
CS 7810 Graduate Cryptography November 20, 2017

Lecture 21: CCA2 Security for the Cramer-Shoup Cryptosystem

Lecturer: Daniel Wichs Scribe: Jack Doerner

1 Topics Covered

2. Definitions

3. Remembering Cramer-Shoup

4. Proof of IND-CCA1 Security and Disproof of IND-CCA2 Security

5. Revising Cramer-Shoup

6. IND-CCA2 Security

2 Definitions

Definition (Chosen Ciphertext Attack).

A Chosen Ciphertext Attack (CCA or CCA1) is a security game wherein an adversary with
oracle access to a decryption function attempts to defeat the security of the encryption
scheme to which that function belongs. In essence, the adversary may choose polynomially
many arbitrary ciphertexts, and receive the plaintexts to which those ciphertexts decrypt
under a specific key. The adversary is static, and therefore it may no longer access the
decryption oracle once it has challenged the encryption scheme and received a reply. There
are two notions of security defined under this game: ciphertext indistinguishability (IND-
CCA Security) and ciphertext non-malleability (NM-CCA Security). Note that IND-CCA2
implies IND-CCA, and NM-CCA2 implies NM-CCA. Furthermore, NM-CCA implies IND-
CCA, but the converse is not true.

Definition (Adaptive Chosen Ciphertext Attack).

An Adaptive Chosen Ciphertext Attack (CCA2) is a security game wherein an adversary
with oracle access to a decryption function attempts to defeat the security of the enryption
scheme to which that function belongs. In essence, the adversary may choose polynomially
many arbitrary ciphertexts, and receive the plaintexts to which those ciphertexts decrypt
under a specific key. Because the adversary is adaptive, it may continue acccessing this
oracle even after challenging the game and receiving a response. There are two notions
of security defined under this game: ciphertext indistinguishability (IND-CCA2 Security)
and ciphertext non-malleability (NM-CCA2 Security). Note that NM-CCA2 implies IND-

Lecture 21, Page 1



CCA2 and vice versa.

3 Remembering Cramer-Shoup

First, recall the Cramer-Shoup cryptosystem, which has its basis in the notion of a Hash-
Proof system.

3.1 Hash-Proof Systems

Note that what follows suffices for Cramer-Shoup, but is not a fully general definition. Sup-
pose there exists some public description of a group G of order q (such that q is represented
in n bits) generated by the element g. For some h = gβ such that β 6= 0 ∈ Zq we define a
language L over (G, q, g, h):

L =
{

(gr, hr) : r ∈ Zq
}

We also define a complement language:

L̄ =
{

(gr1 , hr2) : r1, r2 ∈ Zq, r1 6= r2

}
We can construct a Hash-Proof system as a tuple of algorithms

(
Gen, Hpk, Hsk

)
. The

generator drawns x, y ← Zq and then returns pk = gxhy, sk = (x, y), and the secret and
public-key hash functions work in the following way:

Hpk

(
(c1, c2), r

)
= pkr

Hsk

(
(c1, c2)

)
= cx1 · c

y
2

This scheme has the following properties, to which we will later refer by number

1. UL
c≡ UL̄; that is, the uniform distribution over the language L is computationally

indistinguishable from the uniform distribution over its complement.

2. (c1, c2) ∈ L ⇒ Hpk

(
(c1, c2), r

)
= Hsk (c1, c2) where r is the witness for (c1, c2); i.e.

correctness.

3. ∀(pk, sk) ← Gen(1n)∀c = (c1, c2) ∈ L̄,Hsk(c) ≡ UG; that is, for elements not in the
language L, the output of the secret-key hash function is statistically equivalent to
the uniform distribution over the group G.

3.2 The Cramer-Shoup Cryptosystem

Assume the existence of a public key pk = (pk1, pk2) where pk1 and pk2 are hash-proof public
keys, and a corresponding secret key sk = (sk1, sk2). The Cramer-Shoup cryptosystem
consists of the algorithms (Enc,Dec) which work as follows:

Algorithm 1. Encpk(m):

1. r ← Zq

2. c ..= (gr, hr) ∈ L

Lecture 21, Page 2



3. h1
..= Hpk1(c, r) ·m

4. h2
..= Hpk2(c, r)

5. output (c, h1, h2)

Algorithm 2. Decsk
(
(c, h1, h2)

)
:

1. if h2 = Hsk2(c) output
(
h1/Hsk1(c)

)
2. otherwise output ⊥

3.3 The CCA1/2 Indistinguishability Game

The game CCAGameb for indistinguishability of public key encryption is played by an
adversary A and a challenger C in the following way:

1. C runs (pk, sk)← Gen(1n) and sends pk to A

2. A may send polynomially many ciphertexts cti to C, where each has an index i, and
receive after each a message mi which is the decryption of cti under sk.

3. A sends a pair of challenge messages, m∗0,m
∗
1 to C, and recieves ct∗ ← Encpk(m

∗
b) in

return.

4. If the parties are playing the CCA2 game, A may again send polynomially many
ciphertexts cti to C, and receive after each a message mi which is the decryption of
cti under sk. However, A is forbidden to query the challenge ciphertext ct∗. If the
parties are playing the CCA1 game, then this step is skipped.

5. A attemps to determine whether it is playing the game with b = 0 or b = 1. It sends
its guess for b to C, and wins if it guesses correctly.

4 Proof of IND-CCA1 Security and Disproof of IND-CCA2
Security

4.1 Proof of IND-CCA1 Security

IND-CCA1 Security for the Cramer-Shoup cryptosystem is proven by showing that CCA1Game0 c≡
CCA1Game1, i.e. the adversary’s view of the game with b = 0 is indistinguishable from its
view of the game with b = 1, via a series of hybrids:

1. Hb0 is the ordinary CCA1Gameb.

2. Hb1: When computing the challenge ciphertext ct∗, instead of outputting

(c,Hpk1(c, r) ·m∗b , Hpk2(c, r))

Lecture 21, Page 3



as would normally be the case for Cramer-Shoup, C outputs

(c,Hsk1(c) ·m∗b , Hsk2(c))

Due to Property 2 (correctness) of Hash-Proof Systems, Hb0 ≡ Hb1, but note that C no
longer uses the witness r in computing the encryption of m∗b .

3. Hb2: When computing the challenge ciphertext ct∗, instead of drawing c← L as would
normally be the case for Cramer-Shoup, C chooses c ← L̄. Due to Property 1 of

Hash-Proof Systems, Hb1
c≡ Hb2.

4. Hb3: When C receives a decryption query for a ciphertext cti = (c, h1, h2), rather than
rejecting the query if h2 6= Hsk2(c), it rejects if c /∈ L. Note that this requires C to
break discrete logarithms, and that in Hb2, if A chooses c /∈ L and manages to guess
Hsk2(c), then it will receive a (nonsense) decryption, whereas in Hb3 its query will be
rejected because c /∈ L, which would allow it to distinguish the two hybrids. Due
to Property 3 of Hash-Proof Systems, even a computationally-unbounded A has a

negligible probability of guessing correctly. Therefore Hb2
s≡ Hb3.

5. Hb4: When computing the challenge ciphertext ct∗ = (c, h1, h2), rather than computing
h1

..= Hski(c) · m∗b , C draws h1 ← UG. Due to Property 3 of Hash-Proof Systems,

Hb3 ≡ Hb4. Finally it is trivially true that H0
4 ≡ H1

4, which implies that H0
0

c≡ H1
0

4.2 . . . and Disproof of CCA2 Security

Intuitively, Cramer-Shoup is not secure against Adaptive Chosen Ciphertext attacks be-
cause the ciphertexts produced are malleable. Consequently, an adversary can re-randomize
a ciphertext and then ask for a decryption of that ciphertext. Since the re-randomized ci-
phertext is not equal to the original, it will not trigger the condition forbidding a query to
the original, but because it decrypts to the same value as the original, the adversary can
use it to disginguish between CCA2Game0 and CCA2Game1.

Specifically, suppose A receives

ct∗ = (c = (gr, hr) , pkr1 ·mb, pk
r
2)

It can then choose r′ ← Zq and calculate

ct∗′ ..=

(
c =

(
gr+r

′
, hr+r

′
)
, pkr+r

′

1 ·mb, pk
r+r′

2

)
which is also a valid encryption of mb

The flaw in the IND-CCA1 proof that prevents it from showing IND-CCA2 can be found

in Hb3. As previously stated, Hb3
s≡ Hb2 because even a computationally unbounded adersary

is negligibly likely to guess an accepting value of Hsk1(c) given c← L̄. However, by giving
the adversary ct∗, we give it enough information to calculate such a value with probability
1 via above method. Thus, in the CCA2Game, Hb3 and Hb2 are easily distinguished.

In order do address this flaw, we need to strengthen Property 3 of Hash-Proof Systems.
Specifically, we need a property of the following form:

Lecture 21, Page 4



3. ∀(pk, sk) ← Gen(1n)∀c = (c1, c2), c′ = (c′1, c
′
2) ∈ L̄ s.t. c 6= c′,

(
Hsk(c), Hsk(c

′)
) c≡ UG2 ;

that is, for any pair of elements not in the language L, the joint distribution of outputs
of the secret-key hash function on those elements is computationally indistinguishable
from the uniform distribution over the two elements of group G.

5 Revising Cramer-Shoup

We will now revise the Cramer-Shoup Cryptosystem to achieve IND-CCA2 Security. We
begin by constructing a stronger Hash-Proof System that satisfies our revised Property 3.
We will refer to this scheme as HPS2, whereas the original is HPS1.

5.1 A New Hash-Proof Construction

Assume that there exists some Collision Resistant Hash Function (CRHF) HCR(·). We con-

struct a new Hash-Proof System (HPS2) as a tuple of algorithms
(

Gen, H ′pk, H
′
sk

)
such that

the generator drawns x1, y1, x2, y2 ← Zq and then returns pk = (f1 = gx1hy1 , f2 = gx2hy2) , sk =
(x1, y1, x2, y2), and the secret and public-key hash functions work in the following way:

H ′pk (c = (c1, c2) , r, α) = f r1f
HCR(c‖α)·r
2

H ′sk (c = (c1, c2) , α) = c
x1+HCR(c‖α)·x2
1 · cy1+HCR(c‖α)·y2

2

5.2 Revised Cramer-Shoup Cryptosystem

Assume the existence of a public key pk = (pk1, pk2) such that (pk1, sk1) are a keypair
for HPS1, H, and (pk2, sk2) are a keypair for HPS2, H ′. The Revised Cramer-Shoup
cryptosystem consists of the algorithms (Enc′,Dec′) which work in the following way:

Algorithm 3. Enc′pk(m):

1. r ← Zq

2. c ..= (gr, hr) ∈ L

3. h1
..= Hpk1(c, r) ·m

4. h2
..= H ′pk2(c, r, h1)

5. output (c, h1, h2)

Algorithm 4. Dec′sk
(
(c, h1, h2)

)
:

1. if h2 = H ′sk2(c, h1) output
(
h1/Hsk1(c)

)
2. otherwise output ⊥

Lecture 21, Page 5



6 IND-CCA2 Security

6.1 Revisiting the Attack

Consider the attack from earlier, wherein an adversary mangles a ciphertext to generate a
new ciphertext that decrypts to the same value. Under our revised encryption scheme, if
the adversary alters c or m, then the value of h1 changes, as, therefore, does HCR(c‖h1)
(if the latter value does not, then the collision resistance of HCR has been violated). The
adversary now has

h2 = f r1f
r·HCR(c‖h1)
2

and wishes to calculate

h′2 = f r+r
′

1 f
(r+r′)·HCR(c‖h′1)
2

To do this, it must calculate

f
−r·HCR(c‖h1)
2

which implies breaking discrete logarithm to find r. Thus, this attack is now impossible for
any computationally bounded adversary.

6.2 Proof of Strengthened Property 3 for HPS2

Theorem 1. Over all (pk, sk) ← Gen(1n) and for all probabilistic polynomial time adver-
saries A and any (c, c′, α, α′) ← A(1n) such that c = (c1, c2), c′ = (c′1, c

′
2) ∈ L̄ and c 6= c′,(

H ′sk(c, α), H ′sk(c
′, α′)

) c≡ UG2

Proof. Consider the view of a adversary with access to the output of H ′sk(c, α), H ′sk(c
′, α′)

such that c 6= c′ and c‖α does not collide with c′‖α′ under HCR, but c, c′, α, α′ are otherwise
arbitrarily and adversarially chosen. The adversary also has knowledge of the public key,
pk = (f1, f2). We will show that if the four elements of the secret key (x1, y1, x2, y2) are ran-
dom and independent (as they will be if they were produced by Gen), then (f1, f2, H

′
sk(c, α),

H ′sk(c
′, α′)) must also be. First, recall what you already know, but this time in matrix form:

logg




f1

f2

H ′sk(c, α)
H ′sk(c

′, α′)


 =


1 β 0 0
0 0 1 β
r1 r2β r1γ r2βγ
r′1 r′2β r′1γ

′ r′2βγ
′



x1

y1

x2

y2


where

γ = HCR

(
c‖α
)

γ′ = HCR

(
c′‖α′

)
If the matrix (hereafter referred to as A) is invertible, then it is a permutation (i.e. a
1-to-1 function), which implies that if (x1, y1, x2, y2) are random and independent then

Lecture 21, Page 6



(f1, f2, H
′
sk(c, α), H ′sk(c

′, α′)) are as well. A matrix is invertible if and only if it has a
non-zero determinant. The determinant of this matrix is

det(A) =
(
r1r
′
1γ − r1r

′
1γ
′ + r2r

′
1γ − r2r

′
1γ
′ + r1r

′
2γ − r1r

′
2γ
′ + r2r

′
2γ − r2r

′
2γ
′)β2

= (r1 − r2)(r′1 − r′2)(γ − γ′)β2

In our theorem statement we have assumed that c, c′ ∈ L̄; therefore we know that r1 6= r2 and
r′1 6= r′2. We have also assumed that β 6= 0. Due to the Collision Resistance property of HCR,
no computationally bounded adversary can find two inputs such that γ = γ′. Consequently,
for all probabilistic polynomial time adversaries the matrix A will be invertible, which
implies that if the secret key is uniformly and independently chosen, then (f1, f2, H

′
sk(c, α),

H ′sk(c
′, α′)) must be uniform and independent.

6.3 Proof of IND-CCA2 Security for Revised Cramer-Shoup

The proof is exactly the same as the proof of IND-CCA1 security for standard Cramer-
Shoup, except for the logic associated with the third hybrid:

4. H′b3 : When C receives a decryption query for a ciphertext cti = (c, h1, h2), rather than
rejecting the query if h2 6= Hsk2(c, h1), it rejects if c /∈ L. Note that this requires C to
break discrete logarithms, and that in Hb2, if A chooses c /∈ L and manages to guess
Hsk2(c, h1), then it will receive a (nonsense) decryption, whereas in Hb3 its query will
be rejected because c /∈ L, which would allow it to distinguish the two hybrids. Due
to the Strengthened Property 3 of HPS2, no PPT adversary A can find H ′sk2(c, h1),

even if given H ′sk2(c′, h′1) for some other c′, h′1 of its choosing. Therefore Hb2
c≡ H′b3 .

Lecture 21, Page 7


