
CS 7880 Graduate Cryptography December 6th, 2017

Lecture 25: Obfuscation

Lecturer: Daniel Wichs Scribe: Yashvanth Kondi

1 Topics Covered

• Definition and impossibility of Virtual Black Box Obfuscation for circuits and Turing
Machines.

• Introduction to Indistinguishability Obfuscation and its applications (Witness En-
cryption, PKE).

In this lecture, we are introduced to the notion of obfuscation. Intuitively, an obfuscated
program hides all attributes of the internal program whose functionality it computes. This
includes hiding useful information such as hard-coded secret values, etc. We see that this
powerful cryptographic primitive is impossible to instantiate in its strongest form (VBB)
for arbitrary circuits and Turing Machines. We then consider the weaker notion of Indistin-
guishability Obfuscation (IO), and see how to build various cryptographic primitives using
IO and One-Way Functions (OWFs).

2 Virtual Black Box Obfuscation

The properties required of an obfuscator were formalized in the seminal work of Barak et
al. [BGI+01]. Correctness of an obfuscator is a natural property:

Definition 1 (Functionality Preserving) For all programs Pn and security parameters λ ∈
N, a VBB obfuscator Obf outputs P̃n ← Obf

(
1λ, Pn

)
such that P̃n(x) = Pn(x) for every x

in the domain of Pn. ♦
Consider the following attempt at formalizing security for a VBB obfuscator:

Definition 2 (‘Strong’ Virtual Black Box) A uniform PPT algorithm Obf is a ‘strong’
VBB obfuscator if it is functionality preserving and ∀ PPT adversaries A, ∃ PPT simulator
S such that for all programs {Pn} and security parameters λ ∈ N:{

A
(
Obf

(
1λ, Pn

))}
n
≈
{
SPn

(
1λ, |Pn|

)}
n

Where SPn denotes that S has unrestricted oracle access to Pn. The number of queries is
of course bounded by the running time of S, making it polynomial in λ. ♦

Definition 2 is too strong, as shown by an adversary A
(
P̃n ← Obf

(
1λ, Pn

))
= P̃n. As S

only has oracle access to Pn, it is impossible for S to output a program that is functionally
equivalent on all (or even most) inputs.

Instead, Barak et al. [BGI+01] weaken the definition to that of simulating a predicate
output by an adversary who is given an obfuscated program.

Lecture 25, Page 1

Definition 3 (Virtual Black Box) A probabilistic algorithm Obf is a VBB obfuscator if
it is functionality preserving and ∀ PPT adversaries A, ∃ PPT simulator S such that ∀
programs {Pn} and security parameters λ ∈ N:∣∣∣Pr

[
A
(
Obf

(
1λ, Pn

))
= 1
]
− Pr

[
SPn

(
1λ, |Pn|

)
= 1
]∣∣∣ ≤ negl (λ)

Where SPn denotes that S has unrestricted oracle access to Pn. ♦
Unfortunately, Barak et al. show a simple counterexample to demonstrate that even

this definition is too strong to achieve for Turing Machines in general.

2.1 Impossibility of VBB Obfuscation for Turing Machines

Consider a Turing Machine Pα,β,γ implementing the following functionality:

Pα,β,γ(x) =

β if x = α
γ if x(α) = β
⊥ otherwise

If α, β, γ are uniformly random strings, we can make the following observations:

1. Oracle access to Pα,β,γ is highly unlikely to yield anything other than ⊥ with polyno-
mially many queries.

2. Given P̃α,β,γ ← Obf
(
1λ, Pα,β,γ

)
, the functionality preserving property of Obf ensures

that P̃α,β,γ

(
P̃α,β,γ

)
= γ.

Combining the above observations yields that SPα,β,γ is almost never able to retreive γ,
whereas A is able to do so given P̃α,β,γ . Any non-trivial predicate computed on γ will
therefore not be simulatable with noticeable probability, proving the impossibility of VBB
obfuscation for general TMs.

2.2 Impossibility of VBB Obfuscation for Circuits

Proving the impossibility of VBB Obfuscation for circuits takes some more effort, as there
is no immediate method of feeding a circuit as input to itself. However, the existence of
Fully Homomorphic Encryption implies that VBB Obfuscation is not possible for circuits
in general, as demonstrated by the following counterexample.

Consider a circuit Cα,β,γ implementing the following functionality:

Cα,β,γ(x) =

Encpk(α) if x = 0
β if x = α
γ if Decsk(x) = β
⊥ otherwise

Where (KeyGen,Enc,Dec,Eval) is a a Fully Homomorphic Encryption scheme, pk, sk←
KeyGen(1λ), and α, β, γ are uniformly random.

Lecture 25, Page 2

Once more we can observe that oracle access to Cα,β,γ is unlikely to yield anything other
than Encpk(α), as α itself is protected by semantic security of the FHE scheme and α, β, γ
are uniform.

However, given C̃α,β,γ ← Obf
(
1λ, Cα,β,γ

)
we can obtain an encryption of β under pk

by evaluating C̃α,β,γ homomorphically on Encpk(α). As Obf preserves functionality of the
obfuscated circuit, we have:

Encpk(β) = Evalpk

(
C̃α,β,γ ,Encpk (α)

)
If we feed the outcome of this evaluation to C̃α,β,γ we activate the clause of Cα,β,γ which

produces output γ, as follows:

C̃α,β,γ (Encpk(β))⇒ Cα,β,γ(x) where Decsk(x) = β ⇒ output γ

Therefore A
(

1λ, C̃α,β,γ

)
is always able to obtain γ while SCα,β,γ is not, implying that

any non-trivial predicate computed on γ can not be simulated with only oracle access to
Cα,β,γ . This proves the impossibility of VBB Obfuscation for general circuits if homomor-
phic encryption exists.

The original proof by Barak et al. [BGI+01] makes use of a type of homomorphic
encryption scheme based on one-way functions, following which they show that that OWFs
are implied by VBB Obfuscators. This contradiction proves unconditionally that VBB
Obfuscators for circuits do not exist.

2.3 Indistinguishability Obfuscation

Seeing that general purpose obfuscation is impossible in the strong simulation sense, Barak
et al. formalized a weaker notion of indistinguishability obfuscation (IO).

While the functionality preserving property remains the same as in Definition 1, the
obfuscation property is changed to be indistinguishability based as follows:

Definition 4 (Indistinguishability Obfuscation) A uniform PPT algorithm Obf is an in-
distinguishability obfuscator if for all pairs of circuits Cn, C

′
n such that Cn(x) = C ′n(x) ∀

inputs x, for all security parameters λ ∈ N, the following ensembles are computationally
indistinguishable: {

Obf
(

1λ, Cn

)}
n
≈
{
Obf

(
1λ, C ′n

)}
n

♦
Interestingly, unlike other cryptographic primitives the existence of IO does not imply

that P 6= NP .

Lemma 1 If P = NP , indistinguishability obfuscators exist.

Proof: A simple IO construction is as follows: given Cn, output the smallest circuit that
is functionally equivalent to Cn. This will trivially produce the same obfuscated circuit for
all functionally equivalent circuits.

Corollary 2 The existence of IO does not imply the existence of one-way functions.

Lecture 25, Page 3

One-way functions and IO can therefore be seen as separate primitives. Interesting
cryptographic constructions follow when we combine OWFs with IO. First, we define the
notion of witness encryption and show how it can be instantiated using IO.

2.4 Witness Encryption

Witness Encryption was introduced and formalized by Garg et al. [GGSW13]. Let L be
an NP language with relation R. ie. ∀ instances x, R(x,w) = 1 iff w is a witness for the
statement x ∈ L. A witness encryption scheme consists of the following algorithms:

• EncWE

(
1λ, x,m

)
: Given a message m ∈ {0, 1} and an instance x, the encryption

algorithm outputs a ciphertext ct.

• DecWE (w, ct): Given a ciphertext ct and a witness w, the decryption algorithm out-
puts a bit.

A tuple of algorithms (EncWE,DecWE) constitutes a witness encryption scheme if the fol-
lowing properties are satisfied:

Definition 5 (Correctness) For all security parameters λ ∈ N, messages m ∈ {0, 1},
instances x and witnesses w,

DecWE

(
w,EncWE

(
1λ, x,m

))
= m if R(x,w) = 1

♦

Definition 6 (Soundness) For all instances x /∈ L and security parameters λ ∈ N,{
EncWE

(
1λ, x, 0

)}
x/∈L
≈
{
EncWE

(
1λ, x, 1

)}
x/∈L

♦
We can instantiate such a witness encryption scheme with an indistinguishability obfus-

cator Obf as follows.

• EncWE

(
1λ, x,m

)
:

1. Construct circuit Cx,m(w) =

{
m if R(x,w) = 1

⊥ otherwise

2. Output ct = Obf
(
1λ, Cx,m

)
• DecWE(w, ct): output ct(w)

The above construction is clearly correct, as ct(w) = Cx,m(w) = m when R(x,w) = 1.
Security follows from the indistinguishability of obfuscated circuits; when x /∈ L (ie. @w such
that R(x,w) = 1) both Cx,0 and Cx,1 will output ⊥ on all inputs, making them functionally
equivalent. Therefore we have that:{

Obf
(

1λ, Cx,0

)}
x/∈L
≈
{
Obf

(
1λ, Cx,1

)}
x/∈L

Lecture 25, Page 4

Public-Key Encryption from WE and PRGs. IO and OWFs are sufficient to build
PKE, as can be shown by means of the following public key encryption scheme described by
Garg et al. [GGSW13]. The building blocks are a witness encryption scheme (EncWE,DecWE)
and a PRG G : {0, 1}λ 7→ {0, 1}2λ.

• KeyGen(1λ): Sample sk← {0, 1}λ and compute pk = G(s).

• Enc(pk,m): Create an instance x such that x ∈ L iff pk is in the range of G. Here, L
is an NP-Complete language for which there exists a Karp-Levin reduction. Output
ct = EncWE(1λ, x,m).

• Dec(sk, ct): Use sk to obtain a witness w for the statement x ∈ L. Output DecWE(w, ct).

Security of the above scheme can be proven by a hybrid argument. If in the PKE security
game the public key pk is replaced by a random string r ← {0, 1}2λ, the output of the
adversary must not change non-negligibly (follows from PRG security). The probability that
r is in the range of G is ≤ 2−λ, which when considered along with soundness of the witness
encryption scheme implies that except with negligible probability Enc(r, 0) ≈ Enc(r, 1).
Given that r can be used to replace pk, we have that Enc(pk, 0) ≈ Enc(pk, 1).

2.5 Special Purpose Obfuscators and IO

Consider a class of circuits {Cn} for which there exists a special obfuscator SpObf. We can
show that SpObf is made redundant by any indistinguishability obfuscator Obf as follows.
Consider any ‘special’ obfuscation of a circuit, SpObf(1λ, Cn). As SpObf and Obf both
produce functionality preserving indistinguishable programs, we have that,{

Obf
(

1λ, Cn

)}
≈
{
Obf

(
1λ,SpObf

(
1λ, Cn

))}
Note that Cn must be padded to be of the same length as SpObf

(
1λ, Cn

)
.

References

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating pro-
grams. In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, pages 1–18, 2001.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’13, pages 467–476, New York, NY, USA, 2013.
ACM.

Lecture 25, Page 5

