CS 7880 Graduate Cryptography October 1, 2015

Lecture 6: PRG with 1-bit stretch implies arbitrary stretch
Lecturer: Daniel Wichs Scribe: Andrew Cobb

1 Topic Covered

Creating a PRG in 3 steps:
e Creating a PRG with constant stretch from a PRG with stretch 1
e Creating a PRG with polynomial stretch from a PRG with stretch 1

e Creating a PRG with stretch 1 from a OWF

2 Increasing the stretch of a PRG

2.1 Previous Definitions

DEFINITION 1 We define computational indistinguishability X ~ Y between ensembles
X ={Xu}neny and Y = {Y, }nen as V PPT D, Je(n) = negl(n) such that

[Pr[D(Xy) = 1] — Pr[D(Y,) = 1]| < e(n)

¢
DEFINITION 2 A function G : {0,1}" — {0,1}" is a PRG with stretch £(n) if
G(Un) = Upnyo(n)
where U, denotes the uniform distribution over {0,1}"™. &

2.2 Increasing stretch from 1 to a constant

Theorem 1 If 3 PRG G with 1-bit stretch, then ¥ £(n) = poly(n),3 PRG G* with £(n)-bit
stretch.

Proof:(constant ¢) Using the following construction, we define G*(z¢) = (b1, ba, ... by, x¢)

b1 b2 b@
Typ—

Or in psuedocode:
forie {1, ... ¢}
G (20) = (zi,bi) == G(2i-1)
output (b1, ... by, xy)

Lecture 6, Page 1

To prove this is a PRG, we need to show that if we could break G* then we could break G.

Recall:
Hybrid argument: If X ~Y and Y ~ Z, then X ~ Z.

We will define some hybrid, in-between distributions then show that every step of the
chain is computationally indistinguishable from the next. We define:

H? = GYU,)
by b {0,1)
H) = x; « {0,1}"
(big1, - - be, we) = G ()
HfL = Unte

We want to show that any two adjacent hybrids are indistinguishable. Here’s a
representation of the difference between two:

b1 b2 s bl bz’+1 bi+2 bZ
P e e,
HTiLJrl

by bo c. bl- bi+1 bH_Q bg

44 4 J&Eﬁ,%xe

Claim 1 Vi€ {0,1, ... {— 1}, H' ~ H*

Idea: If we can distinguish between hybrids, we can distinguish between
(Tit1,bi+1) = G(x;) and (241, bi+1) being uniformly random. This is the only difference
between Hybrids H* and H'*+!.

Proof: We define a PPT function f; as
by, ... by« {0,1}"
forje{i+2, ... ¢}

(xj,b5) := G(xj-1)
output (b1, ... by,)}

fi(iz1,bip1) =

We note that the distribution of f;(Uy+1) is related to H, in particular

fi(Uny1) = HYY and
fi(G(Un)) = Hy,

Lecture 6, Page 2

Where “=” means equal distributions.
Last time we claimed that if X ~ Y and f is a PPT function then f(X) ~ f(Y'). By this
claim and assumption of security of G, we know H* ~ H'*'. Now we know

and by the hybrid argument

Which proves G¢ is a PRG.

2.3 Increasing stretch from 1 to a polynomial

However, that proof only works for constant /. We now want to extend the proof to any
polynomial ¢(n). (Side note: we are only dealing with the cases where ¢(n) is computible
in polynomial time.) We use almost the exact same construction as last time, just
changing ¢ to ¢(n):
forie {1, ... {(n)}
G'(x0) = (i b;) = Glwin1)
output (bl, ce bé(n)’ ﬂjg(n))

The analysis is almost the same, but now our hybrids look like:
{H} }nenicfo, ... t(n)—1}
Claim 2 If for all polynomials i(n) such that i(n) € {0, ... £(n) — 1} we have

{HTiL(n) Fnen =~ {Haim(nHl}neN

then
{Hg}neN ~ {Hﬁ(n)}neN

We need this claim because while we could use the hybrid argument for a known number
of ensembles, now the number of hybrid ensembles depends on n.

Proof: Let D be a PPT distinguisher between { H°},cn and {Hﬁ(")}neN.

[Pr[D(HE) = 1] = Pr[D(HL™) = 1]]

£(n)—1
= | Y PuD(H]) =1] - Pr[D(HI) = 1]
=0
£(n)—1
< S |Pe[D(HE) = 1] - PriD(H) = 1]]
1=0

)

< {(n) - |Pr{D(H;) = 1] = Pr[D(HL ™) = 1]

Lecture 6, Page 3

Where i*(n) = argmax 4.
i€f0, .. £(n)—1}
Essentially, we are bounding every term in the sum by the worst case term. Since by

assumption, ‘Pr[D(H,i:(")) =1] — Pr[D(H} ™) = 1]| is negligable, we can conclude
that £(n) - negl(n) is also negligable.]
To prove {Hfl(")}neN = {H,i(nHl}neN would be the same as proving H® ~ H*! in the
fixed ¢ case (Claim 1), but there is an additional difficulty: i(n) may not be efficiently

computable.
There are at least two ways different ways we could deal with this:

1. Use the non-uniform model of computation, which equips a TM with some fixed
lookup value of n. This can also be viewed as a family of algorithms indexed by n.

2. Instead of changing our model of computation, we can make a stronger claim by
using a weaker assumption:

Claim 3 Let I,, be uniform over {0, ... £(n —1)}. If HI» =~ HI»*1 then HO ~ i
Proof: (Similar to Claim 2).
Pr[D(Hy) = 1] — Pr[D(H,") = 1]

«

S

)—1
Pr[D(H}) = 1] - Pr[D(H}) = 1

I
N\g

£(n)—1
= Pr[D(H")=1|1, =i - Pr[DH""T) =11, =

5

@
Il
o

L(n)—1
=((n)-| Y Pr[D(H}")=1,I, =i - Pr[D(H"") = 1,1, = i
= {(n) - |Pr[D(H}") = 1] — Pr[D(H™!) = 1]|
= negl(n)

Now to finish the proof that G¢ is a PRG we need to show H» ~ HIrt1
We change our definition of f; to fr,

pick i « I,
(Tit1,bi+1) == (2,0)

b, ... b, {0,1}"
for je{l,+2, ... ¢}
(25, b5) == G(xj-1)
| output (by, ... by, x0)}

fln(x7 b) -

Lecture 6, Page 4

The rest of the proof is identical to before. Using Claim 3, we know

G"(U,) = Hy = B = U gy

n

Which shows G* is a PRG for any computible I(n) = poly(n).

3 Creating a PRG from a OWF

We’ve shown that PRG’s of larger stretch can be constructed from a PRG with 1-bit
stretch. Now we need to construct such a PRG from a OWF. It’s slightly suprising that this
can be done, since the requirement of uniformity doesn’t seem to be provided by a OWF.

DEFINITION 3 A OWF f:{0,1}* — {0,1}* is a one way permutation (OWP) when both
o [f(@)]= x| Ve
o VuFa, fx)# f(a)

Note that this definition implies that f is one-to-one and onto.

Idea: We construct G = (f(z), hc(z)) for some hc: {0,1}* — {0,1}.

We want to exploit the fact that there is some information in x that is unknown and hard
to recover.

As a first attempt, would defining hc(x) = z[1] produce a good PRG? Unfortunately, this
won’t work for arbitrary OWP f. As a counterexample, let f’ be a OWP, and

f(z) = (z[1], f/(x[2 ... n])). We can show that f’(x) is a valid OWP, since a preimage of
f’ would result in a preimage of f, but G(z) = (f(x), he(z)) would always output equal
first and last bits, so G could be easily distinguished from U, and wouldn’t be a PRG.

To be continued: finding a good hc(z). ..

Lecture 6, Page 5

