Problem 1 (Modifying CPA Definition) 10 pts

A. Let us modify the definition of CPA security (see lecture notes 7) by changing the experiment \(\text{CPAGame}\) so that the adversary does not get access to the encryption oracle before choosing the messages \(m^*_0, m^*_1\). That is, we simply remove step 2 from the game. The adversary still gets access to the encryption oracle in step 4 after receiving the challenge ciphertext \(c^*\). Show that this modified definition is weaker than the original. In other words, show that assuming pseudorandom functions exist, you can construct a contrived scheme which satisfies the modified definition but does not satisfy the original definition.

B. Alternately, we can modify the CPA definition by removing step 4 from the game so that the adversary does not get access to the encryption oracle after choosing the messages \(m^*_0, m^*_1\). In this variant, the adversary still gets access to the encryption oracle in step 2 before it chooses the messages \(m^*_0, m^*_1\) and gets the challenge ciphertext \(c^*\). Again, show that this modified definition is weaker than the original.

Problem 2 (CRHF or Not) 10 pts

Let \(\{H_s : \{0,1\}^{2n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, s \in \{0,1\}^n}\) be a collision resistant hash function (CRHF) that compresses 2\(n\) bits to \(n\) bits. For each of the following either show that it is also a CRHF or give a counter-example.

- \(H'_s(x)\) outputs the first \(n-1\) bits of \(H_s(x)\).
- \(H'_s(x_1, x_2) = H_s(H_s(x_1), H_s(x_2))\) where \(x_1, x_2 \in \{0,1\}^{2n}\).
- \(H'_s(x) = H_s(G(x))\) where \(x \in \{0,1\}^{n+1}\) and \(G : \{0,1\}^{n+1} \rightarrow \{0,1\}^{2n}\) is a PRG.

Problem 3 (Are CHRHF's also OWFs?) 15 pts

Let \(\{H_s : \{0,1\}^{2n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, s \in \{0,1\}^n}\) be a collision resistant hash function (CRHF) that compresses 2\(n\) bits to \(n\) bits. Show that \(f(s, x) = (s, H_s(x))\) is a OWF.

Show that this may not hold if \(\{H_s : \{0,1\}^{n+1} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, s \in \{0,1\}^n}\) only compresses \(n+1\) bits to \(n\) bits.

Problem 4 (CRHF + PRF ⇒ MAC) 10 pts

Let \(\{H_s : \{0,1\}^* \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, s \in \{0,1\}^n}\) be a collision resistant hash function (CRHF) that takes an arbitrary long input and hashes it to \(n\) bits. Let \(F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n\) be a PRF.
Show that $\text{MAC}((k, s), m) = F_k(H_s(m))$ is a secure MAC with secret key (k, s) that can be used to authenticate arbitrarily long messages m.

Problem 5 (Combiners) 10 pts

- Suppose you have two candidate one-way functions f and f'. You are told that at least one of them is secure but you don’t know which. Show how to combine them to get a function f^* which is guaranteed to be one-way.

- Same question for two candidate PRFs F, F'. Show how to construct F^* which is guaranteed to be a PRF if at least one of F, F' is.

- Same question for CPA secure encryption schemes (Enc, Dec) and (Enc', Dec').

- Same question for CRHFs H, H'.