
CS 7810 Graduate Cryptography September 27, 2017

Lecture 7: CPA Security, MACs, OWFs

Lecturer: Daniel Wichs Scribe: Eysa Lee

1 Topic Covered

• Chosen Plaintext Attack (CPA)

• MACs

• One Way Functions (OWFs)

• NP puzzles

• Impagliazzo’s worlds

2 Chosen Plaintext Attack (CPA)

Recall last lecture we introduced a new notion of security, chosen plaintext attack (CPA).
In this model, the adversary is allowed a polynomial number of plaintext queries to an
oracle, and the oracle replies with the encryption of these messages. In a challenge phase,
the adversary sends two messages m0,m1 and receives an encryption of one of the messages.
The adversary is allowed polynomial many more oracle encryption queries, but is finally
challenged to identify which of the two messages was encrypted.

We can formally define CPA security using CPA-Gameb, where b ∈ {0, 1}. CPA-Gameb

is defined as follows:

1. The challenger chooses a key k ← {0, 1}n

2. The adversary repeatedly chooses messages mi and the challenger sends back cipher-
texts ci = Enc(k,mi). The adversary can do this as many times as it wants.

3. The adversary chooses two challenge messages m∗0,m
∗
1. The challenger sends back a

ciphertext c∗ = Enc(k,m∗b).

4. The adversary repeatedly chooses messages mi and the challenger sends back cipher-
texts ci = Enc(k,mi). The adversary can do this as many times as it wants.

5. The adversary outputs guess b′ ∈ {0, 1}.

Definition 1 An encryption scheme is CPA secure if CPA-Game0 ≈ CPA-Game1. In other
words, for all PPT adversaries A,∣∣∣Pr[CPA-Game1A(n) = 1]− Pr[CPA-Game0A(n) = 1]

∣∣∣ = negl(n)

♦

Lecture 7, Page 1



2.1 Encryption Scheme with CPA Security

We note that it is not possible for a deterministic encryption scheme to be CPA secure.
This is because we do not have any restrictions on which messages the adversary can query
encryptions of. That is, the adversary is allowed to query the same message m multiple
times or even oracle query the challenge messages m0,m1. For a deterministic encryption
scheme, it is trivial to see that an adversary can easily compare the ciphertext produced
from Enc(k,mb) against oracle encryption queries of m0 and m1.

Let Fk : {0, 1}n → {0, 1}l be a PRF. We can use Fk to construct a randomized encryption
scheme. The construction works as follows:

Enc(k,m): x← {0, 1}n. Output ciphertext c = (x, Fk(x)⊕m).

Dec(k, c): Let c be of the form (x, ct). Output decryption ct⊕ Fk(x).

This encryption scheme resembles one time pad, except that we use a PRF F and a randomly
sampled input to the PRF x to hide the message m. Intuitively this scheme works because,
despite being given x in the ciphertext, Fk looks like random and Fk(x) cannot be computed
without knowledge of k by the security of the PRF scheme.

Theorem 1 This encryption scheme is CPA secure. That is, with the above encryption
scheme, CPA-Game0 ≈ CPA-Game1.

Proof: We construct a hybrid argument to prove security of the scheme. We begin and end
with CPA-Game0 and CPA-Game1 and define intermediate hybrids that are computationally
indistinguishable. The hybrids are as follows.

H0: CPA-Game0

H1: Let R be a random function. We define this experiment to be the same as CPA-Game0

except that we replace all computations of Enc(k,m) (in steps 2,3,4 of the game) with
a procedure that samples x← {0, 1}n and outputs (x,R(x)⊕m).

H2: We define this experiment to be the same as H1 except that we change how the
ciphertext c∗ in step 3 of the game is computed. In particular, we just choose c∗ =
(x∗, y∗)← {0, 1}n × {0, 1}l uniformly at random.

H3: LetR be a random function and x← {0, 1}n. We define this experiment to be the same
as CPA-Game1 except that we replace all computations of Enc(k,m) (in steps 2,3,4 of
the game) with a procedure that samples x← {0, 1}n and outputs (x,R(x)⊕m).

H4: CPA-Game1

First, we will show H0 ≈ H1 by constructing a reduction between the two. Suppose A
could distinguish between H0, H1. Notice, the only difference between H0, H1 is that the
PRF F in H0 is replaced by a random function R in H1. We can construct a reduction
algorithm B to distinguish a PRF from random. A plays CPA-Game0 with B acting as an
encryption oracle to A. On a message mi, B samples a random xi ← {0, 1}n and sends xi to
the an oracle O. The oracle O returns O(xi), which is either the evaluation of xi on a PRF

Lecture 7, Page 2



F or on a random function R. The reduction algorithm B then sends to A the encryption
as (xi, O(xi) ⊕m). We can see when O uses a PRF F , A is in hybrid H0. When O uses
a random function R, A is in hybrid H1. It is clear that if such an A existed that could
distinguish between H0 and H1, then it would be possible for B to break the security of F .
If we assume F is secure, then it must be H0 ≈ H1.

Next, we show H1 ≈ H2. We note that if y∗ is uniformly random then the distributions
of y∗ ⊕ m is identical to the distribution of y∗. Furthermore, y∗ = R(x∗) is uniformly
random as along as x∗ is “fresh” meaning that it is different from all of the values xi chosen
by the encryption procedure during stages 2 and 4 of the game. Therefore, if x∗ is fresh
then the games H1, H2 are identical and the statistical distance between the two games
is just the probability that x∗ is not fresh. Furhtermore, since x∗ is chosen unfiromly at
random, the probability that it is not fresh is at most q(n)/2n where q(n) is the total
number of encryption queries that the adversary makes in stages 2,4 of the game. Since the
adversary is polynomially bounded, q(n) is a polynomial and therefore q(n)/2n is negligible.
This shows that the two games are statistically close and even a computationally unbounded
adversary (that only makes polynomially many encryption queries) cannot distinguish them.
Therefore, H1 ≈ H2.

Now, we observe the hybrids are symmetric about H2. That is, the pairs H0, H1 and
H4, H3 are identical apart from the message mb encrypted in the challenge phase. Therefore,
the same proof for H0 ≈ H1 can be applied to H3 and H4. The same proof for H1 ≈ H2

can be applied to prove H2 ≈ H3.
We have H0 ≈ H1 ≈ H2 ≈ H3 ≈ H4, and therefore H0 ≈ H1. This means

CPA-Game0 ≈ CPA-Game1.

3 MACs

Let us revisit MACs, which were introduced in the first lecture. We now consider them
against computationally bounded adversaries. Like in the CPA game, an adversary is
allowed a polynomial number of queries, which it will receive the MAC of the queried
message. We define Mac-Game as follows.

1. The challenger chooses a key k ← {0, 1}n

2. The adversary sends to the challenger a query message mi. The challenger sends back
the authentication tag σi = MAC(k,mi). The adversary is allowed to repeat this as
many times as it wants.

3. Finally, the adversary sends a pair m∗, σ∗ and the game outputs 1 if and only if
MAC(k,m∗) = σ∗ and m∗ had not been previously queried by the adversary (i.e.,
m∗ 6∈ {mi}).

Definition 2 A MAC scheme is computationally secure if for all PPT adversaries A we
have

Pr[Mac-GameA(n) = 1] = negl(n)

♦

Lecture 7, Page 3



Theorem 2 Let F be a PRF {0, 1}l → {0, 1}n. MAC(k,m) = Fk(m) is a computationally
secure MAC scheme.

Proof: First, we will show Mac-Game ≈ R-Game, where in R-Game we replace Fk with a
random function R (both in stage 2 where we create authentication tags for the adversary as
well as in stage 3 where we verify the adversary’s tag). Suppose there exists some adversary
A that could distinguish Mac-Game and R-Game. Since R-Game only replaces Fk with R,
it is clear that A could be used to distinguish Fk from R, breaking the security of PRF.
Therefore, we have that Mac-Game ≈ R-Game.

Next, we claim Pr[R-GameA(1) = 1] ≤ 2−n. The MAC in R-Game uses a random
function R, so the MAC of any message mi is R(mi). We note the adversary must produce
a pair m∗, σ∗ and wins if R(m∗) = σ∗. Since the adversary can not have queried m∗

previously and R is completely random, the probability that the adversary guesses correctly
and R(m∗) = σ∗ is 2−n.

Combining the two, we have that

Pr[Mac-GameA(1) = 1] ≤ Pr[R-GameA(1) = n] + negl(n)

≤ 2−n + negl(n)

≤ negl(n)

We have showed Pr[Mac-GameA(n) = 1] = negl(n), so the MAC scheme is computationally
secure.

4 One Way Functions (OWF) and NP puzzles

We now introduce one way functions.

Definition 3 A function f : {0, 1}∗ → {0, 1}∗ is one way if:

• f can be computed in polynomial time

• ∀PPT adversaries A :

Pr[f(x′) = y : x← {0, 1}n, y = f(x), x′ ← A(1n, y)] = negl(n)

♦
Intuitively, if f is one way, f should be easy to compute in th forward direction (given

x it’s easy to find f(x)), but it should be hard to invert (given y = f(x) for a random x
it should be hard to find any preimage of y). We note f does not necessarily need to be
one-to-one. There may be many preimages of y and it should be hard to find any of them.

Definition 4 An NP puzzle consists of a poly-time computable relation R(y, x). We think
of y as a puzzle or statement, and x as a solution or witness. The relation R tests if x is a
good solution for the problem y and outputs 1 (accept) or 0 (reject). ♦

Definition 5 An average hard NP puzzle has a PPT algorithm Gen(1n) that generates
hard puzzles that have a solution. In particular, for y ← Gen(1n), then ∃x whereR(y, x) = 1.
Furthermore ∀PPT adversaries A

Pr[R(y, x′) = 1 : y ← Gen(1n), x′ ← A(1n, y)] = negl(n)

Lecture 7, Page 4



♦

Definition 6 A one way NP puzzle has a PPT algorithm Gen(1n) that generates puzzles
together with a solution: for (y, x) ← Gen(1n) we have R(y, x) = 1. Furthermore ∀PPT
adversaries A

Pr[R(y, x′) = 1 : (y, x)← Gen(1n), x′ ← A(1n, y)] = negl(n)

♦

Theorem 3 One-way puzzles exist if and only if One-way functions exist.

Proof: Given a OWF it’s easy to create a one-way puzzle consisting of a relation R which
is defined by R(y, x) = 1 if f(x) = y and a PPT algorithm Gen(1n) which samples a random
x← {0, 1}n and outputs (f(x), x).

The other direction is more challenging. Assume the Gen(1n) algorithm uses n-bits of
randomness, and denote (y, x)← Gen(1n; r) to be a run of the algorithm with input r. We
can define the function f(r) which runs (y, x)← Gen(1n; r) and outputs y. Any adversary
A that inverts the OWF can also be used to break the one-way puzzle. Given a puzzle y we
can call A(y) which outputs r′. If A inverts the OWF f it means that Gen(1n; r′) = (y, x′).
By correctness R(y, x′) = 1 and therefore x′ is a good solution to the puzzle y. If Gen uses
more then n bits of randomness, say some polynomial nc for some constant c > 0, then we
can “rescale” it and define Gen′(1n; r) = Gen(1n

1/c
; r) to be a one-way relation that uses

only n-bits of randomness.

5 Impagliazzo’s Worlds

We note if P = NP , then for any NP puzzle, we can find a solution x given problem y (if a
solution exists). However, what if P 6= NP? We can imagine different worlds or scenarios
and consider their impliciation for computer science and cryptography. In particular, we
will look at five worlds imagined by Russell Impagliazzo:

• Algorithmica: In this world, P = NP or BPP = NP . This means we can solve all
NP puzzles in the worst case or there exists a randomized algorithm that can solve
NP puzzles in the worst case.

• Heuristica: P 6= NP in this world, but average hard NP puzzles don’t exist. In other
words, for every efficiently samplable distributions on puzzles, there is some heuristic
algorithm that solves the puzzles generated from that distribution, even if there is no
universal algorithm that always solves all puzzles.

• Pessiland: This is the world where average-hard NP puzzles exist but one-way puzzles
don’t exist. This world is considered the worst of all worlds. There are average hard
puzzles that we cannot heuristically solve but we also cannot meaningfully uses them
to build crypto applications.

Lecture 7, Page 5



• Minicrypt: This world where one-way NP puzzles and therefore also one-way functions
exist. In other words, it is possible to generate hard puzzles with a solutions. In this
world we can do most of symmetric key cryptography such as PRGs, PRFs, MACs
and CPA encryption (and few other things as we will see). But it might still be the
case that public-key encryption doesn’t exist in this world.

• Cryptomania: This is the world where we can do public-key encryption and many
other advanced cryptographic applications that come with it.

Lecture 7, Page 6


