
24 1 Inductive Sets of Data

Exercise 1.14 [� �] Given the assumption 0� n� length(von), prove that partial-
vector-sum is correct.

There are many other situations in which it may be helpful or necessary to
introduce auxiliary variables or procedures to solve a problem. Always feel
free to do so.

1.2.4 Exercises

Getting the knack of writing recursive programs involves practice. Thus we
conclude this section with a number of exercises.

Exercise 1.15 [�] Define, test, and debug the following procedures. Assume that s
is any symbol, n is a nonnegative integer, lst is a list, v is a vector, los is a list
of symbols, vos is a vector of symbols, slist is an s-list, and x is any object; and
similarly s1 is a symbol, los2 is a list of symbols, x1 is an object, etc. Also assume
that pred is a predicate, that is, a procedure that takes any Scheme object and returns
either #t or #f. Make no other assumptions about the data unless further restrictions
are given as part of a particular problem. For these exercises, there is no need to
check that the input matches the description; for each procedure, assume that its
input values are members of the specified sets.

To test these procedures, at the very minimum try all of the given examples. Also use
other examples to test these procedures, since the given examples are not adequate to
reveal all possible errors.

1. (duple n x) returns a list containing n copies of x.

> (duple 2 3)
(3 3)
> (duple 4 ’(ho ho))
((ho ho) (ho ho) (ho ho) (ho ho))
> (duple 0 ’(blah))
()

2. (invert lst), where lst is a list of 2-lists (lists of length two), returns a list
with each 2-list reversed.

> (invert ’((a 1) (a 2) (b 1) (b 2)))
((1 a) (2 a) (1 b) (2 b))

3. (filter-in pred lst) returns the list of those elements in lst that satisfy
the predicate pred.

> (filter-in number? ’(a 2 (1 3) b 7))
(2 7)
> (filter-in symbol? ’(a (b c) 17 foo))
(a foo)



1.2 Recursively Specified Programs 25

4. (every? pred lst) returns #f if any element of lst fails to satisfy pred, and
returns #t otherwise.

> (every? number? ’(a b c 3 e))
#f
> (every? number? ’(1 2 3 5 4))
#t

5. (exists? pred lst) returns #t if any element of lst satisfies pred, and
returns #f otherwise.

> (exists? number? ’(a b c 3 e))
#t
> (exists? number? ’(a b c d e))
#f

6. (vector-index pred v) returns the zero-based index of the first element of v
that satisfies the predicate pred, or #f if no element of v satisfies pred.

> (vector-index (lambda (x) (eqv? x ’c)) ’#(a b c d))
2
> (vector-ref ’#(a b c)

(vector-index (lambda (x) (eqv? x ’b)) ’#(a b c)))
b

7. (list-set lst n x) returns a list like lst, except that the n-th element, using
zero-based indexing, is x.

> (list-set ’(a b c d) 2 ’(1 2))
(a b (1 2) d)
> (list-ref (list-set ’(a b c d) 3 ’(1 5 10)) 3)
(1 5 10)

8. (product los1 los2) returns a list of 2-lists that represents the Cartesian
product of los1 and los2. The 2-lists may appear in any order.

> (product ’(a b c) ’(x y))
((a x) (a y) (b x) (b y) (c x) (c y))

9. (down lst) wraps parentheses around each top-level element of lst.

> (down ’(1 2 3))
((1) (2) (3))
> (down ’((a) (fine) (idea)))
(((a)) ((fine)) ((idea)))
> (down ’(a (more (complicated)) object))
((a) ((more (complicated))) (object))

10. (vector-append-list v lst) returns a new vector with the elements of lst
attached to the end of v. Do this without using vector->list , list->vector ,
and append.

> (vector-append-list ’#(1 2 3) ’(4 5))
#(1 2 3 4 5)



26 1 Inductive Sets of Data

Exercise 1.16 [� �]

1. (up lst) removes a pair of parentheses from each top-level element of lst. If a
top-level element is not a list, it is included in the result, as is. The value of (up
(down lst)) is equivalent to lst, but (down (up lst)) is not necessarily
lst.

> (up ’((1 2) (3 4)))
(1 2 3 4)
> (up ’((x (y)) z))
(x (y) z)

2. (swapper s1 s2 slist) returns a list the same as slist, but with all occur-
rences of s1 replaced by s2 and all occurrences of s2 replaced by s1.

> (swapper ’a ’d ’(a b c d))
(d b c a)
> (swapper ’a ’d ’(a d () c d))
(d a () c a)
> (swapper ’x ’y ’((x) y (z (x))))
((y) x (z (y)))

3. (count-occurrences s slist) returns the number of occurrences of s in
slist.

> (count-occurrences ’x ’((f x) y (((x z) x))))
3
> (count-occurrences ’x ’((f x) y (((x z) () x))))
3
> (count-occurrences ’w ’((f x) y (((x z) x))))
0

4. (flatten slist) returns a list of the symbols contained in slist in the order
in which they occur when slist is printed. Intuitively, flatten removes all the
inner parentheses from its argument.

> (flatten ’(a b c))
(a b c)
> (flatten ’((a) () (b ()) () (c)))
(a b c)
> (flatten ’((a b) c (((d)) e)))
(a b c d e)
> (flatten ’(a b (() (c))))
(a b c)

5. (merge lon1 lon2), where lon1 and lon2 are lists of numbers that are sorted
in ascending order, returns a sorted list of all the numbers in lon1 and lon2.

> (merge ’(1 4) ’(1 2 8))
(1 1 2 4 8)
> (merge ’(35 62 81 90 91) ’(3 83 85 90))
(3 35 62 81 83 85 90 90 91)



1.2 Recursively Specified Programs 27

Exercise 1.17 [� � �]

1. (path n bst), where n is a number and bst is a binary search tree that contains
the number n, returns a list of lefts and rights showing how to find the node
containing n. If n is found at the root, it returns the empty list.

> (path 17 ’(14 (7 () (12 () ()))
(26 (20 (17 () ())

())
(31 () ()))))

(right left left)

2. (sort lon) returns a list of the elements of lon in increasing order.

> (sort ’(8 2 5 2 3))
(2 2 3 5 8)

3. (sort predicate lon) returns a list of elements sorted by the predicate.

> (sort < ’(8 2 5 2 3))
(2 2 3 5 8)
> (sort > ’(8 2 5 2 3))
(8 5 3 2 2)

Exercise 1.18 [� � �] This exercise has three parts. Work them in order.

1. Define the procedure compose such that (compose p1 p2), where p1 and p2
are procedures of one argument, returns the composition of these procedures,
specified by this equation:

((compose p1 p2) x) � (p1 (p2 x))
> ((compose car cdr) ’(a b c d))
b

2. (car&cdr s slist errvalue) returns an expression that, when evaluated,
produces the code for a procedure that takes a list with the same structure as
slist and returns the value in the same position as the leftmost occurrence of s
in slist. If s does not occur in slist, then errvalue is returned. Do this so
that it generates procedure compositions.

> (car&cdr ’a ’(a b c) ’fail)
car
> (car&cdr ’c ’(a b c) ’fail)
(compose car (compose cdr cdr))
> (car&cdr ’dog ’(cat lion (fish dog ()) pig) ’fail)
(compose car (compose cdr (compose car (compose cdr cdr))))
> (car&cdr ’a ’(b c) ’fail)
fail

3. Define car&cdr2, which behaves like car&cdr, but does not use compose in its
output.


