
CS 7880 Graduate Cryptography November 12, 2015

Lecture 17:

Lecturer: Daniel Wichs Scribe: Giorgos Zirdelis

1 Topics Covered

• Signatures from TDP in RO model

• Signatures from CRHF and OWFs

• Chain based signatures

• Tree based signatures

2 Signatures from TDP in the RO model

The signature scheme from trapdoor permutations in the RO model is defined succinctly
as follows:

• A pair of keys (VK, SK) which is the same as with trapdoor permutations just by
setting VK = PK.

• sign(SK,m) = InvSK(RO(m))

• verify(VK,m, σ): RO(m) = fPK(σ) with fPK : DPK → DPK and RO : {0, 1}∗ → DPK.

To prove security, we first define a signature game, namely SigGameA(n) with n being
the security parameter. In this game, a PPT adversary A is allowed to make queries to the
random oracle and to the signing oracle. after that, he must come up with a new message
m? and a siganture ß for that message. A pictorial view of the game is given below:

A

VK

zj

yj
yj = RO(zj)

mi

σi
σi = sign(mi)

m?, σ?

Figure 1: SigGameA(n).

Lecture 17, Page 1

A wins (or outputs 1) iff m? 6∈ mi and RO(m?) = fPK(σ
?). We note that the adversary

has access to the Random Oracle only by querying it.
Before we continue we make a couple of simplifying assumptions for which A maintains

the same success probability and we can always convert an adversary to one that satisfies
these assumptions:

1. A makes exactly q = q(n) distinct queries to the Random Oracle

2. A always queries RO on mi and m?

Our goal it to use an attacker A that can win SigGameA(n) with some non-negligible
probability ε(n), to create an attacker B that inverts the trapdoor permutation with non-
negligible probability. We do this with a reduction. The usual trapdoor permutation
security game is given below:

B

PK, y?

x?

Figure 2: The trapdoor permutation game.

B wins (or outputs 1) iff fPK(x
?) = y?. PK is a random public key of the trapdoor

permutation and y? is a random value from DPK.
In the reduction, B has to give the input to A (or play SigGameA(n) with) as A expects

it to be. The first thing that B does it to give A the key PK. After that, there are two types
queries that B must answer to A: random oracle and signature queries. While we will see
in detail how B answers these queries there is a subtle point here. At some point B has to
give A the image he wants to invert, i.e. y?. He has to do that when A queries the message
m? on the random oracle. The problem is that B does not know when A will do that. So
what is the best strategy for B here? To make a guess! To formalize this a bit more, we
define a new SigGame′A(n) where we pick at random a query index from 1 through q and
now the probability of B winning the game also depends on guessing correct when A will
query m? on the random oracle, which essentially makes it more difficult for B to do so.
We denote with red color the additions on the new SigGame′A(n) game that is illustrated
below:

Lecture 17, Page 2

j? ← [q]

The ad-
versary B
uses A as a
subroutine

PK, y?

x?

B wins (or outputs 1) iff fPK(x
?) = y? ∧ j? ← [q]

Figure 3: SigGame′A(n).

The probability of B winning SigGame′A(n) is,

Pr[SigGame′A(n) = 1] = Pr[SigGameA(n) = 1] · Pr[j? is correct|SigGameA(n) = 1] =
ε(n)

q
.

This follows from the fact that j? is random and indepentent of SigGameA(n) and also A
does not know its value, hence Pr[j? is correct|SigGameA(n) = 1] = Pr[j? is correct] = 1/q.
We assumed that the winning probability ε(n) of A for SigGame′A(n) is non-negligible,
therefore the probability of B winning the game is also non-negligible. Next, we give in
detail how B works in steps (i.e. the reduction):

1. Choose j? ← [q]

2. Set VK = PK

3. On a RO query zj :

(a) if j 6= j?:

{
xj ← DPK

output yj = fPK(xj)

(b) if j = j?: output yj = y?

4. On sign query mi = zj :

(a) if j 6= j?: output xj

(b) if j = j?: quit (or output something bogus)

5. Output x? = σ?

Some observations are in order.

• There is no RO in this game.

Lecture 17, Page 3

• Steps 3 and 4 are repeated for a total of q times.

• At step 3(a) xj is chosen at random therefore yj = fPK(xj) is also random. We store
the pairs (xj , yj) because we need them at step 4. The same holds for 3(b), because
y? is chosen at random.

• At step 4(a) we know how to answer the sign queries, because at step 3 we chose first
the xj and the yj . Note that we have assumed that before A make a sign query, he
first makes a RO query on the same message (moce precisely, he makes a query to
what he believes to be a RO).

By the previous analysis is that the winning probability of B is:

Pr [B(PK, y?) = x? : (PK, SK)← Gen(1n), x? ← DPK, y
? ← fPK(x

?)] =
ε(n)

q

3 Signatures from Collision-Resistant Hashing (and OWFs)

A simple start is to do one-time signatures. In that scheme the game is the same as
SigGameA(n) but now the adversary is restricted to making only one query before he submits
his forgery.

3.1 A construction from one-way functions

Lamport’s one time signature scheme.
Let f be a OWF. The KeyGen(1n) generates the following secret and verification keys with
2` values each:

SK =

[
x0,1, x0,2, . . . , x0,`
x1,1, x1,2, . . . , x1,`

]
where xb,i ← {0, 1}n, b ∈ {0, 1} and i ∈ [`],

VK =

[
y0,1 = f(x0,1), y0,2 = f(x0,2), . . . y0,` = f(x0,`)

. yb,i = f(xb,i), . . .

]
In order to sign a message m we look at the bits of the message and we output the

corresponding parts of SK. If the i-th bit of m is 0 we output x0,i else we output x1,i, i.e.
sign(SK,m) = (xmi,i)i=1,...,` where m ∈ {0, 1}`.

To verify a signature on a message m we check bit by bit if the signature is indeed the
output of f on the message bits, i.e. verify(VK,m) : check if f(xmi,i) = ymi,i for all i ∈ [`].

The security of this scheme follows from the security of OWF. The adversary can see
the signature of a message he chooses, but when he submits his forged message it must
differ at least on one bit from the messages he chose. For that different bit, the adversary
has to invert the OWF f on its relevant input from the secret key, in order for his message
to have a valid signature.

Note that this scheme is inefficient because each entry in SK is an n-bit string and the
VK can be used only for one message. Also the key sizes are proportional to the message
length.

Lecture 17, Page 4

We can use this one-time signature scheme to sign arbitrary long messages in {0, 1}∗.
We do this by using a CRHF Hs : {0, 1}∗ → {0, 1}` to create an `-bit digest of the message
and then sign the digest.

As for the security of this scheme let the adversary pick a messagem and see its signature.
Now he picks a message m?. Either Hs(m) 6= Hs(m

?) and sign(Hs(m)) = sign(Hs(m
?)) and

the adversary breaks the one-time signature security or Hs(m) = Hs(m
?) and the adversary

finds a collision.

4 A chain-based signature scheme

We give a short description of a scheme that allows us to sign multiple messages by using a
one-time message signature scheme. Also the signing algorithm is now stateful, that is the
algorithm has a state which gets updated after each message it signs.

We start by choosing a verification and singing key:cb VK0, SK0. The only key that is
public and identifies the signing party is VK0. The signature for a messagem1 is computed as
σ1 = sign(SK0, (m1,VK1)) where (VK1, SK1) is a fresh key pair we choose. To sign a message
m2 we do the same thing, we choose a key pair (VK2, SK2) and create σ2 = (SK1, (m2,VK2)),
and so on and so forth. That is, before we sign each message mi we choose a new key pair
(VKi, SKi) and create σi = sign(SKi−1, (mi,VKi)). Notice that we keep the whole chain, i.e.
all key pairs and signatures from previous steps. In a way, our state at each step is to know
at which part of the chain we are.

Why is this scheme secure? The adversary can see all the signatures of the chain. For
him to break this scheme, he has to forge a message and signature after he sees exactly
one message and signature under a key pair. Therefore, we still rely on the security of the
underlying one-time signature scheme.

To check a signature down the chain, e.g. σi, we start for the top of the chain and verify
every signatures from 1 to i.

The downside with this scheme is that chain grows proportional to the messages we sign.
Morover, to send a signature σi of a message mi we need to send all the previous signatures
for i = 1, . . . , i− 1.

5 Tree-based signatures

We can do a lot better from the previous scheme in terms of size for the signatures with a
tree based construction, while remain again stateful. In addition we won’t have to send all
the previous signatures for each new message we sign.

Let the messages be in {0, 1}n. As we previously saw, if the message is bigger than n
bits he can sign an n-bit hash of the message. The idea is to have a complete binary tree
T of height n. While T has 2n leaves and we cannot store it, we will store parts of it. We
associate each node of T with a key pair of signing and verification key, and a signature.
The root node is associated with (VK0,SK0) and VK0 is the verification key of the whole
scheme, i.e. everyone knows VK0.

Lecture 17, Page 5

VK0,SK0

VKx,SKx

...
...

VKx′ ,SKx′

...
...

Figure 4: Tree-based signatures.

The root node (VK0, SK0) is associated with signature σ0 = sign(SK0, (VKx,VKx′)).
That is, at every level the parent node signs the two verification keys of its two child nodes.
Again, let us note that is the structure we want to maintain, we don’t store all the signatures
and keys.

Since the messages are n-bit strings, for each message we follow a path from the root to
some leaf. If the i-th bit is 0 by convention we choose the left child node on the i+ 1 tree
level, otherwise we choose the right one. We output the signature we get when we reach a
leaf, i.e. the signature of the parent of the leaf that corresponds to the message we want to
sign.

To verify, we start from the root and verify the signature of each node of the path that
leads to the leaf which represents the signed message.

This scheme remains stateful, because each time we want to sign a message we have to
create on the fly everything that we haven’t created yet, and keep that part of the tree. So
while our signature size is fixed, the state becomes bigger but remains polynomial because
we only sign a polynomial number of messages.

5.1 Get rid of the state

The verification and signing keys for each node of a tree path are chosen at random. Since
there was some randomness involved in creating theses keys, it would be more convenient to
remember just the randomness. If we can remember that randomness, as we traverse a tree
path we can regenerate all the verification and signing keys along this path. We can achieve
this using a PRF Fk. Let’s assume that every tree node has a different label x. Then the
randomness associated with node x is rx = Fk(x). Hence, compared to the previous stateful
tree-based signature scheme, now we need to remember only VK0, SK0 and the key k of the
PRF.

Lecture 17, Page 6

