

mwd
macehiterward-dutton

The Business Value of
Software Static Analysis
Bola Rotibi
August 2008

Software can kill. We are all pretty much aware of this fact for the software that controls
planes, missiles and medical equipment. We expect the creators of such software to have the
highest forms of governance and quality processes in place: a fully-documented software
development lifecycle with detailed requirements that are fully connected to every aspect of
the software and hardware artefacts, strong static analysis and code reviewing procedures
and a foolproof testing framework. After all, lives are at stake.

But what if it is a business that is at stake? After all, livelihoods could certainly be affected.
Should we not also expect business- and security-critical software applications to have strong
code quality reviewing processes?

Macehiter Ward-Dutton is a specialist IT advisory firm which focuses exclusively on issues
concerning IT-business alignment. We use our significant industry experience,
acknowledged expertise, and a flexible approach to advise businesses on IT architecture,
integration, management, organisation and culture.

This paper has been sponsored by IBM.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 2

Summary
Merely “paying lip service” to
software quality in business-
critical applications brings
significant business risks.

Over the last 25 years many organisations have lacked
the desire to engage adequate code analysis tooling and
employ more stringent software delivery processes -
mainly because the pursuit of software quality has been
perceived as both expensive and time consuming.

However it’s no longer sufficient to merely “pay lip
service” to software quality. Although a broken link on a
website or even certain types of web application failures
may not appear to pose much of a risk (beyond minor
frustration for end-users), an underlying failure in a
business-critical application due to the quality of the
application (code and design) can easily cost a company
more than just money – destroying trust between
provider and user.

Increased software complexity
from advances in technologies
and approaches is set to put
further pressure on software
quality.

Advances in software technologies and approaches are
driving new complexity into the software applications
that organisations are looking to build from them. The
complexity of delivering software that takes advantage of
the features of web 2.0, rich media, Software as a
Service (SaaS) models, unified communications,
collaboration, virtualisation and Service-Oriented
Architecture (SOA), however, comes at a price:
increased risk of software defects.

Software technology is advancing at considerable
speed, as are user expectations and requirements. The
challenge is that while many organisations are attracted
by the potential of these new advances, few of them
have the software processes and tools in place to offer
adequate assurances for the quality of the software code
delivered. As a result, they are in danger of promising
much, based on the capabilities of new technology, but
not being in a position to deliver software code with
quality that meets the demands and expectations of
users.

Financial savings, improved
software quality and maintenance
cost reductions all flow from the
early identification and removal of
software defects.

Employing static analysis strategy and tooling to remove
defects in the development phase and earlier is a
winning strategy. Firstly, it can considerably lessen the
impact that such defects have on the productivity of the
software delivery process, the quality of the application,
user satisfaction and expectations. And secondly, given
the increased costs down the line of any maintenance
program where poor-quality code needs to be fixed, it
actually reduces costs.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 3

Software: a victim of its own success?
Software matters. It is pervasive in everything that we do in our modern world. Software is a
key component for driving business transformation and innovation and engaging effectively
with globally distributed teams. Software technology and applications span the entire industry
and business landscape, becoming an increasingly important and integral part of the way we
work, live, rest and play. Software innovation is seen as a means of differentiation and
achieving competitive edge as well as a cornerstone for operational excellence.

When software fails
The flip side to the success and importance of software is the uncomfortable reality that for far
too many organisations and ordinary users, software fails. What is more, it does so at a rate
that wouldn’t be tolerated in most other technology areas. For many, the software delivery
process isn’t predictable, there is often very little measurement, and there’s little ability to
pass on knowledge or experiences gained through the process to drive future improvements.

Would any other industry accept the failure rates of the software industry? One only has to
see the backlash, public relations disaster and financial losses that occur when the medical,
aviation, manufacturing or automotive industries get things wrong. Could you imagine any of
these industries, once knowing the bad effects of poor procedures and the cost differential for
using correct procedures, continuing to execute procedures that have been proven to fail? But
this is exactly what happens in the delivery of software code and applications today.

What is perhaps more shocking, is that the path to software quality has been known for many
years. Admittedly tool support has sometimes lagged behind; however the processes,
methods and pitfalls have been well documented and easily available for all to read and
digest over this previous decade.

The Nirvana of software quality
The benefits of enacting a robust quality process, whether in delivering software or otherwise,
have been universally acknowledged with many widely-publicised studies and reports.

Following a well-structured software quality process can deliver significant value and,
indirectly, enables tremendous business opportunities. It can achieve a reduction in software
delivery costs, and a more efficient deployment of IT resources (because staff used for fixing
defects can work on creating and building new and improved products). Importantly, a quality-
focused software delivery approach does not necessarily mean a longer time-to-market. In
fact much of the available evidence points to the opposite: focusing in the right way on
software quality decreases time-to-market.

The ability to deliver more marketable products quickly, repeatedly and predictably translates
into significant competitive advantage and the potential for increased profit margins. In
addition, raising customer satisfaction and improving software success rates has the knock-
on effect of raising staff morale (association with success is much more uplifting than the
demoralisation of failure). Efficiency gains in resource utilisation also open up the opportunity
for staff to do more varied and interesting work, allowing them to participate more easily in the
innovation process.

The reality check
Unfortunately, even though there have been proven case studies demonstrating the benefits
outlined above, many organisations simply pay “lip service” to software quality. The effort
required to achieve the benefits above is considered by many to be too much to give.
Attention to software quality is often dropped in the face of delivery pressures; getting
something quickly out to the market that is “just good enough” is the prime goal.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 4

The “good enough” mentality holds great sway in the software industry, and is accepted and
even expected in a user audience that is resigned to the constant litany of software failures
they experience.

A case for renewed software quality rigour
Poor software quality and the lack of robust software quality processes and tools early in the
delivery cycle cannot continue. The times, and more importantly the technologies, are
changing. What we are able to do, and want to do, through the latest software technology
advances has increased.

Broad tolerance for bad software and poor quality software delivery processes is becoming
less acceptable as the role software plays in driving innovation, transformation and
entertainment becomes increasingly important. Moreover the complexities of today’s
software, boosted by advances in technologies and approaches offering improved ways of
reaching out to new clients and collaborating and communicating with existing customers,
suppliers and employers, suggests that more will be at stake in the event of software quality
failure. The risks will be further compounded by the need for increased security requirements
for protecting online, public-facing applications against malicious intent.

“Good enough” is no longer good enough

More serious outcomes of failure

New business models are being founded on applications and systems developed with many
of these new technologies and approaches. If organisations start to restructure their working
practices around applications and systems which rely on the new generation of
communication and collaboration technologies and approaches, then failure due to poor code
or application quality becomes even less acceptable.

The inclusion of rich media and visuals; the push for greater collaboration through the
Internet; and unified communications for richer interactive social or work activities, means that
any failure in such services would not only have the potential of creating higher levels of
frustration – it would reduce productivity more sharply. On top of this, company brands
become more easily exposed to damage.

More complexity

Increased complexity in coding applications that support such technologies along with the
increased complexity of integrating and interoperating such applications with legacy software,
hardware and data sources raises the prospect of an increase in the number of code defects.
What’s more, development is changing. Different techniques and approaches such as
composite application and mash-up development, along with others associated with a
service-oriented software environment, have added to the complexity of the development and
integration strategies of past software environments.

Tools are changing, too

Change is also happening in the supply market. Independent Software Vendors (ISVs) and
tools vendor are increasingly embracing variations on a model-driven approach. This allows
them to bring together all the various parties in software development and create an
integrated Application Lifecycle Management (ALM) environment where there is substantive
data flow between the parties. As we move to smaller, agile, software development, software
components are intended to be self contained but become part of a larger assembly kit. This,
in reality, is the first real opportunity to show the object models of the mid-80’s finally in place.
This is a world where software solutions are simply assemblies of many small components.

All this brings with it a problem. How do you validate the correctness of interactions between
potentially hundreds or even thousands of software components? As systems get more

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 5

complex, you need to be able to see the impact of changing any component. Software
complexity means that this cannot be done by test teams alone. In many large development
projects it’s now practically impossible for any individual to be able to manually assess all
potential breeches and problem areas.

Static analysis: achieving quality through early intervention

Amidst all this complexity and risk, improving the quality focus within the software delivery
process even by a small but sustainable amount can generate significant returns.

There are a number of key angles to pursue to achieve quality within the software delivery
process. One important area where significant improvements in the quality of the software
code can be easily achieved is in the process of static analysis. This is because this activity
can be automated through tool support at the developer level, or even during the build
process; and sophisticated and deep analysis can be applied (using out-of-the-box rules or
with the flexibility of custom rules) that no manual peer inspection can achieve in a similar
timeframe.

What is static analysis, precisely? We define it, based on Wikipedia’s definition, as follows:

Static analysis is the analysis of software that is performed without actually executing
programs built from that software. There are many different forms of analysis rules that can
be applied – ranging from the behaviour of statements and declarations, through to verifying
the properties of software in critical systems or applications – as well as locating potentially
vulnerable code.

Making a case for Software Static Analysis

Startling statistics
The power of static analysis has been proven many times over, the results of which can be
readily found on the Internet.

• A 1998 study carried out by Capers Jones stated that “wastage” and defect repairs (from
deployed code) absorbed almost two thirds of the US software workforce – leaving only
one third for productive work on new projects.

• The same study also found that 50% of software development project budgets are spent
fixing poor quality code; fewer than 6% of organizations have clearly defined software
management processes in place; and software projects of 100,000 function points in size
have a failure rate of 65%. More recent articles on this topic suggest that for many
organisations the statistics remain very much unchanged today.

The fact that most work effort for the development organisation is spent on defect repair is not
only an expensive use of skilled software personnel; it is an inefficient use of less skilled
resources. Equally troubling is the fact that it is the combination of high levels of potential
defects and low levels of defect removal efficiency that contributes to cancelled projects and
to the dominance of error-related work patterns in the software community. It is a worrying
indictment that after all these years, more often than not, more than twice as much effort is
associated with defect removal than with actual product development.

Preventing defects as they emerge early in the development lifecycle and before they get
shipped would clearly save money and allow more software staff to focus on value-adding
application development.

Why prevention is more cost-effective than cure
There have been countless studies done over the years that not only prove significant cost
savings that can be achieved through static analysis of software code and applications
particularly in the definition and coding phases but also the added benefits from improved

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 6

performance, more efficient utilisation of IT staff and general reduction in downstream bottle
necks.

It is not the intention of this report to repeat in detail the findings of such reports or studies,
because most of them are easily and freely accessible on the Internet and go into
considerably more depth than can be afforded here. However, below we summarise the main
findings to demonstrate that prevention is more cost effective than cure.

The 2002 National Institute of Standards and Technology (NIST) report on “The Economic
impacts on the inadequate infrastructure for software testing” is one of the most recent
detailed studies to ascertain the value of improving software quality – along with the most
feasible processes and tooling to put in place and the types of metrics to collect. A detailed
analysis of IT organisations within two industry groups was conducted: automotive and
aerospace equipment manufacturers; and financial services providers and related electronic
communications equipment manufacturers.

An overview of the findings is shown in figures 1 and 2.

Figure 1: Relative Costs to Repair Defects when Found at Different Stages of the Life-Cycle

[Where X is a unit of cost for the Baziuk 1995 Study and Y is a unit of cost for the Boehm
1976 Study] Source: National Institute of Standards and Technology “Economic impacts on
the inadequate infrastructure for software testing”, 2002

What’s worth pointing out is that these two industry sectors probably have some of the
highest regard for software quality process as a result of the mission, safety, security and
business-critical nature of the software applications they build and deploy. Therefore the
results they produced are almost certainly bound to be better than for organisations that have
not traditionally needed to develop software to the same standards – meaning that other
organisations are more than likely to be experiencing considerably more defects and wasting
more resources.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 7

Figure 2: Example Software Testing Costs Shown by Where Bugs Are Detected

Source: National Institute of Standards and Technology “Economic impacts on the inadequate
infrastructure for software testing”, 2002

The NIST study revealed that software developers reported that better testing tools and
methods during software development could reduce installation expenditure by 30 percent.
Although the study talked generally about the overall testing infrastructure for software
development and maintenance, we believe it’s reasonable to deduce that early intervention in
removing defects should result in direct cost reduction in the software development process,
and also a decrease in support costs.

Restoring faith in software code quality
In order to restore faith in the quality of the software applications that we build, we must first
try to understand why software fails. Ask anyone in the industry what makes software fail and
you immediately get a barrage of competing reasons – as shown in figure 3.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 8

Figure 3: Common opinions for the reasons for bad software

Poor software programming and unrealistic
timeframes:

• Unfair management pressure to shorten
development lifecycles and rush
applications and systems out of the
door.

• Developers not taking enough personal
responsibility for their full role in the
lifecycle.

Lack of quality control and the wrong incentives:

• Nobody reviews the code if it works.

• Not having management buy-in to create
a quality product.

• Defect removal is not very sexy and can
be long and labour intensive. No cachet
for developers who prefer to be and are
rewarded for program functionality and
user interfaces.

Scepticism:

• The view that there will always be bad
code.

Poor quality staff and processes:

• Poor management with managers either
lacking in skills or understanding of the
development process and the code/
application being developed.

• Poorly skilled programmers with limited
programming languages experience and
who fail to learn lessons of the past.

• Cutting corners for things like a good
working environment induces a ‘don't
care’ attitude amongst one's developers.

• Not having the right tools for the job or
the needed user/business experience.

The increased complexity of software and tools:

• Outsourcing and geographically located
teams.

• Many projects are now beyond the
scope of a single individual to
comprehend: ‘minor’ changes in one
component can’t be easily correlated
with effects in another area because no
one person understands the
relationships.

Source: MWD

The above opinions are all valid reasons that will lead to bad software being deployed and
eventually causing a failure. However, in the face of strong financial evidence there can be
little excuse for the lack of a more committed approach to the early removal of software
defects.

There may be barriers and scepticism from the business because IT organisations have not
always equipped themselves well in the past. They have made unnecessary and sometimes
costly technology purchases while at the same time failing to deliver the expected value to
business teams. However, good organisations have come to realise that responsibility and
accountability for software code quality lies, to some degree, on both sides of the IT and
business management divide.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 9

Practical guidelines for software static analysis
Tools in general have come a long way in helping us to achieve more reliable software. But
purchasing a static analysis tool alone will not guarantee software code quality.

As with any strategy that looks to manage or improve the delivery of software code and
applications, the focus should fall on a number of common core areas: people, process,
methods, tools and technology. Below we briefly highlight important considerations in these
different areas.

People
People can be the single biggest obstacle to implementing a static analysis strategy and
platform and a wider focus on quality.

Ideally the priority should be to employ the best people with the right attitude. But there are
practical considerations: the world has a limited pool of software delivery talent available, and
the best people attract significant premiums. Not every company can afford the best. This is
one key reason why as well as attempting to hire the best people you can afford, you should
also put in place a “quality culture” that is backed by supportive processes, strong
motivational drivers and the right incentives, rewards and punitive measures (should
performance fail to live up to requirements).

Software quality, and the early resolution of defects, should be goals that are rewarded over
and above more obvious measures such as the number of function or feature points
supported by the software code. Making this transition requires “top-down” commitment from
the management chain, together with empowerment and resolve within the IT team. A clear
understanding of individuals’ responsibility and accountability will be essential in driving any
changes to the software delivery process. Unrealistic deadlines will make it even harder to
succeed, even with a static analysis tool.

Process and methods
In the absence of consistent processes, IT teams fail to learn from past mistakes or
successes, ending up repeatedly reinventing the wheel. As a result quality and success is
rarely duplicated and the opportunity for predictability is lost.

It is important to employ the right processes (processes that can be customised to meet the
specific needs of your organisation) that will help drive quality in software delivery from the
outset, whether static analysis is being executed at the developer level or centrally at the build
level. For example, carrying out risk analysis at the beginning of a development project might
highlight situations to guard against, which can then be used as defect criteria. Support for
using best practices for ensuring quality within software development will be vital, as will a
process and framework for measuring and reviewing the success of such practices so that
further improvements can be discovered and implemented.

Two common software development methods that have been widely reported as being
incredibly effective in maximising software quality are:

• Using formal inspections of designs, code and other deliverables to prevent and remove
software defects.

• Using software quality assurance groups and software quality process frameworks like
Capability Maturity Model® Integration (CMMI) and Six Sigma.

There is also a case for the use of agile development methodologies that embody the concept
of short iterations of development and shipping or deploying often to quickly ascertain
customers’ needs and acceptance. Reducing the number of function points delivered and

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 10

having short delivery cycles will help to lessen the load of potential defects – allowing for a
more manageable and effective defect removal process.

Tools
With all our above analysis in mind, there are a number of important features that a static
analysis tooling platform should encompass. These are highlighted below:

• User friendly extensibility framework. Tools should make it easy for customers and
partners to implement scenario-specific extensions, providing clear guidelines and
productivity features to help the configuration process along with support for multiple
methods of integration. The benefits and value of an extensible framework can be
substantial. The advantage of having a static analysis solution that is flexible means that it
can be customized to meet the specific needs of a company (since every company may
do things a bit differently). Having the ability to create and modify rules and reports, as
well as having the ability to 'connect' to other 3rd party tools (in order to have one
tool/interface in an environment where there could be many tools in-house) allows for
greater developer productivity in standardising the interface and methodology of use.

• Automation. With developers being tasked with doing more in the development phase,
automation – both of processes, functions and of use – becomes really important. You
need automated analysis to work through a lot more reviews and rule-checking than a
face-to-face peer review meeting can do in the allotted time.

• Real-time testing support. This is vital, so that developers can remedy defects as soon
as they emerge and where the impact will be less significant.

• Comprehensive and extensible static analysis rules support. Outcomes from
checking rules should be associated with multiple severity levels, and the tool should be
able to automatically provide fixes for violations. Tools should allow rulesets to be altered
and extended, and should also help teams share rules and best practices between them.

• Clean and simple user interface. Given the time pressures that development staff are
under and the challenge to get software quality issues ingrained in the behaviours of all
developers, it’s important to look for usability features that make it easy for developers
with even the most basic skills to quickly pick up and use.

• Support for multiple views of an application or solution code structure and
dependency relationships. This is particularly useful in understanding existing code
structures in the absence of sufficient supporting documentation or code comments.
Development teams are often under pressure to deliver and worry less about
documentation and commenting their code. If an application code is poorly structured and
low in quality then being able to see this would allow decisions to be made as to whether
to retain the code or invest in renewing it. At least then the cost/benefit equations can be
more easily calculated. There are many tools that provide code introspection models - so
while this may be an overlapping feature, its presence in the static analysis tool would
allow developers better insight at the most opportune moment (i.e. during the code
development stage where it can be changed easily and quickly) into how newly
developed code might impact on the overall structure and dependency map.

• Support for refactoring. The ability to easily change poor code component structures
and designs is important in the context of static analysis. There is no point adding more
code to bad quality code because not only does it not improve the overall quality, it
potentially increases the complexity too.

• Delivery workflow and build-time integration. Ideally tools should provide facilities that
allow them to be integrated with other tools and processes used within the workflow of the
software development lifecycle (e.g. build processes) or with previously invested static
analysis tools that have known limitations. With support for build processes in place, code
reviews can be configured to operate at the level of builds, and management teams can

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 11

get higher-level visibility into the progress of quality management programmes.

• Comprehensive reporting facility. As well as being based on a high-performance and
scalable analysis engine, the reporting facility should support common output formats,
rich graphical representations, widely adopted or industry specific metrics within a
framework that allows customisation.

• Rich context for reports. Tools should allow the results of analyses to be packaged and
linked to specific software requirements, design and build configurations or management
reports. This supports strategies for retaining temporal knowledge and history in the event
of a change of developer, development team or manager, for whatever reason.

• Role based and modular expansion/licensing. It’s important that you can get started
with a tool in a way that doesn’t require you to make a “big bang” commitment. Licensing
models that allow customers to start small, and grow as they prove the value, are much
more consumable.

• Team and community support. In today’s distributed, often multi-party development
organisations, it’s a dereliction to provide tools without making it easy for individuals to
share rules and best practices.

• Support for measurement and sophisticated trend analysis and analytics. Tools
should ideally provide these facilities in order to support future process improvements and
integration with a wider IT intelligence framework if supported. This should be backed by
continuous collection of data for daily, quarterly and annual metric reporting.

Technology
The sophistication of any static analysis exercise depends on the number of analysis
rules/patterns for different code environments/languages that are supported by a tool.

A good static analysis tool platform should be capable of supporting a number of core
programming languages. It should also incorporate defect rules specific to different
technology approaches (e.g. service oriented application) and industry or regulation policies
either directly or by leveraging existing policy or rules resources.

Beyond code reviews: broader applications for static analysis
Static analysis at the code level will only get you so far. In practice there are often more errors
or defects in earlier stages of the software development lifecycle: i.e. in the software
requirements gathering and design stages. As this report has already shown, errors and
defects early on in the process will almost certainly have a negative impact on the final quality
and the ongoing costs.

The future for the ability to do code reviews and static analysis at many different levels is
coming. Understanding whether the design is right or whether it is conceptually flawed is the
basis of forensic analysis, which is a practice that is growing in importance and prominence.
Static analysis is a precursor to forensic analysis: you cannot conceivably do forensic analysis
well without strong static analysis tools and procedures.

As forensic analysis becomes more well-understood and practiced, the most beneficial
analysis tools will be those which can adapt to the broadening context of reviews and static
analysis: tools which can integrate and interoperate with existing tool investments but enable
a consistent approach to applying static analysis and review procedures wherever they may
be required. This kind of adaptability and integration capability will enable an environment
where knowledge and skills gained once can be applied in multiple places and scenarios.

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 12

Concrete software quality progression for the IT team
The case for automated static analysis of software code (whether at the developer-level, or
centralised within the build processes) is clear: it is impossible to write flawless code. You
need a static analysis strategy and framework based on the automated support of tools
because:

• It helps protect you from the poor coding skills of less able developers and to share the
experiences and knowledge of skilled developers and industry standard review rules.

• Organisations are global. The IT organisation may be widely distributed, and may not be
part of the same organisation, because parts of it may be outsourced and located in
different geographical locations. You now can no longer conceivably carry out the co-
located peer reviewing and code inspections common of past software delivery
processes.

• A sophisticated static analysis tool could allow you to track and validate design models,
the interactions between software components, and, increasingly importantly, interactions
between software components and data sources.

Static analysis is just one aspect of a QA strategy. However, if you don’t tackle it then you
cannot achieve the full potential of a QA framework. Improving the removal of defects and
improving the occurrence rate of defects means that there could be a reduction by a factor of
five in the number of defects actually delivered by average organisations.

The old excuses are no longer valid for avoiding software static
analysis
Below are some of the common excuses that we find when exploring problems with software
quality, and our rebuttals:

• We haven’t got time we need to get the product out. This leads to the cycle of
releasing bug fixes and patches in amongst new features or as new features and because
of the timescales even more poor quality code, thereby leading to a cycle of more bugs
and fixes.

• I have no time - I just need to code and deliver. Greater software complexity through
the use of the latest technology advances and complex organisational structures means
there will be soon no room for this attitude. Ensuing quality concerns means that it is no
longer that simple to “just code” without any thought to quality processes and
environments. End users expect more from their applications both in the way that they
perform and the value they deliver.

• The tools are too cumbersome. Much work has been carried out by vendors in trying to
better incorporate static analysis as an integral process within the developer workbench
and workflow of their choice. New tool environments from some of the leading players, as
well as those from the open source community, are providing sophisticated and easy-to-
configure static analysis facilities as an automatic function of the development process.

• The tools are too expensive. In the past the tools were certainly pricey and potentially
out of the reach of all but the largest organisations or development teams. However, this
is not the case today. The tools are not only more affordable; many are modular and role-
specific, so that you don’t have to buy a “one size fits all” type of product. In addition, tool
prices have decreased and there are open source plug-ins to popular IDEs like Eclipse.
The savings that you will make in the long run far outweigh the initial expense. More
money is spent sorting out bad code over the long run that putting it right in the first place.

• Tools don’t support code analysis of the latest technologies. In some cases this is

© Macehiter Ward-Dutton Limited 2008

The Business Value of Software Static Analysis 13

true, but static analysis is being taken seriously by software development platform
providers, most of whom are keen to show their credentials in promoting the development
of good quality code by providing community forums and support. The specialist vendors
solely focusing on static analysis are also expanding their tools. That said, we do believe
more work must be done in providing rules that enable deeper levels of inspection for
some of the latest technologies.

• There is no support and I don’t want to have to get expensive consultants in. This is
not as true as it used to be, although many of the vendors will provide additional
consulting services to those who require them. Many vendors are building communities to
share and swap analysis rules. The rule creation facilities within vendors’ tools are
becoming more standardised, making it easier for users to package up their tool
configurations and share them. Admittedly more could be done in this area, but what is
out there is a good start.

• I’m too small an organisation and we don’t build complex applications, we just do
web designs. Quality issues mean that too often, poor code is creeping into deployed
web-based applications. Besides, web design and coding requires further checks (for
example, to guard against malicious online hacks). As more businesses rely on software
to run, differentiate or underpin their businesses, software code quality becomes vital in
all applications that underpin new business models.

© Macehiter Ward-Dutton Limited 2008

	Summary
	Software: a victim of its own success?
	When software fails
	The Nirvana of software quality
	The reality check

	A case for renewed software quality rigour
	“Good enough” is no longer good enough
	More serious outcomes of failure
	More complexity
	Tools are changing, too

	Making a case for Software Static Analysis
	Startling statistics
	Why prevention is more cost-effective than cure

	Restoring faith in software code quality

	Practical guidelines for software static analysis
	People
	Process and methods
	Tools
	Technology
	Beyond code reviews: broader applications for static analysis
	Concrete software quality progression for the IT team
	The old excuses are no longer valid for avoiding software static analysis

