
CS-7810 Graduate Cryptography September 27, 2017

Problem Set 2

Lecturer: Daniel Wichs Due: Oct. 9, 2017

Problem 1 (PRGs are OWFs) 8 pts

Show that if G : {{0, 1}n → {0, 1}2n}n∈N is a length-doubling pseudorandom generator (PRG)
then G is a one-way function (OWF).

Optional (hard): does this hold if G : {{0, 1}n → {0, 1}n+1}n∈N only outputs 1 extra bit?

Problem 2 (Encryption and OWFs) 10 pts

Assume that Enc,Dec is a one-time, computationally secure, deterministic encryption scheme with
key size {0, 1}n and message size {0, 1}n+1. Show how to construct a one-way function f using
Enc,Dec.

Problem 3 (OWFs with Short Output Don’t Exist) 5 pts

Let f : {0, 1}∗ → {0, 1}∗ be a function such that |f(x)| ≤ c log |x| for all x ∈ {0, 1}∗ and for some
fixed constant c > 0. Show that f is not a one-way function.

Problem 4 (Shorten) 5 pts

Assume that f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF). Show that f ′(x) = f(short(x))
is also a OWF, where we define short(x) denotes the first dn/2e bits of x.

What if we defined short(x) to denote the first d
√
ne bits of x? What if we define short(x)

to denote the firs dlog ne bits of x? For what levels of “shortening” can you prove that the above
holds?

If G is a PRG, for which levels of “shortening” is G′(x) = G(short(x)) also a PRG?

Hint: it may be useful to rely on the above problem to solve some of the subsequent problems.

Problem 5 (OWF or Not?) 15 pts

Assume that f : {0, 1}∗ → {0, 1}∗ is a one-way function (OWF). For each of the following
candidate constructions f ′ argue whether it is also necessarily a OWF or not. If yes, give a proof
else give a counter-example. For a counterexample, you should show that if OWFs exist then there
is some function f which is one-way but f ′ is not.

• f ′(x) = (f(x), x[1]) where x[1] is the first bit of x.
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• f ′(x) = (f(x), x[1], . . . , x[bn/2c]) where n = |x| and x[i] denotes the i’th bit of x.

• f ′(x) = f(x)||f(x+ 1) where || denotes string concatenation and x is intepreted as an integer
in binary with addition performed modulo 2n for |x| = n.

• f ′(x) = f(G(x)) where G is a pseudorandom generator.

Problem 6 (PRG or Not?) 15 pts

Assume that G : {{0, 1}n → {0, 1}2n}n∈N is a pseudorandom generator (PRG) with n-bit stretch.
For each of the following candidate constructions argue whether it is also necessarily a PRG or not.
If yes, give a proof else give a counter-example.

• G′(x) = G(x + 1) where addition is performed modulo 2n for x ∈ {0, 1}n.

• G′(x) = G(x||0) where || denotes string concatenation.

• G′(x) = G(x||G(x)).

• G′(x) = G(x)⊕ (0n||x).

• G′(x) = G(f(x)) where f is a one-way function.

Problem 7 (PRF or Not?) 15 pts

Let F be a PRF family with n-bit key, n-bit input and n-bit output. For each of the following
candidate constructions F ′ say whether F ′ is also necessarily a PRF. If so, give a proof else give a
counter-example. Some of the candidates F ′ have different input/output lengths than F .

1. F ′k(x) := Fk(x)||Fk(x + 1) where || denotes string concatenation and addition is modulo 2n.

2. F ′k(x) := Fk(x||0)||Fk(x||1) where x ∈ {0, 1}n−1.

3. F ′k(x) := Fk(x)⊕ x where ⊕ denotes the bit-wise XOR operation.

4. F ′k(x) := Fk(x)⊕ k.

5. F ′k(x) := Fx(k).

Problem 8 (CPA Security - Alternate Definition) 10 pts

Let (Enc,Dec) be an symmetric-key encryption scheme with n-bit keys and `(n)-bit messages.
We give an alternate definition of security which we call AltCPA security as follows. For

b ∈ {0, 1}, define the algorithm Encb(k,m0,m1) to output Enc(k,mb). Then for all PPT A we have:

Pr[AEnc0(k,·,·)(1n) = 1]− Pr[AEnc1(k,·,·)(1n) = 1] = negl(n)

where k ← {0, 1}n is chosen uniformly at random. In other words, no PPT adversary can distinguish
between having access to an oracle Enc0(k, ·, ·) that, when given as input two message m0,m1 ∈
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{0, 1}`(n), always encrypts m0 vs. an oracle Enc1(k, ·, ·) that always encrypts m1. The adversary A
can call the oracle as many times as it wants.

Show that the original definition of CPA security that we defined in class also implies AltCPA
security (any scheme that satisfies the former must also satisfy the latter).

Optional: show that the two definitions are actually equivalent, by also showing that the alter-
nate definition implies the original.
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