Problem 1 (Fun with PRFs) 15 pts

Let \(\{F_k : \{0,1\}^n \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, k \in \{0,1\}^n} \) be a PRF family with \(n \)-bit key, \(n \)-bit input and \(n \)-bit output. For each of the following candidate constructions \(F' \) say whether \(F' \) is also necessarily a PRF. If so, give a proof else give a counter-example (if PRFs exist, then there exists a PRF \(F \) such that \(F' \) is not a PRF). Some of the constructions \(F' \) have different input/output lengths than \(F \).

1. \(F'_k(x) := F_k(x) || F_k(x + 1) \) where \(|| \) denotes string concatenation and addition is modulo \(2^n \).
2. \(F'_k(x) := F_k(x || 0)|| F_k(x || 1) \) where \(x \in \{0,1\}^{n-1} \).
3. \(F'_k(x) := F_k(x) \oplus x \) where \(\oplus \) denotes the bit-wise XOR operation.
4. \(F'_k(x) := F_k(x) \oplus k \).
5. \(F'_k(x) := F_s(k) \).

Problem 2 (CHRHF are OWFs) 10 pts

Let \(\{H_s : \{0,1\}^{2n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}, s \in \{0,1\}^n} \) be a collision resistant hash function family that compresses \(2n \) bits to \(n \) bits. Show that \(H_s \) is a seeded one-way function in the following sense: for all PPT \(A \) we have

\[
\Pr[H_s(x') = y : s \leftarrow \{0,1\}^n, x \leftarrow \{0,1\}^{2n}, y = H_s(x), x' \leftarrow A(s,y)] = \text{negl}(n).
\]

Note that in the above there is no requirement that \(x' \neq x \); the adversary \(A \) wins if it finds any pre-image of \(y \).

Problem 3 (CPA Security - Alternate Definition) 10 pts

Let \((\text{Enc}, \text{Dec})\) be a symmetric-key encryption scheme with \(n \)-bit keys and \(\ell(n) \)-bit messages. In class, we gave a definition of CPA security by defining the following experiment \(\text{CPAExp}_A^\text{1}(1^n) \) with a stateful adversary\(^1\) \(A \):

1. Choose \(k \leftarrow \{0,1\}^n \).
2. \(A^{\text{Enc}(k, \cdot)}(1^n) \rightarrow m_0, m_1 \in \{0,1\}^{\ell(n)} \)
3. \(c_b \leftarrow \text{Enc}(k, m_b) \)

\(^1\)The adversary maintains state throughout the experiment and when invoked in each step it remembers what occurred in previous steps
4. \(\mathcal{A}^{Enc(k,:)}(c_0) \rightarrow b' \)

5. Output \(b' \)

We required that \(\text{CPAExp}^0 \approx \text{CPAExp}^1 \) meaning that for all PPT \(\mathcal{A} \) we have

\[
| \Pr[\text{CPAExp}_A^0(1^n) = 1] - \Pr[\text{CPAExp}_A^1(1^n)] | = \text{negl}(n).
\]

Intuitively, the above definition says that encryptions of any two messages \(m_0, m_1 \) are indistinguishable even given access to the encryption oracle \(\text{Enc}(k,:) \).

Show that the above definition implies the following alternate definition of CPA security. Define \(\text{Enc}^b(k, m_0, m_1) = \text{Enc}(k, m_b) \) for \(b \in \{0, 1\} \). Then for all PPT \(\mathcal{A} \) we have:

\[
\Pr[\mathcal{A}^{\text{Enc}^0(k,:)}(1^n) = 1] - \Pr[\mathcal{A}^{\text{Enc}^1(k,:)}(1^n) = 1] = \text{negl}(n)
\]

where \(k \leftarrow \{0, 1\}^n \) is chosen uniformly at random.

Intuitively the alternate definition says that \(\mathcal{A} \) cannot distinguish between having access to an oracle \(\text{Enc}^0(k,:) \) that, when given as input two message \(m_0, m_1 \in \{0, 1\}^{\ell(n)} \), always encrypts \(m_0 \) vs. an oracle \(\text{Enc}^1(k,:) \) that always encrypts \(m_1 \). The adversary \(\mathcal{A} \) can call the oracle as many times as it wants.

(Optional: show that the two definitions are actually equivalent, by also showing that the alternate definition implies the original.)

Problem 4 (Yet Another Attempt at CPA Definition) 5 pts

Let us modify the definition of CPA security by taking the experiment \(\text{CPAExp}_A^b(1^n) \) defined in the previous problem and modifying step 2 so that the adversary does not get access to the encryption oracle when choosing the messages \(m_0, m_1 \). That is, step 2 becomes:

2. \(\mathcal{A}(1^n) \rightarrow m_0, m_1 \in \{0, 1\}^{\ell(n)} \)

Show that this modified definition is weaker than the original. In other words, show that assuming pseudorandom functions exist, you can construct a contrived scheme which satisfies the modified definition but does not satisfy the original definition.

Problem 5 (Better Collision Resistance from DL) 10 pts

Let \((\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^n)\) be a group generation algorithm that generates a cyclic group \(\mathbb{G} = \langle g \rangle \) with generator \(g \) of order \(|\mathbb{G}| = q \) where \(q \) is a prime. In class we showed that, under the discrete log assumption, \(H_{g,h}(x_1, x_2) = g^{x_1} h^{x_2} \) is a collision resistant hash function mapping \(\mathbb{Z}_q^2 \rightarrow \mathbb{G} \). Let’s define a much more compressing function that maps \(\mathbb{Z}_q^m \rightarrow \mathbb{G} \) for any \(m \) as follows:

\[
H_{g_1, g_2, \ldots, g_m}(x_1, \ldots, x_m) = \prod_{i=1}^{m} g_i^{x_i}
\]

PS2, Page 2
where \(g_1, \ldots, g_m\) are random group elements. Show that, under the discrete log assumption, the above is a collision resistant hash function meaning that for all PPT \(A\):

\[
\Pr \left[\begin{array}{c}
\bar{x} \neq \bar{x}' \in \mathbb{Z}_q^m \\
H_{\bar{g}}(\bar{x}) = H_{\bar{g}}(\bar{x}')
\end{array} : \begin{array}{c}
(\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^n) \\
\bar{g} = (g_1, \ldots, g_m) \leftarrow \mathbb{G}^m \\
(\bar{x}, \bar{x}') \leftarrow A(\mathbb{G}, g, q, \bar{g})
\end{array} \right] = \text{negl}(n)
\]

Hint: given a discrete log challenge \(g, h = g^x\) where your goal is to find \(x\), define \(g_i = g^{a_i} h^{b_i}\) for random \(a_i, b_i \leftarrow \mathbb{Z}_q\).

Problem 6 (Playing with ElGamal Ciphertexts) 5 pts

Let \((\mathbb{G}, g, q) \leftarrow \text{GroupGen}(1^n)\) be a group generation algorithm that generates a cyclic group \(\mathbb{G} = \langle g \rangle\) with generator \(g\) of order \(|\mathbb{G}| = q\) where \(q\) is a prime.

Recall that the ElGamal encryption scheme has public key \(pk = (g, h = g^x)\) and \(sk = x\). The encryption procedure computes \(\text{Enc}(pk, m) = (g^r, h^r \cdot m)\) where \(r \leftarrow \mathbb{Z}_q\).

- Given a public key \(pk\) and an ElGamal ciphertext \(c\) encrypting some unknown messages \(m \in \mathbb{G}\) show how to create a ciphertext \(c'\) which encrypts the same message \(m\) under \(pk\) but with fresh independent randomness (i.e., given \(c\), the ciphertexts \(c'\) should have the same conditional distribution as a fresh encryption of \(m\) under \(pk\)).

- Show that given a public key \(pk\) and any two independently generated ElGamal ciphertexts \(c_1, c_2\) encrypting some unknown messages \(m_1, m_2 \in \mathbb{G}\) respectively under the public key \(pk\), we can efficiently create a new ciphertext \(c^*\) encrypting \(m^* = m_1 \cdot m_2\) under \(pk\) without needing to know \(sk, m_1, m_2\).