1 Topics Covered

- Fundamentals of field arithmetic
- Introduction to modular arithmetic
- Group theory

2 Fundamentals of Field Arithmetic

Given two integers a, b the cost of performing standard operations is as follows:

- $a + b, a \times b, \frac{a}{b}, a \mid b$: poly in input size.
- a^b: result of computation is exponential in input size, so trivially there exists no algorithm to perform exponentiation in poly time.
- $\gcd(a, b)$:
 1. if $a = b$, output b
 2. else ‘divide’ b by a to obtain k, r such that $a = k \cdot b + r$ where $r < b$, and output $\gcd(b, r)$.

Euclid’s algorithm (above) computes the greatest common divisor of a and b. As $\frac{b+r}{2b+r} \leq \frac{2}{3}$, there are at most $\log_2 (a+b)$ iterations, keeping the overall running time polynomial in the inputs.

- $\text{egcd}(a, b) = (x, y)$ such that $a \cdot x + b \cdot y = \gcd(a, b)$: can be computed in poly time by extending Euclid’s algorithm, as described below.
 \[
 \text{egcd}(a, b) :
 \begin{align*}
 &1. \text{ if } a = b, \text{ output } (1, 0) \\
 &2. \text{ else ‘divide’ } b \text{ by } a \text{ to obtain } k, r \text{ such that } a = k \cdot b + r \text{ where } r < b, \text{ and compute }
 &\quad (x', y') = \text{egcd}(b, r).
 &3. \text{ Output } (y', x' - y' \cdot k).
 \end{align*}
\]
3 Modular Arithmetic

The set of integers modulo N is denoted \mathbb{Z}_N. Given $a, b \in \mathbb{Z}_N$, computing $(a + b) \pmod{N}$ and $(a \cdot b) \pmod{N}$ is straightforward to do in poly time.

Given $a \in \mathbb{Z}_N$, the ‘inverse’ of a is denoted a^{-1}, and by definition $a \cdot a^{-1} = 1 \pmod{N}$.

Theorem 1 An $a \in \mathbb{Z}_N$ has an inverse if and only if $\gcd(a, N) = 1$.

Proof: For a given $a \in \mathbb{Z}_N$, denote its inverse x. By definition, $a \cdot x = 1 \pmod{N}$. This implies that $\exists y$ such that $a \cdot x = 1 + N \cdot y$. This gives proves the existence of integers (x, y) such that $a \cdot x - N \cdot y = 1$, which implies that $\gcd(a, N) = 1$. □

Exponentiation. Given $a, b \in \mathbb{Z}_N$, computing $a^b \pmod{N}$ can be done in poly time via the ‘repeated square’ algorithm. Let the number of bits to represent an element in \mathbb{Z}_N be $n = \log_2 N$. The technique is to parse b into bits $b_0 b_1 \cdots b_n$, and then make use of the observation that $b = \sum_{i \in [n]} 2^i \cdot b_i$ to simplify the computation as follows:

$$a^b = a^{\left(\sum_{i \in [n]} 2^i \cdot b_i \right)} = \prod_{i \in [n]} a^{2^i \cdot b_i}$$

The algorithm itself follows easily, as described below.

exp$_N(a, b)$:
1. Parse b into bits $b_0 b_1 \cdots b_n$.
2. Set $c = 1$, and $d = a$.
3. If $b_0 = 1$, update $c = a$
4. For $i \in [2, n]$: Update $d = d^2$. If $b_i = 1$, then update $c = c \cdot d \pmod{N}$
5. Output c.

4 Groups

A group (G, \ast) characterized by a set of elements G and an operator \ast, satisfies the following properties:

1. **Closure:** $\forall a, b \in G$, we have that $a \ast b \in G$.
2. **Associativity:** $\forall a, b, c \in G$, we have that $(a \ast b) \ast c = a \ast (b \ast c)$.
3. **Identity:** $\exists e \in G$ such that $\forall a \in G$, $a \ast e = e \ast a = a$.
4. **Inverse:** $\forall a \in G$, $\exists a^{-1} \in G$ such that $a \ast a^{-1} = a^{-1} \ast a = e$.

It’s easy to see that $(\mathbb{Z}_N, +)$ is a group with identity element $e = 0$. However (\mathbb{Z}_N, \times) is not a group (as 0 does not have an inverse for any N), and may not be a group for every N even if zero is omitted. This is because inverses exist only for $a \in \mathbb{Z}_N$ where $\gcd(a, N) = 1$. We instead work with group (\mathbb{Z}_N^*, \times), where $\mathbb{Z}_N^* = \{a : a \in \mathbb{Z}_N, \gcd(a, N) = 1\}$.
Group order. The order $\varphi(N)$ of N is given by the size of the group \mathbb{Z}_N^*, ie. $\varphi(N) = |\mathbb{Z}_N^*|$. It is easy to see that for a prime p, $\varphi(p) = p - 1$.

Subgroups. If $H \subseteq G$, we call $H = (\mathbb{H}, \ast)$ a subgroup of $G = (\mathbb{G}, \ast)$ if (\mathbb{H}, \ast) is also a group. This is denoted $H \subseteq G$.

Theorem 2 Lagrange’s Theorem. Let $H = (\mathbb{H}, \ast)$ and $G = (\mathbb{G}, \ast)$ be groups. If $H \subseteq G$, then $|H|$ divides $|G|$.

Proof: Let $\mathbb{H} = \{h_1, h_2, \ldots, h_{|\mathbb{H}|}\}$. Pick $g_1 \in \mathbb{G}$, $g_1 \notin \mathbb{H}$ and enumerate $g_1 \mathbb{H} = \{g_1 \cdot h_1, g_1 \cdot h_2, \ldots, g_1 \cdot h_{|\mathbb{H}|}\}$. Continue to pick $g_i \in \mathbb{G}$, $g_i \notin \mathbb{H} \cup \{g_1, g_2, \ldots, g_{i-1}\}$ and generate $g_i \mathbb{H} = \{g_i \cdot h_1, g_i \cdot h_2, \ldots, g_i \cdot h_{|\mathbb{H}|}\}$. Note that $g_i \mathbb{H}$ and $g_j \mathbb{H}$ are completely disjoint sets when $i \neq j$. This can be shown as follows: consider g such that $g \in g_i \mathbb{H}$ and $g \in g_j \mathbb{H}$. Therefore $g_i \cdot h' = g_j \cdot h'' = g$ for some $i', j' \in [|\mathbb{H}|]$. This gives us $g_i = g_j \cdot h'' h'^{-1}$. Now, any element in $g_i \mathbb{H}$ can be interpreted as $g_i \cdot h_k = g_j \cdot h_{j'} \cdot h^{-1}_{i'} \cdot h_k = g_j \cdot h_{k'}$ for some k'. This proves that if $g_i \mathbb{H}$ and $g_j \mathbb{H}$ have even one common element, then $i = j$. As all the $g_i \mathbb{H}$ sets are therefore disjoint, once we exhaust all possible $g_i \in \mathbb{G}$ we will have that $\sum_{i \in [n]} |g_i \mathbb{H}| = |\mathbb{G}|$ for some integer n.

Corollary 1 If p is prime, then $\forall a \in \mathbb{Z}_p^*$, $a^{p-1} = 1 \pmod{p}$.

Cyclic Groups. Let $G = (\mathbb{G}, \ast)$. Consider $g \in \mathbb{G}$. Denote $\langle g \rangle = \{g^0, g^1, \ldots, g^{q-1}\}$ as the subgroup ‘generated’ by g. We say that G is cyclic if $\langle g \rangle$ is cyclic, ie. $g^q = g^0 = 1$. Note that $g^i \cdot g^j = g^{i+j} \pmod{q}$. The size q of $\langle g \rangle$ is the order of the group.

Proof: (Postponed proof of Fermat’s Little Theorem, see Corollary 1). $|\langle a \rangle| = q \mid (p-1)$, so $a^{p-1} = a^q = 1 \pmod{p}$.

Also observe that $a^b \pmod{N} = a^b \pmod{\varphi(N)} \pmod{N}$, so $a^b = a^{\varphi(N)k+b} \pmod{\varphi(N)}$. Note that $\langle g \rangle$ is isomorphic to \mathbb{Z}_q, ie. $\langle g \rangle \cong \langle \mathbb{Z}_q \rangle$.

Theorem 3 If p is prime, then (\mathbb{Z}_p^*, \times) is a cyclic group. ie. $\exists g$ such that $\mathbb{Z}_p^* = \{1, g, g^2, \ldots, g^{p-1}\}$.