.

Procedure poke-bytes
(poke-bytes addr bytevector count) => unspecified

Addr must be an exact nonnegative integer. Count must be a fixnum. The count first bytes from
bytevector are copied into memory in the range from addr through addr+ count-1.

If any address in the range is not an address accessible to the process, unpredictable things may happen.
Typicaly, you'll get a segmentation fault. Larceny does not yet catch segmentation faults.

Also, it's possible to corrupt memory with poke-bytes. Don't do that.
10.19.6.2. Foreign data sizes

The following variables constants define the sizes of basic C data types:

» sizeof:short The size of a"short int".
» sizeof:int The size of an "int".

» sizeof:long The size of a"longint".

67

Larceny User Manual

* sizeof:pointer The size of any pointer type.

10.19.6.3. Decoding foreign data

Foreign datais visible to a Scheme program either as an object pointed to by a memory address (whichis
itself represented as an integer), or as a bytevector that contains the bytes of the foreign datum.

A number of utility procedures that make reading and writing data of common C primitive types have
been written for both these kinds of foreign objects.

Bytevector accessor procedures

(%get 16 bv i) => integer

(%get 16u bv i) => integer
(%get 32 bv i) => integer

(%get 32u bv i) => integer
(Y%get-int bv i) => integer
(%get -unsi gned bv i) => integer
(%get-short bv i) => integer
(%get -ushort bv i) => integer
(Y%get-long bv i) => integer
(%get-ulong bv i) => integer
(Yget-pointer bv i) => integer

These procedures decode bytevectors that contain the bytes of foreign objects. In each case, bvisa
bytevector and i isthe offset of the first byte of afield in that bytevector. The field is fetched and returned
as an integer (signed or unsigned as appropriate).

Bytevector updater procedures

(¥%et16 bv i val) => unspecified
(¥%set16u bv i val) => unspecified
(¥%set32 bv i val) => unspecified
(%set32u bv i val) => unspecified
(%set-int bv i val) => unspecified

(¥%set-unsigned bv i val) => unspecified

68

Larceny User Manual

(%set-short bv i val) => unspecified

(%set-ushort bv i val) => unspecified

(%set-long bv i val) => unspecified

(%set-ulong bv i val) => unspecified

(¥%set-pointer bv i val) => unspecified

These procedures update bytevectors that contain the bytes of foreign objects. In each case, bvisa
bytevector, i isan offset of thefirst byte of afield in that bytevector, and val is avalue to be stored in that
field. The values must be exact integersin arange implied by the data type.

Foreign-pointer accessor procedures

(%peek8 addr) => integer

(%peek8u addr) => integer
(%peekl16 addr) => integer
(%peekl6u addr) => integer
(%peek32 addr) => integer

(%peek32u addr) => integer

(%peek-int addr) => integer
(%peek-1ong addr) => integer
(%peek-unsi gned addr) => integer
(%peek-ul ong addr) => integer
(%peek-short addr) => integer
(%peek-ushort addr) => integer
(%peek-poi nter addr) => integer
(%peek-string addr) => integer

These procedures read raw memory. In each case, addr is an address, and the value stored at that address
(the size of which isindicated by the name of the procedure) is fetched and returned as an integer.

%Peek-string expects to find a NUL-terminated string of 8-bit bytes at the given address. It isreturned as
a Scheme string.

Foreign-pointer updater procedures

69

Larceny User Manual

(%pooke8 addr val) => unspecified

(%poke8u addr val) => unspecified
(%okel6 addr val) => unspecified
(%pokel6u addr val) => unspecified
(%poke32 addr val) => unspecified

(%ooke32u addr val) => unspecified

(%poke-int addr val) => unspecified
(%poke-1 ong addr val) => unspecified
(%poke-unsi gned addr val) => unspecified
(%poke-ul ong addr val) => unspecified
(%poke-short addr val) => unspecified
(%poke-ushort addr val) => unspecified
(%poke- poi nter addr val) => unspecified

These procedures update raw memory. In each case, addr is an address, and val is avalue to be stored at
that address.

10.19.7. Heap dumping and the FFI

If foreign functions are linked into Larceny using the FFI, and a Larceny heap image is subsequently
dumped (with dump-interactive-heap or dump-heap), then the foreign functions are not saved as part of
the heap image. When the heap image is subsequently loaded into Larceny at startup, the FFI will attempt
to re-link al the foreign functionsin the heap image.

During the relinking phase, foreign files will again be loaded into Larceny, and Larceny's FFI will use the
file names as they were originally given to the FFI when it tries to load the files. In particular, if relative
pathnames were used, Larceny will not have converted them to absolute pathnames.

An error during relinking will result in Larceny aborting with an error message and returning to the
operating system. Thisis considered a feature.

10.19.8. Examples
10.19.8.1. Change directory

This procedure uses the chdir() system call to set the process's current working directory. The string
parameter typeis used to pass a Scheme string to the C procedure.

(define cd
(let ((chdir (foreign-procedure "chdir" '(string) 'int)))

70

Larceny User Manual

(lambda (newdir)
(if (not (zero? (chdir newdir)))
(error "cd: " newdir " is not a valid directory nane."))
(unspecified))))

10.19.8.2. Print Working Directory

This procedure uses the getcwd() (get current working directory) system call to retrieve the name of the
process's current working directory. A bytevector is created and passed in as a buffer in which to store the
return value — a O-terminated ASCI|I string. Then the FFI utility function ffi/asciiz->string is called to
convert the bytevector to astring.

tcwd (foreign-procedure "getcwd" '(boxed int) '"int)))
()

2
559

((s (nake-bytevector 1024)))
s 1024)
sciiz->string s)))))

o)}

10.19.8.3. Quicksort
Warning

this example is bogus. It is not safe to pass a collectable object into a C procedure when the
callback invocation might cause a garbage collection, thus moving the object and invalidating the
address stored in the C machine context.

This demonstrates how to use a callback such as the comparator argument to gsort. It is specified in the
type signature using -> as a type constructor. (Note that one should probably use the built-in sort routines
rather than call out like this; this example is for demonstrating callbacks, not how to sort.)

(define gsort!
(foreign-procedure "qsort" ' (boxed ushort ushort (-> (void* void*) int)) 'void))

(let ((bv (list->vector '(40 10 30 20 1 2 3 4))))
(gsort! bv 8 4

(I anbda (x y)
(let ((x (/ (void*-word-ref x 0) 4))
(y (/ (void*-word-ref y 0) 4)))

(- xy))))

bv)

(let ((bv (list->bytevector '(40 10 30 20 1 2 3 4))))
(gsort! bv 8 1
(I anbda (x y)
(let ((x (void*-byte-ref x 0))
(y (void*-byte-ref y 0)))

(- x¥))))
bv)

10.19.8.4. Other examples

The Experimental directory contains several examples of use of the FFI. Seein particular the files
unix.sch (Unix system calls) and socket.sch (procedures for communicating over sockets).

10.19.9. Higher level layers

71

Larceny User Manual

The general foreign-function interface functionality described above is powerful but awkward to usein
practice. A user might be tempted to hard code values of offsets or constants that are compiler dependent.
Also, the FFI will marshall some low-level values such as strings or integers, but other values such as
enumerations which could be naturally mapped to sets of symbols are not marshalled since the host
environment does not provide the necessary type information to the FFI.

This section documents a collection of libraries to mitigate these and other problems.

10.19.9.1. foreign-ctools

Foreign data access is performed by peeking at manually calculated addresses, but in practice one often
needs to inspect fields of C structures, whose offsets are dependant on the application binary interface
(ABI) of the host environment. Similarly, C programs often use refer to values via constant macro
definitions; since the values of such names are not provided by the object code and Scheme programs do
not have a C preprocessor run on them prior to execution, it is difficult to refer to the same value without
encoding "magic numbers' into the Scheme source code.

The foreign-ctools library is meant to mitigate problems like the two described above. It provides special
forms for introducing global definitions of valuestypically available at compile-time for a C program.
The library assumes the presence of a C compiler (such as cc on Unix systems or cl.exe on Windows
systems). The special formswork by dynamically generating, compiling, and running C code at expansion
time to determine the desired values of structure offsets or macro constants.

Hereisagrammar for the def i ne- c- i nf o form provided by thef or ei gn- ct ool s library.
<exp> ::= (define-c-info <c-decl> ... <c-defn> ...)

<c-decl> ::= (conpiler <cc-spec>)
| (path <include-path>)
| (include <header>)
| (include<> <header>)

<cc-spec> ::=cc | cl

<c-defn> ::= (const <id> <c-type> <c-expr>)
| (sizeof <id> <c-type-expr>)
| (struct <c-name> <field-clause> ...)
| (fields <c-name> <field-clause> ...)
|

(i fdefconst <id> <c-type> <c-nane>)
<c-type> ::=int | uint | long | ulong

<i ncl ude- pat h>
;.= <string-literal >

<header> ::= <string-literal >
<fi el d-cl ause>

::= (<offset-id> <c-field>)

| (<offset-id> <c-field> <size-id>)
<c-expr> ::= <string-literal>

<c-type-expr>
::= <string-literal >

<c-name> ::= <string-literal>

<c-field> ::= <string-literal >

Syntax define-c-info

72

Larceny User Manual

(define-c-info <c-decl> ...<c-defn> .)

The <c- decl > clauses of def i ne- c-i nf o control how header files are processed. The conpi | er clause
selects between cc (the default UNIX system compiler) and ¢l (the compiler included with Microsoft's
Windows SDK). The pat h clause adds a directory to search when looking for header files. Thei ncl ude
and i ncl ude<> clausesindicate header files to include when executing the <c- def n> clauses; the two
variants correspond to the quoted and bracketed forms of the C preprocessor's #i ncl ude directive.

The <c- def n> clauses bind identifiers. A (const x t "ae") clause binds x to the integer value of ae
according to the C language; ae can be any C arithmetic expression that evaluates to avalue of typet.
(The expected usage is for ae to be an expression that the C preprocessor expands to an arithmetic
expression.)

The remaining clauses provide similar functionality:

* (sizeof x "te") bindsxto the size occupied by values of type te, where teisany C type expression.

e (struct "cn" ..(x "cf" y) .) bindsx tothe offset from the start of a structure of typestruct cn
toitscf field, and bindsyy, if present, to thefield'ssize. A fi el ds clauseissimilar, but it appliesto
structures of type cn rather thanstruct cn.

e (ifdefconst x t "cn") bindsxtothevalueof cn if cn isdefined; x is otherwise bound to Larceny's
unspecified value.

10.19.9.2. foreign-sugar

The foreign-procedure function is sufficient to link in dynamically loaded C procedures, but it can be
annoying to use when there are many procedures to define that all follow aregular pattern where one
could infer a mapping between Scheme identifiers and C function names.

For example, some libraries follow a naming convention where a words within a name are separated by
underscores; such functions could be immediately mapped to Scheme names where the underscores have
been replaced by dashes.

The foreign-sugar library provides a special form, def i ne- f or ei gn, which gives the user a syntax for
defining foreign functions using a syntax where one provides only the Scheme name, the argument types,
and the return type. The def i ne-f or ei gn form then attempts to infer what C function the name was
meant to refer to.
Syntax define-foreign
(define-foreign (nane arg-type .) result-type)

Note

Thereis other functionality provided allowing the user to introduce new rules for inferring C

function names, but they are undocumented because they will probably have to change when we
switch to an R6RS macro expander.

10.19.9.3. foreign-stdlib
Procedure stdlib/malloc

73

Larceny User Manual

(stdlib/malloc rtd [ctor]) => procedure

Given arecord extension of void*-rt, returns an allocator that uses the C mal | oc procedure to allocate
instances of such an object. Note that the client is responsible for eventually freeing such objects with
stdlib/free.

Procedure stdlib/free

(stdlib/free void*-obj)

Frees objects produced by allocators returned from stdlib/malloc.

Procedure ffi-install-voi d* -subtype

(ffi-install-void*-subtype rtd) => rtd

(ffi-install-void*-subtype string [parent-rtd]) => rtd

(ffi-install-void*-subtype synbol [parent-rtd]) => rtd

ffi-install-void* -subtype extends the core attribute registry with anew primitive entry for subtype. The
parent-rtd argument should be a subtype of voi d*-rt and defaultsto voi d*-rt . In the case of the symbol
or string inputs, the procedure constructs a new record type subtyping the parent argument. In the case of
the rtd input, the rtd record type must extend voi d* - r t . ffi-install-void* -subtype returns the subtype
record type.

The returned record type represents a tagged wrapped C pointer, allowing one to encode type hierarchies.
Procedure establish-void* -subhierarchy!

(est abli sh-voi d*-subhi erarchy! synbol -tree) => unspecified

establish-void*-subhierarchy! is a convenience function for constructing large object hierarchies. It
descends the symbol-tree, creates a record type descriptor for each symbol (where the root of the tree has
the parent voi d* - rt), and invokes ffi-instal |-void* -subtype on all of the introduced types.

Type char* extends void* Procedure string->char*

(string->char* string) => char*
Procedure char*-strlen

(char*-strlen char*) => fixnum
Procedure char*->string

(char*->string char*) => string

(char*->string char* len) => string
Procedure call-with-char*

(call-with-char* string string-function) => val ue
Type char** extends void* Procedure call-with-char**

(call-with-char** string-vector function) => val ue
Type int* extends void* Procedure call-with-int*

74

Larceny User Manual

(call-with-int* fixnumvector function) => val ue
Type short* extends void* Procedure call-with-short*

(call-with-short* fixnumvector function) => val ue
Type double* extends void* Procedure call-with-double*

(call -wi th-doubl e* numvector function) => val ue

FIXME: (There are other functions, but | want to test and document the ones abovefirst...)
10.19.9.4. foreign-cstructs

Thef orei gn-cstruct s library provides a more direct interface to C structures. It provides the
define-c-struct special form. Thisformislayered on top of def i ne- c-i nf o; the latter provides the
structure field offsets and sizes used to generate constructors (which produce appropriately sized
bytevectors, not record instances). The def i ne- c- st ruct form combines these with marshaling and
unmarshaling procedures to provide high-level access to a structure.

The grammar for the def i ne- c- st ruct formis presented below.

<exp> ::= (define-c-struct (<struct-type> <ctor-id> <c-decl> ...)
<field-clause> ...)

<fiel d-cl ause>
ii= (<c-field> <getter>) | (<c-field> <getter> <setter>)

<getter> ::= (<id> | (<id> <unmarshal >)

<setter> ::= (<id>) | (<id> <marshal >)

<marshal > ::= <ffi-attr-synbol > | <marshal -proc-exp>
<unmarshal > ::= <ffi-attr-synbol > | <unnmarshal - proc-exp>
<struct-type> ::= <string-literal >

10.19.9.5. foreign-cenums

Thislibrary provides the special formsdef i ne- c- enumand def i ne- c- enum set , which associate the
identifiers of a C enumtype declaration with the integer values they denote.

The def i ne- c- enumform describes enums encoding a discriminated sum; def i ne- c- enum set describes
bitmasks, mapping them to RORS enum-setsin Scheme.

The (define-c-enumen (<c-decl> .) (x "cn") .) formaddstheen FFI attribute. The attribute
marshals each symbol x to the integer value that cn denotesin C; unmarshaling does the inverse
tranglation.

The(define-c-enumset ens (<c-decl> .) (x "cn") .) formbindsenstoan RPRS enum-set
constructor with universe resulting from (make- enuneration ' (x .)); it aso addstheens FFI
attribute. The attribute marshals an enum-set s constructed by ens to the corresponding bitmask in C (that
is, the integer one would get by logically or'ing all cn such that the corresponding x isin s). Unmarshaling
attempts to do the inverse translation.

The grammar for the two forms is presented below.

<exp> ::= (define-c-enum <enumid> (<c-decl> ...)

75

Larceny User Manual

(<id> <c-nane>) ...)

<exp> ::= (define-c-enumset <enumid> (<c-decl> ...)
(<id> <c-name>) ...)

<enumid> ::= <id>

11. Debugging

Larceny's debugging functionality isimplemented in Scheme, using some of Larceny's extensions for
catching exceptions and inspecting the continuation structure.

11.1. Entering the debugger

When Larceny detects an error or a keyboard interrupt, or when it hits a breakpoint, it signals the
condition by printing a message on the console. Larceny then enters the debugger, which signalsits
presence with a short banner and the debugger prompt:

Enteri ng debugger; type "?" for help.
debug>

Y ou can also re-enter the debugger by evaluating (debug).

11.2. Debugger commands

The debugger is still in an immature state. The following commands are avail able (commands can be
typed in upper or lower case):

B Print backtrace of continuation.

C Print source code of procedure, if available.

D Move down to previous (earlier) activation record.

E n expr Expr isevaluated in the current interaction environment and must evaluate to a procedure. It is
passed the contents of slot n from the current activation record, and the result, if not unspecified, is
printed.

E (nl1 ... nk) expr Expr isevaluated in the current interaction environment and must evaluate to a
procedure. It is passed the contents of slots nl through nk from the current activation record, and the
result, if not unspecified, is printed.

| n Inspect the procedure in slot n of the current activation record.

| @ _Inspect the active procedure.

Q Quit the debugger and abort the computation.

R Return from the debugger and continue the computation.

S Summarize the contents of the current activation record.

U Up to the next (later) activation record.

76

Larceny User Manual

X Examine the contents of the current activation record.
The B, D, and U commands can be prefixed with a count, for example, 5 U moves up five activation

records, and 10 B displays the next 10 activation records. The default for B isto display all the
activations; the default count for D and U is 1.

11.3. Breakpoints

Y ou can set breakpoints either in program text with the break primitive or interactively at the start of a
procedure with the break-entry procedure. When Larceny reaches a breakpoint during execution, the
program is suspended and the debugger is entered to allow you to inspect the program.

Procedure larceny-break

(larceny-break)

Invokes the breakpoint handler.

Procedure break-entry

(break-entry procedure)

Set a breakpoint at the start of the procedure.

Procedure unbreak

(unbreak procedure .)

(unbreak)

In the first form, remove any breakpoint set by break-entry at the start of the procedure_s. In the second
form, remove all breakpoints set by _break-entry.

11.4. Tracing

Procedure trace-entry

(trace-entry procedure)

Set atrace point on entry to the procedure, removing any other trace points on the procedure. When the
procedure is entered, information about the call is printed on the console: the name of the procedure and
the actual arguments.

Procedure trace-exit

(trace-exit procedure)

Set atrace point on exit from the procedure, removing any other trace points on the procedure. When the
procedure returns, information about the return is printed on the console: the name of the procedure and
the returned values.

Note that trace-exit destroys the tail recursion properties of the instrumented procedure. Where the

77

Larceny User Manual

procedure would normally "return” by tail-calling another procedure, the instrumented procedure will call
the other procedure by anon-tail call and then return, at which point the procedure name and return values
will be printed. Thus use of trace-exit may destroy the space properties of the program.

Procedure trace

(trace procedure)

Set trace points on procedure both at entry and exit.
Procedure untrace

(untrace procedure .)

(untrace)

The first form removes any trace points from the specified procedures. The second form removes all
untrace points.

11.5. Other functionality

Parameter break-handler

The value of break-handler is a procedure that is called when a breakpoint or tracepoint is encountered.
The procedure takes two arguments:. the procedure in which the breakpoint was set, and the byte offset
within the procedure's code vector of the breakpoint.

12. Standards

12.1. Scheme standards

|EEE Standard 1178-1990, "IEEE Standard for the Scheme Programming Language”, |IEEE, 1991. ISBN
1-55937-125-0. May be ordered from |EEE by calling 1-800-678-IEEE or 908-981-1393 or writing | EEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, and using order number
SH142009.

Richard Kelsey, William Clinger, and Jonathan Rees [editors]. Revised"5 Report on the Algorithmic
Language Scheme [http://www.brics.dk/~hosc/11-1/]. Journal of Higher Order and Symbolic
Computation, 11(1), 1998, pages 7-105. Also appearsin ACM S GPLAN Notices 33(9), September 1998.
Available online in various formats [http://www.schemers.org/Documents/Standards/R5RY/].

Michael Sperber, R Kent Dybvig, Matthew Flatt, and Anton van Straaten [editors]. Revised"6 Report on
the Algorithmic Language Scheme [http://www.r6rs.org/].

Various SchemePunks [editors]. ERR5RS [http://scheme-punks.org/wiki/index.php?title=Main_Page] is
under construction.

12.2. Other relevant standards

|EEE Standard 754-1985, "|EEE Standard for Binary Floating-Point Arithmetic", IEEE, 1985.

78

http://www.brics.dk/~hosc/11-1/
http://www.brics.dk/~hosc/11-1/
http://www.brics.dk/~hosc/11-1/
http://www.schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/
http://www.r6rs.org/
http://www.r6rs.org/
http://www.r6rs.org/
http://scheme-punks.org/wiki/index.php?title=Main_Page
http://scheme-punks.org/wiki/index.php?title=Main_Page

Larceny User Manual

A revision of IEEE Std 754-1985 [http://en.wikipedia.org/wiki/EEE_754r] has been underway since
2000. The IEEE Microprocessor Standards Committee (M SC) accepted a candidate draft on 9 October
2006. The candidate draft 1.2.6 was approved by 79% of 70 votes, which exceeded the required
supermajority of 75%. Because there were negative votes and several hundred comments, however, a
revised draft 1.3.0 was prepared and approved by 84% of 73 votes. Since there were over a hundred
comments on the second candidate draft as well, athird candidate draft 1.4.0 was prepared and another
vote taken in April 2007. After atotal of eight ballots, with the last four being approved by more than
90% of the voters, the Ballot Review Committee decided in May 2008 that maximum possible timely
consensus has been obtained [http://www.validlab.com/754R/], and the consensus draft was submitted to
|EEE-SA RevCom. |EEE-754r was approved on 12 June 2008.

The Unicode Consortium. The Unicode 5.0 Standard [http://www.unicode.org/]. Addison-Wesley
Professional, 2006.

Index

A
append!, 37

B
break-entry, 77
break-handler, 78

C

cal-with-char*, 74
call-with-char**, 74
call-with-double*, 75
call-with-int*, 75
call-with-short*, 75
case-sensitive?, 15
char*->string, 74
char*-strlen, 74
close-open-files, 42

collect, 54
command-line-arguments, 45
compile-file, 21
compile-library, 31
compile-stale-libraries, 31
compiler-switches, 31

consol e-input-port, 42

consol e-input-port-factory, 42
consol e-output-port, 42
consol e-output-port-factory, 43
current-input-port, 43
current-output-port, 43
current-require-path, 19

D

delete-file, 43
display-memstats, 57
dump-heap, 45

79

http://en.wikipedia.org/wiki/IEEE_754r
http://en.wikipedia.org/wiki/IEEE_754r
http://www.validlab.com/754R/
http://www.validlab.com/754R/
http://www.validlab.com/754R/
http://www.unicode.org/
http://www.unicode.org/

Larceny User Manual

dump-interactive-heap, 45

E

eof-object, 43

equal-hash, 51
establish-void*-subhierarchy!, 74
every?, 37

F
ffi-add-attribute-core-entry!, 63
ffi-install-void* -subtype, 74
file-exists?, 43
file-modification-time, 43
fixnum?, 46
flush-output-port, 43
foreign-file, 66
foreign-null-pointer, 66
foreign-null-pointer?, 67
foreign-procedure, 66
fx*, 46

fx+, 46

fx-, 46

fx<, 47

fx<=, 47

fx=, 46

fx>, 47

fx>=, 47

fxlogand, 47

fxlogior, 47

fxlognot, 47

fxlogxor, 48

fxlsh, 48

fxnegative?, 47
fxpositive?, 47

fxrsha, 48

fxrshl, 48

fxzero?, 47

fx—, 46

G

gc-counter, 54
gcctl, 55

gensym, 53
get-output-string, 44
getenv, 45

getprop, 53

H

hashtable-clear!, 50
hashtable-contains?, 50
hashtable-copy, 51
hashtabl e-fetch, 50
hashtable-for-each, 50

80

Larceny User Manual

hashtable-get, 50
hashtable-map, 51
hashtable-put!, 50
hashtable-remove!, 50
hashtable-size, 50

L

larceny-break, 77
last-pair, 38
list-copy, 38
load, 21

M

maj or-gc-counter, 54
make-bytevector, 34
make-ol dstyle-hashtable, 49
make-parameter, 52
make-record-type, 40
make-rtd, 22

memstats, 57
most-negative-fixnum, 48
most-positive-fixnum, 48

@)

object-hash, 51

oblist, 53

oblist-set!, 54
open-input-string, 44
open-output-string, 44

P
peek-bytes, 67

poke-bytes, 67

port-name, 44

port-position, 44

port?, 44

procedure-arity, 36
procedure-copy, 36
procedure-documentation-string, 36
procedure-environment, 37
procedure-expression, 37
procedure-name, 36
procedure-source-file, 37
procedure-source-position, 37
putprop, 53

R

random, 49
read-larceny-weirdness?, 15
read-traditional-weirdness?, 16
record-accessor, 40
record-constructor, 40
record-predicate, 40

81

Larceny User Manual

record-rtd, 23
record-type-descriptor, 41
record-type-extends?, 41
record-type-field-names, 41
record-type-name, 41
record-type-parent, 41
record-updater, 41
record?, 23

remove, 38

remove!, 38

remp, 38

remp!, 38

remprop, 53

remq, 38

remq!, 38

remv, 38

remv!, 38

rename-file, 44
require, 19
reset-output-string, 44
reversel, 38
rtd-accessor, 23
rtd-all-field-names, 24
rtd-constructor, 22
rtd-field-mutable?, 24
rtd-field-names, 24
rtd-mutator, 23
rtd-name, 23
rtd-parent, 24
rtd-predicate, 23
rtd-printer, 33
rtd-printer-set!, 33
rtd?, 22
run-benchmark, 57
run-with-stats, 57

S

some?, 39

sro, 56
stats-dump-off, 56
stats-dump-on, 56
stdlib/free, 74
stdlib/malloc, 74
string->char*, 74
string-hash, 51
symbol-hash, 51
system, 45
system-features, 56

T
trace, 78
trace-entry, 77
trace-exit, 77

82

Larceny User Manual

U
unbreak, 77
untrace, 78

V

vector-copy, 35
void* ->address, 64
void*-byte-ref, 64
void*-byte-set!, 64
void*-double-ref, 65
void*-double-set!, 65
void*-void*-ref, 65
void*-void*-set!, 65
void*-word-ref, 64
void*-word-set!, 65
void*?, 64

W
with-input-from-port, 45
with-output-to-port, 45

83

	Larceny User Manual
	Table of Contents
	1. Larceny
	2. Installing Larceny
	2.1. Varieties of Larceny
	2.2. Downloading
	2.3. Installing the programs
	2.4. Compiling the R6RS standard libraries

	3. Running Larceny
	3.1. R5RS mode
	3.2. ERR5RS mode
	3.2.1. Automatic loading
	3.2.2. Dynamic loading
	3.2.3. Predefined libraries
	3.2.4. Library path
	3.2.5. Importing Larceny's standard procedures

	3.3. R6RS mode
	3.3.1. Predefined libraries
	3.3.2. Library path
	3.3.3. Library environment variable
	3.3.4. Defining libraries
	3.3.5. Importing procedures from Larceny's underlying R5RS system

	3.4. Scheme scripts
	3.5. R5RS scripting
	3.6. Errors
	3.7. Troubleshooting
	3.7.1. Errors when starting Larceny
	3.7.2. Errors when compiling the ERR5RS/R6RS runtime
	3.7.3. Autoloading errors
	3.7.4. Crashes

	3.8. Performance

	4. Lexical syntax
	4.1. Flags
	4.2. Case-sensitivity
	4.3. Lexical extensions
	4.4. Lexical parameters

	5. File naming conventions
	5.1. Suffixes
	5.2. Directories
	5.3. Resolving references to libraries
	5.4. Mapping library names to files (ERR5RS/R6RS)
	5.5. Mapping library names to files (R5RS)

	6. Compiling files and libraries
	6.1. Compiling ERR5RS/R6RS libraries
	6.2. Compiling R5RS source files

	7. ERR5RS standard libraries
	7.1. Load
	7.2. Records
	7.2.1. Procedural layer
	7.2.2. Inspection layer
	7.2.3. Syntactic layer
	7.2.4. Record identity

	8. R6RS standard libraries
	8.1. Base library
	8.2. Unicode
	8.3. Bytevectors
	8.4. Lists
	8.5. Sorting
	8.6. Control
	8.7. Records
	8.8. Exceptions and conditions
	8.9. Input and output
	8.10. Programs
	8.11. Arithmetic
	8.12. Syntax-case
	8.13. Hashtables
	8.14. Enumeration sets
	8.15. Eval
	8.16. Mutable pairs and strings
	8.17. R5RS

	9. Larceny's ERR5RS/R6RS libraries
	9.1. Load
	9.2. Compiler
	9.3. Benchmarking
	9.4. Records printer

	10. Larceny's R5RS libraries
	10.1. Strings
	10.2. Bytevectors
	10.3. Vectors
	10.4. Procedures
	10.5. Pairs and Lists
	10.6. Sorting
	10.7. Records
	10.7.1. Specification
	10.7.2. Implementation

	10.8. Input, Output, and Files
	10.9. Operating System Interface
	10.10. Fixnum primitives
	10.11. Numbers
	10.12. Hashtables and hash functions
	10.12.1. Hash tables
	10.12.2. Hash functions

	10.13. Parameters
	10.13.1. Larceny parameters

	10.14. Property Lists
	10.15. Symbols
	10.16. System Control and Performance Measurement
	10.17. SRFI Support
	10.18. SLIB support
	10.19. Foreign-Function Interface to C
	10.19.1. Introducing the FFI
	10.19.2. The space of foreign values
	10.19.3. Marshalling via ffi-attributes
	10.19.3.1. Primitive Attribute Types
	10.19.3.2. Extending the Core Attribute Registry
	10.19.3.3. Attribute Type Constructors
	10.19.3.4. void* Type Hierarchies

	10.19.4. Creating loadable modules
	10.19.4.1. SunOS 4
	10.19.4.2. SunOS 5

	10.19.5. The Interface
	10.19.5.1. Procedures

	10.19.6. Foreign Data Access
	10.19.6.1. Raw memory access
	10.19.6.2. Foreign data sizes
	10.19.6.3. Decoding foreign data

	10.19.7. Heap dumping and the FFI
	10.19.8. Examples
	10.19.8.1. Change directory
	10.19.8.2. Print Working Directory
	10.19.8.3. Quicksort
	10.19.8.4. Other examples

	10.19.9. Higher level layers
	10.19.9.1. foreign-ctools
	10.19.9.2. foreign-sugar
	10.19.9.3. foreign-stdlib
	10.19.9.4. foreign-cstructs
	10.19.9.5. foreign-cenums

	11. Debugging
	11.1. Entering the debugger
	11.2. Debugger commands
	11.3. Breakpoints
	11.4. Tracing
	11.5. Other functionality

	12. Standards
	12.1. Scheme standards
	12.2. Other relevant standards

	Index

