
CS 7880 Graduate Cryptography November 11, 2015

Lecture 11: Signatures and Trapdoor Permutations

Lecturer: Daniel Wichs Scribe: Tanay Mehta

1 Topics Covered

• Squaring modulo N

• Rabin trapdoor permutation

• Signatures using TDPs in the RO model

2 Rabin Trapdoor Permutation

Last time, we described the RSA cryptosystem. Specifically, we looked at the function

fe(x) = xe mod N

where N = p · q for primes p, q and e ∈ Z∗ϕ(N). In using fe to encrypt messages, we are
making a tautological assumption that fe is one-way. This relies on the computation hard-
ness of factoring. However, we do not whether the only way to invert fe is by computing
e−1 mod ϕ(N). There might be a different method to break the encryption that does not
rely on the discrete log assumption. We will take a look at another function that relies on
the weaker assumption that it is difficult to compute square roots modulo N (as opposed
to computing eth roots modulo N in the RSA system). In fact, we will show that this
assumption is equivalent to hardness of factoring.

As a short detour, we will briefly discuss the new presumed result by Laszlo Babai that
the graph isomorphism problem can be solved in quasipolynomial time. One question that
arises is why is it believed that graph isomorphism can be solved in polynomial time, but not
factoring when both problems are currently thought to be in NP but not NP-Complete? The
intuitive answer is that factoring is a distribution of problems with no heuristics, whereas
there are heuristics for solving graph isomorphism instances efficiently.

Let us return back to defining a function that is exactly as hard to invert as factoring.
The Rabin trapdoor permutation is defined to be

f(x) = x2 mod N

There is an immediate problem with this definition — f is not a permutation on Z∗n. Its
image is a subset of Z∗n. To be able to fix this, let us look more closely at squaring modulo
N .

Lecture 11, Page 1

2.1 Squaring Modulo N

Recall that the Chinese remainder theorem says we can study values modulo N = p · q as
values modulo p and modulo q. Let us consider the square function modulo p.

f : Z∗p → Z∗p
f(x) = x2 mod p

The image of f is the set of quadratic residues modulo p.

Im(f) = QRp = {y ∈ Z∗p : ∃x ∈ Z∗p y = x2}

Let us take a closer look at how the elements of Z∗p behave under the squaring operation.
Since Z∗p is cyclic, we have that

Z∗p =< g >= {g0, g1, g2, . . . , g
(p−1)

2
−1, g

(p−1)
2 , . . . , gp−2}

↓ ↓ ↓
QRp =< g2 >= {g0, g2, g4, . . . , gp−3, g0 = 1, . . . }

More specifically, we see that an element of the form gi is mapped to g2i. This tells us that
the quadratic residues QRp are the even powers of g, and that

|QRp| =
(p− 1)

2

Observe that since g
(p−1)

2 maps to g(p−1) = 1 mod p (by Fermat’s little theorem) and g0 = 1

mod p, we have that g
(p−1)

2 = −1 mod p. Keeping this in mind, we will introduce new no-
tation to determine whether an element y of Zp is a quadratic residue.

Define the Jacobi symbol (also called the Legendre symbol when p is prime) to be

J(y) = y
(p−1)

2 mod p

Note that if y = gx then

J(y) = gx
(p−1)

2

Therefore, if x is even modulo p, then gx
(p−1)

2 = gx
′(p−1) = 1 mod p by Fermat’s little

theorem. If x is odd, then gx
(p−1)

2 = gx
′(p−1)+ (p−1)

2 = −1 mod p by the above observation.

Now we will show that the square function is a permutation when restricted to the domain
QRp. We do this by giving a method to invert the square function for p = 3 mod 4 = 4i+3.
That is, given y ∈ QRp : y = x2 mod p, find x. Consider the following:

(yi+1)2 = y2i+2 = y
(p−1)

2
+1 = (x2)

(p−1)
2

+1 = 1 · x2 = y

Therefore, x = ±yi+1.

Lecture 11, Page 2

Note that (−1) = g
(p−1)

2 6∈ QRp since p = 3 mod 4 implies that (p−1)
2 is odd. We can

infer from this that x ∈ QRp if and only if −x 6∈ QRp.

We have shown that the square function f : QRp → QRp is a permutation. Note that f
is not one-way. As we have just seen, we can invert f easily.

2.2 Rabin Trapdoor Permutation

Let us return to the Rabin trapdoor permutation f(x) = x2 mod N where N = p · q for
primes p, q = 3 mod 4. Since N is not prime, we will extend the result that the square
function is a permutation.

Using the Chinese remainder representation, f maps x = (xp, xq) 7→ (x2p, x
2
q). We again

define the image of f to be the quadratic residues modulo N .

Im(f) = QRN = {y ∈ Z∗N : ∃x ∈ Z∗N x2 = y}

Note that y ∈ QRN ⇔ yp ∈ QRp, yq ∈ QRq where (yp, yq) is the Chinese remainder
theorem representation of y. From this, we see that

f−1(y) = (xp, xq), (−xp, xq), (−xp,−x1), (xp,−xq)

Exactly one of these four inverses is a quadratic residue modulo N because from our pre-
vious observation exactly one of −xk, xk is a quadratic residue for k = p, q. Therefore, we

also have that |QRN | =
|Z∗N |
4 .

We have shown that f : QRN → QRN is a permutation. Now we will show that the
security of the Rabin cryptosystem is equivalent to hardness of factoring.

Claim 1 Given x, z such that x2 =N z2 =N y and x 6= ±z, N can be factored.

Proof: Recall that f−1(y) takes on one of four values shown above. As a result, the sum
of two distinct preimages x and z yields

x+ z = (0, 2xq) or (2xp, 0)

Without loss of generality, let x+ z = (2xp, 0). Then, we have that

x+ z = 0 mod q

x+ z/neq0 mod p

Thus, we can extract the value of q by taking gcd(x+ z,N) = q.

Theorem 1 If factoring is hard, inverting f(x) is hard.

Lecture 11, Page 3

Proof: Assume A inverts f(x) in poly-time. Then, we have that

Pr[A(N, y) = x, x2 = y mod N : p, q ← Primes, N = pq, y ← QRN] ≥ ε(n) =
1

poly

Consider the following algorithm.

Factor(N) :


Choose a random x← Z∗N
y = x2

z = A(N, y)
If z 6= ±x then use claim and factor N

The probability that the z returned by A satisfies the conditions of the claim is 1
2 . Therefore,

Pr[Factor(N) succeeds] ≥ ε(n)

2

3 Signatures

Let us look at a new application of public-key cryptosystems, signatures. Consider the
high-level view of the protocol between Alice and Bob with an eavesdropper Eve.

Alice Bob

(vk, sk) vk

σ ← Sign(sk,m)

(m,σ) → Eve→ (m′, σ′)

Verify(vk,m, σ) = 0, 1

More formally, a signature scheme consists of the following:

• (vk, sk) ← KeyGen(1n): A key generation function generates the verification key vk
and the secret key sk.

• σ ← Sign(sk,m): A signing function that takes a message m and the secret key sk to
produce a signature σ.

• b ← Verify(vk,m, σ): A verification function that takes the verification key vk, mes-
sage m, and signature σ and returns a bit b.

Correctness is established by ensuring that for all (vk, sk) ∈ KeyGen(1n) and for all
m ∈M

Pr[Verify(vk,m, σ) = 1 : σ ← Sign(sk,m)] = 1

Lecture 11, Page 4

Security is established by ensuring a probability bound on the following game with an
adversary A.

SigGameA(n) :

Signer A

(vk, sk)← KeyGen(1n)

vk → vk

m1 ← m1

Sign(sk,m1) = σ1 → σ1
...

...
...

mk ← mk

Sign(sk,mk) = σk → σk

(m∗, σ∗) ← (m∗, σ∗)

Output 1 if m∗ 6∈ {mi}1≤i≤k and Verify(vk,m∗, σ∗) = 1.

For the above game, we define security to be that for all PPT A

Pr[SigGameA(n) = 1] = negl(n)

This type of security is called Chosen-Message Attack Security.
Discussion. Conceptually, signatures look at public-key cryptography (for assump-

tions). However, we do know how to build them from OWFs so they are like symmetric-key
cryptography in that respect. However, while symmetric-key cryptography belongs in the
minicrypt world (from Impagliazzo’s worlds), signatures belong more in the public-key cryp-
tography world, crytomania.

3.1 Construction using TDPs in the RO Model

We will work towards a construction for signatures using trapdoor permutations in the ran-
dom oracle model. Let’s start with a not quite correct construction.

Let fpk : Dpk → Dpk be a trapdoor permutation with public-key pk. Let Invsk be its
inverse with secret-key sk. Define for the signature scheme:

vk = pk

sk = sk

Sign(sk,m) = Invsk(m)

Verify(pk,m, σ) : Check fpk(σ) = m

This scheme can be broken by choosing a signature σ first, and then computing and sending
fpk(σ) = m. We can get around this vulnerability by disallowing the adversary A to choose

Lecture 11, Page 5

m∗ but rather sample m∗ randomly.

However, the issues with this scheme don’t end there. There exists a method where an
adversary can sign messages related to ones that are seen. Consider the case where we use
the RSA trapdoor permutation.

fpk(σ) = m⇒ fpk(σ ·m) = m(x′)e

Therefore, given a message m1 and its signature, an adversary can sign the product of
messages m1 ·m2.

Within the random oracle model (in practice via a hash function), there is a simple fix
to these vulnerabilities.

Sign(sk,m) = Invsk(RO(m))

Verify(pk,m, σ) : Check fpk(σ) = RO(m)

The first vulnerability is fixed since choosing a signature σ and then computing fpk(σ) gives
the hash of some message, not the message itself. Therefore, A cannot produce a message
to go along with the signature σ. For the second vulnerability, the above implication no
longer holds.

Lecture 11, Page 6

