
CS 7880 Graduate Cryptography November 6, 2017

Lecture 17: Signatures from OWFs, and Identification Schemes

Lecturer: Daniel Wichs Scribe: Xuangui Huang

1 Topics Covered

• Signatures from OWFs

• Identification Schemes

Last time we saw signatures from Trapdoor Permutations in the random oracle model.
This time we will see signatures without the use of the ideally omnipotent random oracle.
We first construct signatures from one-way functions and collision resistant hash functions
using the idea of chain signatures and tree signatures. We will also see signatures from the
discrete log assumption in the next lecture, but before that at the end of this lecture we
will introduce the concept of identification schemes, and Schnorr ID scheme in particular.

2 Signatures from OWFs

We will first construct 1-time secure signature, then improve it to be many-time secure
using chain signatures and tree signatures.

2.1 One-time signature

A One-time signature scheme has the same syntax as we defined for general signature
schemes:

• (pk, sk)← KeyGen(1n), generates the pair of public and private key (pk, sk);

• σ ← Signsk(m), signs the message m using the private key sk;

• b← Verpk(m,σ), verifies the message against its signature using public key.

But the definition of security is changed: the adversary is allowed to perform only one
signature query in the signature game before forging a signature.

2.2 Lamport’s one-time signature scheme

Assume the one-way function exists and f is the one-way function. Then we can construct
the following signature scheme, which is called Lamport’s signature scheme:

• KeyGen(1n): randomly pick x01, x
0
2, . . . , x

0
` ← {0, 1}

n, and x11, x
1
2, . . . , x

1
` ← {0, 1}

n; let
ybi = f(xbi) for all i ∈ {1, 2, . . . , `} and b ∈ {0, 1}, define pk as all the ybi ’s, and sk as
all the xbi ’s.

Lecture 17, Page 1

• Signsk(m): suppose m = (m1, . . . ,m`), output σ = {xmii }i=1,...,`.

• Verpk(m,σ): suppose σ = {σi}i=1,...,`, check if ymii = f(σi) for all i.

The one-time security of this scheme comes from security of one-way function f . Intu-
itively, if there is an adversary that can forge a signature of a fresh message after one query,
we can put the output value y that we want to invert at the coordinate i∗ on which the bit
of the queried message and the forged message are different; then the forged signature on
coordinate i∗ provides the answer. We guess this i∗ and m∗i∗ uniformly at random at the

beginning, set y
m∗
i∗

i∗ to be y and generate other parts of the keys as defined in KeyGen, then
simulate the adversary to get the forged signature σ∗ and output σ∗i∗ . The probability that
we successfully invert f on y is 1

2` times the probability that this adversary forges σ∗ for
m∗, which remains non-negligible, thus contradicting the security of f .

2.3 From one-time to stateful many-time signature: chain signature

Given a one-time signature scheme (KeyGen,Sign,Ver), we want to construct a stateful
signature scheme (KeyGen′,Sign′,Ver′) that is secure in usual sense.

The first attack on this problem is by using “Chain signatures”:

1. At the beginning, use KeyGen to generate (pk0, sk0);

2. To sign the first messagem1, use KeyGen to generate (pk1, sk1), set σ′1 ← Signsk0(m1, pk1),
and the signature is σ1 = ((m1, pk1), σ

′
1);

3. To sign the second messagem2, use KeyGen to generate (pk2, sk2), set σ′2 ← Signsk1(m2, pk2),
then the signature is σ2 = (σ1, (m2, pk2), σ

′
2);

4. (pk3, sk3)← KeyGen(1n), σ′3 ← Signsk2(m3, pk3), σ3 = (σ1, σ2, (m3, pk3), σ
′
3);

5. (pk4, sk4)← KeyGen(1n), σ′4 ← Signsk3(m4, pk4), σ4 = (σ1, σ2, σ3, (m4, pk4), σ
′
4);

6. ...

Generally speaking, on each message, generate a new key pair, use the previous private key
to sign the message and the new public key, then use this signature, the new public key,
and all the previous signatures as the signature. On each chained signature σ, starting at
i = 0 the verifier can verify mi+1 and pki+1 using pki, getting public key pki+1 to continue
its verification along the chain.

Security comes from the fact that for each message we generate a new pair of keys. More
formally, if there is a PPT A that can forge the signature σ∗ for fresh message m∗ after t
signature queries with non-negligible probability, we will construct a PPT A′ that breaks
the one-time security of the original scheme. We have

σ∗ = (σ∗1, . . . , σ
∗
t , (m

∗, pk∗), σ∗′t+1),

but note that A may forge the chain so it is possible that σ∗i 6= σi for some i ≤ t. Denote
(m∗i , pk

∗
i) as the message and public key pair that σ∗ contains for round i. Let i∗ ≤ t be

the largest number such that we have σ∗i = σi for all i ≤ i∗. Define A′ as follows:

Lecture 17, Page 2

1. Receive pk from Challenger;

2. Use KeyGen to generate (pki, ski) for all i 6= i∗, set pki∗ = pk;

3. Simulate the interaction of A and Challenger of the t-time signature game using the
above (pki, ski)’s, except that at the i∗+1 round (if i∗ 6= t), when A asks the Challenger
to sign (mi∗+1, pki∗+1), ask the Challenger in one-time signature game to sign it and
return the signature to A;

4. Get the forged message m∗ and the forged signature σ∗ from A;

5. • If i∗ 6= t: extract (m∗i∗+1, pk
∗
i∗+1) and its signature from σ∗, send them as the

forged message and signature to the Challenger of one-time signature game;

• Otherwise: extract (m∗, pkt+1) and its signature σ′t+1 from σ∗. send them to the
Challenger.

Correctness of this reduction is obvious: if i∗ = t, as m∗ is the (t + 1)-th message and we
set pkt to be pk, A must forge Signsk(m

∗, pkt+1) in σ∗; otherwise, as we set pki∗ to be pk,
A must forge Signsk(m

∗
i∗+1, pk

∗
i∗+1).

To get the correct i∗, simply guess it uniformly at random at the beginning of A′, and
the success probability remains non-negligible.

There are two downsides of this scheme:

• it’s stateful: the signer has to remember all the previous messages and signatures.

• if the length of keys depends on the length of messages, as in Lamport’s scheme, then
we can sign only finite rounds: we have to choose pk0 ahead of time and pki signs
pki+1 and mi+1, thus the length of pk0 already determines the number of messages we
can sign; more specifically for Lamport’s scheme, we can only sign a logarithmic (of
length of pk0) number of messages, i.e. we need exponential (of number of messages)
length of key.

• the length of signatures grows as the number of messages increases.

2.4 Lamport’s + CRHF, and tree signatures

In this subsection we deal with the second and the third downside.
To decouple the dependence of the length of keys on the length of messages, we can

always use CRHF Hs to hash messages into n-bit strings before signing and verification,
where s is part of the public key. A one-time secure signature scheme remains secure with
this modification; otherwise, either by querying on Hs(m1) and forging Hs(m

∗) we can
break the security of the original scheme, or Hs(m

∗) collides with Hs(m1) thus breaking
the security of Hs, both contradicting our assumptions.

For the chain signature based on Lamport’s scheme, now the total length of public key
we need is only 2n2, no matter how many messages we want to sign. But this method
doesn’t address the third downside: we still need to remember all the previous signatures,
which is an inherent property of chain signatures.

To deal with this problem, we can use the following so-called “tree signatures”.
First we use the following procedure to generate keys:

Lecture 17, Page 3

• Let ` be the length of messages;

• For every binary string α of length ≤ ` including the empty string ε, use KeyGen to
generate key pair (pkα, skα);

• For all binary string α of length ≤ `− 1, define σα ← Signskα(pkα0, pkα1);

• public key is pkε, private key is all the key pairs and σα’s generated.

Intuitively speaking, we have a depth-` complete binary tree, of which each node corre-
sponds to a binary string of length ≤ ` and for all binary string α we have nodes α0 and α1
are children of node α. Each node is also assigned a key pair (pkα, skα), and a signature σα
of the public keys of its two children under its own private key. Then each length-` message
m = m1m2 · · ·m` defines a unique path from root to leaves in this tree: root (node ε), node
m1, node m1m2, ..., till node m.

Note that the size of secrete key is exponential in `. But we can generate all the key
pairs and all the σα’s on the fly. Note that to get σα we have to make sure that both
(pkα0, skα0) and (pkα1, skα1) have been sampled. We can generate them from leaves to root
to satisfy this requirement. Once we generate a new key pair for a new node, we have to
remember it because we cannot sign two different messages using the same private key in
its parent. The total number of things we need to remember is polynomial, because the
total number of queries is polynomial.

Given a message m = m1m2 · · ·m`, its signature is

σ = (Signskm(m),

pk0, pk1, pkm10, pkm11, pkm1m20, pkm1m21, . . . , pkm1m2···m`−10, pkm1m2···m`−11,

σε, σm1 , σm1m2 , . . . , σm1···m`−1
).

Intuitively, along the unique path from root to node m we collect all the signatures assigned
to them, the public keys assigned to them and their siblings, and its signature using private
key skm. It is easy to see that the signature length is polynomial in ` and doesn’t change
if we want to sign more messages.

Correctness comes from the observation that we can use pkα to verify σα for pkα0 and
pkα1, therefore starting from pkε we can verify along the path from root to node m and
then use pkm to verify.

Security comes from the observation that if we forge the signature σ∗ for a fresh message
m∗ = m∗1m

∗
2 · · ·m∗` , then we must forge the signature at some node α along the path from

root to node m∗. Denote σ∗ as

σ∗ = (σ∗′,

pk∗0, pk
∗
1, pk

∗
m∗10

, pk∗m∗11, pk
∗
m∗1m

∗
20
, pk∗m∗1m∗21, . . . , pk

∗
m∗1m

∗
2···m∗`−10

, pk∗m∗1m∗2···m∗`−11
,

σ∗ε , σ
∗
m∗1
, σ∗m∗1m∗2 , . . . , σ

∗
m∗1···m∗`−1

).

In the signature queries, we have already seen some key pairs and σα’s. Let α∗ be the
longest common suffix of m∗ and mi’s among all i, and `∗ = |α∗|. Since m∗ is fresh, we
always have `∗ ≤ ` − 1. Before forging m∗, we have already seen pk0, pk1, pkm∗10, pkm∗11,
pkm∗1m∗20, pkm∗1m∗21, . . . , pkm∗1···m∗`∗0, pkm

∗
1···m∗`∗1, and σε, σm∗1 , σm∗1m∗2 , . . . , σm∗1···m∗`∗ .

Lecture 17, Page 4

But we might still forge them in σ∗. Define `∗∗ ≤ `∗ to be the largest number such that
for all j ≤ `∗∗, we have pkm∗1···m∗j0 = pk∗m∗1···m∗j0

, pkm∗1···m∗j1 = pk∗m∗1···m∗j1
, and σm∗1···m∗j =

σ∗m∗1···m∗j
. That is, we use the true σα’s on the nodes corresponding to the first `∗∗ bits and

use the true pkα’s on the nodes corresponding to the first `∗∗ + 1 bits and their siblings.
Now look at the node m′ = m∗1 · · ·m∗`∗∗+1. Note that (pkm′ , skm′) must have been gener-

ated during the signature queries, because `∗∗ ≤ `∗ and for all j ≤ `∗ both (pkm∗0···m∗j0, skm∗0···m∗j0)

and (pkm∗0···m∗j1, skm∗0···m∗j1) have already been generated by definition.

• If `∗∗ + 1 = `, then m′ = m∗ and we have forged σ∗′ = Signskm′ (m
∗);

• otherwise, what we have forged is σ∗m′ = Signskm′ (pk
∗
m′0, pk

∗
m′1).

In both cases, if we substitute (pkm′ , skm′) by (pk, sk) of the one-time signature game,
then after simulation of this tree signature game we can get a forged signature for the
respected message under (pk, sk), thus breaking the one-time security of the original scheme.
We can receive pk from the Challenger. If `∗∗ + 1 6= `, in the simulation we need to use the
one-time query to the Challenger to get σm′ ← Signsk(pkm′0, pkm′1).

To get the correct m′ we can simply guess which KeyGen sample we use to generate
(pkm′ , skm′) in the tree signature game. There are polynomially many KeyGen samples,
thus the success probability remains non-negligible.

2.5 Further improvement

The scheme given in the previous subsection is still stateful as we need to remember all the
key pairs generated. However, we can use PRF to eliminate the state. More precisely, we
define (pkα, skα) = KeyGen(1n, Fk(α)) for all α including ε, i.e. we use Fk(α) as the random
bits used by KeyGen, where F is some suitable PRF. (As previously defined in this class we
have PRF for strings of the same length for each n, but we can always convert α to distinct
strings that have this property: e.g. |α|α0log `+`−log |α|−|α|.) Then we can get all key pairs
and all σα’s directly using k. Now the private key contains only k.

It is easy to see that after this modification a secure tree signature remains secure;
otherwise we can distinguish Fk from R as oracles by simulating the tree signature game so
that if the oracle is Fk then it simulates the game for this new signature, but if the oracle
is the true random oracle R then it simulates the game for the original tree signature.

Also notice that we only need a weaker notion of one-time security to prove the tree
signature is secure. In the above reduction, after we sample pkm′0 and pkm′1 we can already
query the Challenger on (pkm′0, pkm′1). We can do this even if we postpone our receiving
of pk to set pkm′ after this query because we’re generating them from leaves to root. Thus
the one-time security we need is weaker: the adversary have to query the Challenger before
it gets the public key.

Note that public key also contains s, thus it decides the hash function Hs. A weaker
notion of one-time security means we only need a weaker notion of CRHF to shorten mes-
sages: universal one-way hash functions (UOWHFs). In UOWHF, a hash function is secure
if the attacker cannot get a colliding x′ with non-negligible probability after it first selects
x then gets Hs, which is exactly what we need here.

As UOWHFs can be built from OWFs and PRFs can also be built from OWFs, we can
build the whole scheme using only one-way functions.

Lecture 17, Page 5

3 Identification Scheme

Suppose we want to log in websites: we have to convince those websites that we are who
we are, but we don’t let them learn more. More specifically, we want to interact with them
in a way that after the interaction, they know who we are but they cannot imitate us to
log in other websites. What we need here is the Identification Scheme.

An Identification Scheme is a tuple (KeyGen,P,V) of KeyGenerator, Prover, and Verifier
such that they interact in the following ways:

1. (pk, sk)← KeyGen(1n), Prover P gets pk and sk, Verifier V gets pk;

2. P interacts with V;

3. V output a value b ∈ {0, 1}.

We denote b← Output(P(pk, sk)↔ V(sk)) as the output of this scheme.
We use the “honest verifier” setting here, which means the verifier is honest but curious:

it will act exactly as what it is told to do in the scheme, but it may try to learn more about
the prover from the scheme in order to claim the prover’s identity with other verifiers.
Define V iew(P(pk, sk)↔ V(pk)) as the view of verifier during the interaction.

An Identification Scheme must satisfy the following two properties:

• Correctness: Pr[b = 1] = 1;

• Security: For any PPT adversary A we define the identification game IDGameA(1n)
as follows:

1. Challenger samples (pk, sk)← KeyGen(1n) amd sends pk to A;

2. A sends “next” to Challenger and gets tri ← V iew(P(pk, sk) ↔ V(pk)), repeat
for any number of times as A wants;

3. A then interacts with V(pk);

4. the output of this game is the output of V at the end of their interaction.

Then an identification scheme is secure if for all PPT A, Pr[IDGameA(1n) = 1] =
negl(n).

3.1 Schnorr ID Scheme

Below we will see an identification scheme based on the discrete log assumption. We
will see the proof of its security in the next lecture and learn how to convert any ID
scheme with some specific internal structures to a signature scheme.

The Schnorr ID Scheme is as follows:

1. KeyGen: (G, g, q)← GroupGen(1n), where q is a prime, g is the generator of order
q in G; x← Zq, set h = gx, pk = h, sk = x;

2. Prover P samples r ← Zq and sends a = gr to Verifier V;

Lecture 17, Page 6

3. Verifier V samples c← Zq and sends it to P;

4. P sends z = r + cx to V;

5. V outputs 1 iff gz = ahc.

Lecture 17, Page 7

