
CS 7880: Special Topics in Cryptography 9/17/20

Lecture 2: FHE From Gound Up

Lecturer: Daniel Wichs Scribe: Alan Turing

The notes describe an elegant way of constructing FHE by starting with an extremely
simple cryptosystem and adding functionality one small piece at a time. This exposition
was suggested by Daniele Micciancio at his Eurocrypt 2019 invited talk.

1 Basic Symmetric Encryption Scheme from LWE

• Encs(x) = (a, 〈a, s〉+ e+ x) : a← Zn
q , e← χ.

• Decs(a, b) = b− 〈a, s〉.

The above encryption scheme does not have correctness: if you decrypt and encryption
of x you get x + e. This can be fixed by only using x ∈ {0, bq/2c} in which case we can
remove the error e by testing if the decrypted value is closer to 0 or q/2. However, it will
be convenient to think of this as an encryption scheme that works for all x but decryption
only recovers something close to x.

We will abuse notation and write Encs(x) to denote some arbitrary element of the form
(a, 〈a, s〉+ e+ x). We will say that Encs(x) has error β if |e| ≤ β.

The LWE assumption implies that encryptions of arbitrary values are indistinguishable
from uniformly random vectors in Zn+1

q .
The scheme has the following properties:

1. Additive homomorphism: Encs(x) + Encs(y) = Encs(x+ y). The error goes from β to
2β.

2. Negation homomorphishm: -Encs(x) = Encs(−x). The error β stays the same.

3. Multiplication by small constant: c · Encs(x) = Encs(c · x). The error goes from β to
c · β.

4. Public encryptions: Can come up with a valid encryption of any value x without
knowing the secret key. Namely (0, x) ∈ Encs(x) with error 0.

5. Public circular encryptions: Can come up with a valid encryption of each secret key
component si without knowing the secret key. Namely (−1i, 0) ∈ Encs(si) with error
0. Here 1i is the unit vector with a 1 in position i and 0 everywhere else and si is the
i’th position of the secret key s. We can also come up with a valid encryption of csi
for any constant c without knowing the secret key; namely (−c ·1i, 0) ∈ Encs(si) with
error 0.

Note that the public encryptions can be created without knowing the secret key s.
They are fixed vectors and do not provide any security - they reveal what value is being
encrypted. However, we can re-randomize by adding in fresh encryption of 0. Because fresh

Lecture 2, Page 1

encryptions of 0 are indistinguishable from uniformly random vectors, the sum is then also
indistinguishable from a uniformly random vectors. This shows that the scheme has circular
security: encryptions of any values c · si are indistinguishable from random.

The above properties can also be used to get a public-key encryption from a symmetric-
key one. The public key pk consists of many random encryption of 0 :

pk = {cti ← Enc0(0)} = {= (ai, 〈ai, s〉+ ei)} = (A,b = sA + e)

To encrypt a value x, sum up a random subset of the encryptions of 0 in the public key,
which gives a fresh encryption of 0 and then add a public encryption of x:

Encpk(x) =
∑
i∈I

cti + (0, x) =
∑

ri(ai, 〈ai, s〉+ ei) + (0, x) = (ArT ,b · rT + x)

This is exactly the Regev public-key encryption from the previous lecture.

Multiplying by Large Constant. We now modify the scheme to allow multiplication
by a large constant. We call the new schem the “prime” scheme Enc′, to distinguish from
earlier “base” scheme Enc. To encrypt under Enc′ we simply use the base scheme Enc to
encrypt all the powers of 2 times x:

Enc′s(x) = (Encs(x),Encs(2 · x), . . . ,Encs(2
blog qcx))

It’s easy to see that the prime scheme still satisfies properties 1,2 above (in fact it satisfies
1-5, but we will only rely on 1,2). Moreover, it now allows us to also decrypt encryptions
of small values x ∈ {0, 1} by looking at the component Encs(2

i · x) where 2i is the power of
2 closest to q/2.

We now show how to take any constant c ∈ Zq and Enc′s(x) to get Enc′s(c · x) without

increasing the error too much. Let c =
∑blog qc

i=0 ci · 2i be the binary decomposition of c so
that ci ∈ {0, 1}. Then we define the operation:

c ∗ Enc′s(x) =

blog qc∑
i=0

ci · Encs(2i · x) = Encs(

blog qc∑
i=0

ci · 2i · x) = Encs(c · x)

The error goes from β to β · log q since we just added up at most log q basic encryptions.
We define the * operation to output a basic (non-prime) encryption Encs(c · x). However,
we can apply if for c, 2c, . . . , 2blog qcc to get (Encs(c · x), . . . ,Encs(2

blog qcc · x)) = Enc′s(c · x).
The above allows us to compute arbitrary linear functions over encrypted data. If we

have encryptions Enc′(x1), . . . ,Enc
′(x`) and some coefficients ci we can compute Enc′(

∑`
i=1 ci·

xi).

Homomorphic Decryption. Say we have a basic encryption of x

Encs(x) = (a, b = 〈a, s〉+ e+ x).

Lecture 2, Page 2

Notice that decryption Decs(a, b) = b − 〈a, s〉 is a linear function of s. Assume we have a
prime encryption of the secret key components {Enc′s(si)}i=0,...,n, where we define s0 = 1.
We can then evaluate the decryption of (a, b) over the encrypted secret key s as:

b∗Enc′s(1)−
n∑

i=1

ai∗Enc′s(si) = Encs(b)−
n∑

i=1

Encs(ai·si) = Encs(b−〈a, s〉) = Encs(x+e) = Encs(x)

What did we just do? We went from one encryption of x to another encryption of x.
That’s not very interesting on its own, but the way we did it is interesting. We did it
by taking the encryption of x and interpreting the ciphertext as defining a linear function
which we then evaluated homomorphically over encryptions of si.

The error went from β to (n+1)·β ·log q+β (since each * operation results in error β log q
and we’re summing up n+ 1 of them, but also adding in the error e from the encryption of
x).

Homomorphic Decrypt and Multiply. We can use the above idea to multiply two
encrypted values x, y to get an encryption of x · y. The idea is that we take some value
Encs(x) and decrypt it with the secret key y · s, we get a value x · y. Therefore if we start
with a prime encryption of y · s and then homomorphically compute the decryption of some
ciphertext (a, b) = Encs(x) we will end with an encryption of x · y.

In more detail, we modify the encryption scheme once more and define:

Enc′′s(x) = (Enc′s(x · si))i=0,...,n = (Encs(2
j · x · si))i=0,...,n;j=0,...,blog qc

(recall that s0 := 1). Note that this encryption scheme is secure by the circular security of
the basic scheme Enc. Furthermore, it still satisfies properties 1,2.

For Encs(x) = (a, b) define the operation:

Encs(x) ∗ Enc′′s(y) = b ∗ Enc′s(y)−
n∑

i=1

ai ∗ Enc′s(y · si)

= Encs(y · b)−
n∑

i=1

Encs(y · ai · si)

= Encs(y(b− 〈a, s〉)) = Encs(y(x+ e))

= Encs(xy)

The error goes from β to (n+ 1) · β · log q + y ∗ β. Therefore, we can only do the above
for small y, say y ∈ {0, 1}.

We extend the above operation to multiplying two double-prime ciphertext as follows:

Enc′′s(x) ∗ Enc′′s(y) = (Encs(2
j · x · si) ∗ Enc′′s(y))i,j = (Encs(2

j · x · y · si))i,j = Enc′′s(x · y)

The error goes from β to (n+ 1) · β · log q + y · β.

Lecture 2, Page 3

Putting it all Together. Given Enc′′s(x),Enc′′s(y) where x, y ∈ {0, 1} we can therefore
compute a NAND gate as Enc′′s(1)− Enc′′s(x) ∗ Enc′′s(y) = Enc′′(1− x · y) where Enc′′s(1) is a
public encryption of 1 with error 0. The error goes from β to β · ((n+ 1) log q + 1).

We can compute an arbitrary circuit over encrypted data this way. If the original error
is β then the final error becomes β · ((n+ 1) log q + 1)d where d is the depth of the circuit.
We will be able to decrypt correctly at long as q/4 > β · ((n+ 1) log q + 1)d. Therefore, by
choosing the modulus q large enough depending on the circuit depth d, we can evaluate any
circuit of depth up to d. We will discuss parameters in more detail later on.

Lecture 2, Page 4

