1 Topic Covered

- Hard core Predicate
- Goldreich-Levin Theorem

2 Hard Core Predicate

We are going to provide two definitions of hard core predicate and show that the two definitions are equivalent:-

Definition 1 [Indistinguishability] A polynomial time function $hc : \{0,1\}^* \rightarrow \{0,1\}$ is a hard core predicate of f if $(f(x), hc(x)) \approx (f(x), b)$ where $x \leftarrow \{0,1\}^n, b \leftarrow \{0,1\}$

Now one might ask whether there exists a hard core predicate for every One-Way Function (OWF)? There is a good news and a bad news to this question. At first, let us reveal the bad news. There is no single function hc which is a hard core predicate for every OWF. Because if f is a OWF then $f'(x) = (f(x), hc(x))$ is also a OWF but hc is not a hard core predicate for f'. But the good news is that given any one-way function f we can construct a new one-way function g and a hard-core predicate for g.

Now we present an alternative definition of hard core predicate which is easier to work with.

Definition 2 [Unpredictability] A polynomial time function $hc : \{0,1\}^* \rightarrow \{0,1\}$ is a hard core predicate of f if \forall PPT “predictor” P

$$Pr[P(f(x)) = hc(x) : x \leftarrow \{0,1\}^n] \leq 1/2 + \text{negl}(n)$$

This definition means that an adversary can’t do much better in predicting $hc(x)$ than simply guessing a random bit.

Lemma 1 Indistinguishability implies Unpredictability.

Proof: We prove that if hc does not satisfy unpredictability than it does not satisfy indistinguishability.

Assume \exists PPT “predictor” P such that $Pr[P(f(x)) = hc(x)] \geq 1/2 + \varepsilon(n)$. Define a distinguisher D via

$$D(y,b) = \{\text{If } P(y) = b, \text{ output 1, else output 0}\}$$
Then
\[
\Pr[D(f(x), hc(x)) = 1] - \Pr[D(f(x), b) = 1] \geq \frac{1}{2} + \varepsilon(n) - \frac{1}{2} = \varepsilon(n)
\]
where all probabilities are over \(x \leftarrow \{0,1\}^n, b \leftarrow \{0,1\}\).

So if we can predict with non-negligible advantage \(\varepsilon\), then we can distinguish by non-negligible advantage \(\varepsilon\).

\[\square\]

Lemma 2 Unpredictability implies indistinguishability.

Proof: We prove that if \(hc\) does not satisfy indistinguishability then it does not satisfy unpredictability. Suppose \(\exists\) PPT “distinguisher” \(D\) and \(\varepsilon(n) \neq negl(n)\) such that
\[
|\Pr[D(f(x), hc(x)) = 1] - \Pr[D(f(x), b) = 1]| \geq \varepsilon(n)
\]
where \(x \leftarrow \{0,1\}^n, b \leftarrow \{0,1\}\).

Without loss of generality, we can remove the absolute value of the above equation by potentially flipping the output bit of \(D\) to ensure that the difference is positive. In slightly more detail, we know that \(|\Pr[D(f(x), hc(x)) = 1] - \Pr[D(f(x), b) = 1]| > 1/n^c\) for some constant \(c\) and infinitely many \(n\). Therefore either \(\Pr[D(f(x), hc(x)) = 1] - \Pr[D(f(x), b) = 1] > 1/n^c\) for infinitely many \(n\) or \(\Pr[D(f(x), hc(x)) = 0] - \Pr[D(f(x), b) = 0] > 1/n^c\) for infinitely many \(n\). In the latter case, we can flip the output bit of \(D\).

Define
\[
P(y) = \{\text{Choose } b \leftarrow \{0,1\} : \text{ If } D(y, b) = 1, \text{ output } b, \text{ else } \overline{b}\}
\]

First note that:
\[
\Pr[D(f(x), b) = 1] = \Pr[D(f(x), b) = 1, b = hc(x)] + \Pr[D(f(x), b) = 1, b = \overline{hc}(x)]
\]
\[
= \frac{1}{2}(\Pr[D(f(x), hc(x)) = 1] + \Pr[D(f(x), \overline{hc}(x) = 1])
\]
\[
\Rightarrow \Pr[D(f(x), \overline{hc}(x) = 1] = 2\Pr[D(f(x), b) = 1] - \Pr[D(f(x), hc(x)) = 1]
\]

This implies
\[
\Pr[P(f(x)) = hc(x)] = \Pr[D(f(x), hc(x)) = 1, b = hc(x)] + \Pr[D(f(x), hc(x)) = 0, b = \overline{hc}(x)]
\]
\[
= \frac{1}{2}(\Pr[D(f(x), hc(x)) = 1] + \Pr[D(f(x), \overline{hc}(x) = 0])
\]
\[
= \frac{1}{2}(\Pr[D(f(x), hc(x)) = 1] + 1 - 1 - \Pr[D(f(x), \overline{hc}(x) = 1])
\]
\[
= \frac{1}{2} + \frac{1}{2}(\Pr[D(f(x), hc(x)) = 1] - \Pr[D(f(x), \overline{hc}(x) = 1])
\]
\[
= \frac{1}{2} + \frac{1}{2}(2\Pr[D(f(x), b) = 1] - \Pr[D(f(x), hc(x)) = 1])
\]
\[
= \frac{1}{2} + \varepsilon(n)
\]
where the second to last line follows by substituting for \(\Pr[D(f(x), \overline{hc}(x) = 1]\) using the previous derivation.

\[\square\]
3 Goldreich Levin Theorem

Theorem 1 If f is a one way function, then $g(x, r) = (f(x), r)$ is also a one way function and $hc(x, r) = \langle x, r \rangle = \sum (x_i \cdot r_i) \pmod{2}$ is a hard core predicate of g.

As an alternate interpretation of the Goldreich-Levin theorem, we can think of $hc(x, r) = \langle x, r \rangle$ as a randomized hard core predicate for any one way function f, meaning that $(f(x), r, hc(x, r)) \approx (f(x), r, b)$ where $x, r \leftarrow \{0, 1\}^n, b \leftarrow \{0, 1\}$.

We will finish the proof of the Goldreich-Levin theorem in the next lecture, but let’s start to build some intuition for the proof and see what the main components are.

We do a proof by contradiction. Suppose hc is not a hard core predicate of g, then we wish to show that f is not a one-way function. By the unpredictability definition of hard-core predictates we know that \exists PPT P, $\varepsilon(n) \neq \text{negl}(n)$ such that $\Pr[P(f(x), r) = \langle x, r \rangle] \geq \frac{1}{2} + \varepsilon(n)$

We want to show that we can invert f. We first explore some simple cases that make the proof much easier.

Simple Case 1 : Suppose $\Pr[P(f(x), r) = \langle x, r \rangle] = 1$

The Algorithm to invert OWF f is:-

\begin{align*}
A(y): \\
\text{for } i = 1, ..., n \\
\tilde{x}_i = P(y, e_i) \\
\text{Output } x = (\tilde{x}_1, ..., \tilde{x}_n)
\end{align*}

Here e_i denotes the i'th standard basis vector (all 0 except for 1 in i'th position). The algorithm is correct since we are guaranteed that $\tilde{x}_i = P(y, e_i) = \langle x, e_i \rangle = x_i$.

Simple Case 2 : Suppose $\forall x$ (ie, not only for any random x), $\Pr[P(f(x), r) = \langle x, r \rangle] \geq \frac{1}{2} + \frac{1}{p(n)}$ where the probability is over $r \leftarrow \{0, 1\}^n$. In this case, we have no guarantees on $P(y, e_i)$ giving us correct answers since e_i is not random. Here is a smarter strategy.

Call $b_1 = P(y, r), b_2 = P(y, r + e_i)$ where $r \leftarrow \{0, 1\}^n$.

Output $x_i = b_2 - b_1$

Note: r and $r + e_i$ are individually random but not independent.

If $P(y, r), P(y, r + e_i)$ are both “correct” then: $x_i = b_2 - b_1 = \langle x, r + e_i \rangle - \langle x, r \rangle = \langle x, e_i \rangle$ is also correct. Moreover:

$Pr[\text{Both } b_1 \text{ and } b_2 \text{ are correct}]$

\begin{align*}
= 1 - Pr[\text{At least one of them is wrong}] \\
= 1 - (\frac{1}{4} + \frac{1}{4} - \frac{1}{p(n)} + \frac{1}{4} - \frac{1}{p(n)}) = \frac{1}{2} + \frac{2}{p(n)}
\end{align*}

We have to run the above procedure many times for the i-th bit and take the majority vote. If there are enough votes, majority is correct with high probability (Chernoff bound).
There are two main differences between Simple Case 2 and what we need to prove. Most importantly, our predictor is only correct with probability $1/2 + \varepsilon(n)$ rather than $3/4 + 1/p(n)$. Secondly, in our case the probability is over a random x, r whereas in simple case 2 it’s only over random r for worst-case x. We show how to handle the second problem. Essentially, this is an “averaging argument” which shows that if some probability is high over random x, r then for many x the probability is high over a random r.

Claim 1 \(\forall n \in \mathbb{N}, \exists G_n \subseteq \{0, 1\}^n \) of size \(|G_n| \geq \frac{\varepsilon(n)}{2} \cdot 2^n \) (\(\varepsilon(n) \) is the density) such that \(\forall x \in G_n : \)

\[
\Pr_{r \leftarrow \{0, 1\}^n}[P(f(x), r) = \langle x, r \rangle] \geq \frac{1}{2} + \frac{\varepsilon(n)}{2} \tag{1}
\]

Proof: Define \(G_n = \{ x : \text{equation 1 holds} \} \). Then

\[
\frac{1}{2} + \frac{\varepsilon(n)}{2} \leq \Pr_{x, r}[P(f(x), r) = \langle x, r \rangle] = \Pr_{x, r}[P(f(x), r) = \langle x, r \rangle, x \in G_n] + \Pr_{x, r}[P(f(x), r) = \langle x, r \rangle, x \notin G_n] \\
\leq \Pr_x[x \in G_n] + \frac{1}{2} + \frac{\varepsilon(n)}{2} \\
\Rightarrow \Pr_x[x \in G_n] \geq \frac{\varepsilon(n)}{2} \Rightarrow |G_n| \geq \frac{\varepsilon(n)}{2} \cdot 2^n
\]

So there are many good values x for which $P(f(x), r)$ answers correctly on most r. In the next lecture we will show that this is sufficient to invert $f(x)$. This is essentially a decoding problem which we abstract in the next claim (to be proved next time):

Claim 2 For any \(\delta(n) = \frac{1}{\text{poly}(n)} \) there exists a PPT algorithm \(\text{Dec}^O \) and a polynomial \(p(n) = \text{poly}(n) \) such that for all \(n \in \mathbb{N}, \forall x \in \{0, 1\}^n : \)

If \(\Pr[O(r) = \langle x, r \rangle] \geq \frac{1}{2} + \delta(n) \)
then \(\Pr[\text{Dec}^O(1^n) = x] \geq \frac{1}{p(n)}. \)

(The notation \(\text{Dec}^O \) denotes that \(\text{Dec} \) has oracle access to \(O \) meaning that it can call \(O \) on arbitrary values \(r \).)

We will prove this claim and discuss a connection to coding theory next time.